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ABSTRACT
Vision and Language Navigation (VLN) is a challenging task that
requires agents to understand instructions and navigate to the
destination in a visual environment. One of the key challenges in
outdoor VLN is keeping track of which part of the instruction was
completed. To alleviate this problem, previous works mainly focus
on grounding the natural language to the visual input, but neglect-
ing the crucial role of the agent’s spatial position information in the
grounding process. In this work, we first explore the substantial
effect of spatial position locating on the grounding of outdoor VLN,
drawing inspiration from human navigation. In real-world naviga-
tion scenarios, before planning a path to the destination, humans
typically need to figure out their current location. This observation
underscores the pivotal role of spatial localization in the navigation
process. In this work, we introduce a novel framework, Locating
before Planning (Loc4Plan), designed to incorporate spatial percep-
tion for action planning in outdoor VLN tasks. Themain idea behind
Loc4Plan is to perform the spatial localization before planning a
decision action based on corresponding guidance, which comprises
a block-aware spatial locating (BAL) module and a spatial-aware
action planning (SAP) module. Specifically, to help the agent per-
ceive its spatial location in the environment, we propose to learn a
position predictor that measures how far the agent is from the next
intersection for reflecting its position, which is achieved by the BAL
module. After the locating process, we propose the SAP module
to incorporate spatial information to ground the corresponding
guidance and enhance the precision of action planning. Extensive
experiments on the Touchdown and map2seq datasets show that
the proposed Loc4Plan outperforms the SOTA methods.

CCS CONCEPTS
• Computing methodologies→ Planning and scheduling; •
Information systems→ Multimedia information systems.

KEYWORDS
Vision and LanguageNavigation, Spatial Localization, Visual-textual
Grounding, Cross-modal Matching

1 INTRODUCTION
Vision and Language Navigation (VLN) is a challenging task that
requires agents to understand natural-language instructions and
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Where am I now?

visited nodes
current nodes
unvisited nodes

intersection

What the exact 
guidance should 
I follow now?

Instruction: You are on a one way street, go with the flow of traffic. 
At the next intersection you will make a left. Go straight and then 
make another left at the very next intersection. Go straight through the 
next intersection, go to the light and turn left. You'll pass a theater on 
the left before coming to the light. Go through the light, it has ...

Planning

Next Action: [FORWARD, LEFT, RIGHT, STOP]

Locating

Block

Environment

Observation

Next Intersection

Figure 1: The illustration of navigation process of our locat-
ing before planning approach. During the locating phase,
the agent locates its relative spatial position in the cur-
rent block. In the planning phrase, the agent associates the
corresponding guidance to follow and makes an action de-
cision to take (i.e., FORWARD).

navigate to the destination in a visual environment. The agent is
embodied in the environment and receives complete navigation
instructions consisting of multiple sub-instructions to describe how
to reach the destination step-by-step. Based on the instructions,
the observed surroundings, and the current trajectory, the agent
decides its next action. Executing this action changes the position
and/or heading of the agent within the environment, and eventually,
the agent follows the described route and stops at the desired goal
location. Arguably, one of the key challenges in outdoor VLN is
keeping track of which part of the instruction was completed. To
alleviate this problem, various methods [25, 28, 37, 39] have been
proposed. These methods mainly focus on grounding the natural
language to the visual input, while neglecting the crucial role of
the agent’s spatial position information in the grounding process.

In this work, we argue that it is crucial for an agent to first de-
termine its spatial position within the visual environment before
grounding the appropriate guidance to follow in the outdoor VLN
task. Consider a real-world navigation scenario for human, such as
when a tourist seeks directions from a native in an unfamiliar area.
The native typically begins by ascertaining the tourist’s current
spatial position before offering a route to the desired destination.
This observation underscores the pivotal role of spatial localization
in the navigation process. Unfortunately, previous studies have
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overlooked the crucial importance of this spatial positioning stage,
which significantly affects the agent’s ability to interpret and ex-
ecute navigation instructions accurately. Although the work [25]
encodes some topological information, such as junction-type em-
bedding and heading delta, to enhance agent generalization, it does
not extensively explore the crucial role of spatial localization.

Drawing inspiration from human navigation, we first explore the
effect of spatial position locating on the textual grounding of the
outdoor VLN task. Generally, in human navigation, spatial position-
ing relies on prior knowledge of the navigated region’s topology.
However, outdoor VLN tasks usually require agents to navigate
unseen environments, where the comprehensive environmental
topology is unavailable during inference. Meanwhile, the visual
observation perception of the agent is limited to a local region. To
help the agent perceive its spatial location in the environment, we
propose to learn a spatial predictor that measures how far the agent
is from the next intersection for reflecting its position, which is
achieved by a block-aware spatial locating (BAL) module. In our
modeling, a "block" is defined as the area between adjacent intersec-
tions, as shown in Figure 1. In other words, each block represents a
straight street segmented by two adjacent intersections. The BAL
module enables the agent to determine its position at a finer gran-
ularity (block-level) rather than an intricate global-level, thereby
facilitating the subsequent planning process.

The self-awareness of location ability developed in the BAL is
beneficial for textual grounding, thereby facilitating further action
planning. Therefore, we introduce the spatial-aware action planning
(SAP) module, which incorporates the spatial locating information
to associate the corresponding guidance and enhance the precision
of action planning. In detail, we first identify the corresponding
guidance that the agent needs to follow by associating spatial-aware
state representation (obtained in BAL) with provided instructions
in a hierarchical manner, ranging from sentence-level to token-level
granularity. Specifically, the sentence-level association leverages
the broader contextual understanding and richer semantics afforded
by sentences. Subsequently, we devise a fine-grained mask derived
from this sentence-level alignment to selectively filter out irrele-
vant information embedded in the token sequence. Compared to
relying solely on word-level localization, our hierarchical semantic
association provides a comprehensive understanding of the instruc-
tions, especially the extensive and intricate ones. Based on this
identified corresponding guidance, the agent further incorporates
spatial locating information into action decision planning.

Based on the above two modules, we construct a novel learn-
ing framework for addressing outdoor VLN tasks, named Locating
before Planning (Loc4Plan), which enables agents to develop an
ability of location-awareness like humans by first identifying the
initial spatial localization before deciding where to go. Benefiting
from the ahead localization to the agent’s position and compre-
hensive understanding of the provided instructions, our Loc4Plan
achieves the new state-of-the-art for Touchdown and map2seq
dataset on seen and unseen scenarios, which outperforms ORAR
framework[25] 3.3% and 4.8% of TC in test unseen scenario on the
Touchdown [4] and map2seq [25] datasets, respectively.

In summary, the main contributions of this paper are as follows:

• We introduce a Locating before Planning (Loc4Plan) learn-
ing framework to address outdoor VLN tasks. Loc4Plan
mimics the human navigation process by first determining
the current location of the agent before making the next
planning decision.

• To seek the location-awareness ability, we introduce the
block concept in VLN tasks and propose a block-aware spa-
tial locating (BAL) module to determine the agent’s position
within the given block, forming positional modeling.

• We introduce a spatial-aware action planning (SAP) mod-
ule, which incorporates the spatial locating information
to associate the corresponding guidance and enhance the
precision of action planning.

2 RELATEDWORKS
2.1 Vision-and-Language Navigation
The Vision-and-Language Navigation (VLN) task requires the agent
to navigate in a 3D simulated environment toward the goal location
based on instructions and egocentric observations. Various work
has conducted in the indoor VLN task, including exploring feature
representation [6, 11, 20, 22], modal interaction [1, 8, 30, 33], design-
ing diverse mechanisms of reinforcement learning[1, 35, 36], scenic
map building [5, 7, 18, 26], etc. Recently, research in the outdoor
scenario has also begun to emerge and develop, which is based on
real-world urban environments comprising actual street layouts
and panoramic images [4]. Compared with indoor VLN, outdoor
VLN contains a larger vocabulary and longer navigation instruc-
tions than indoor corpora [4], posing a greater challenge for agents
to make cross-modal alignment between navigation state and long-
span instruction. To solve this challenge, numerous methods have
been proposed. Most of prior works [3, 4, 21, 25, 37] directly en-
code the observation, trajectory, and instructions in an LSTM-based
model. The L2STOP [37] method differentiates STOP and other ac-
tions to boost the localization of stop action. GA [3] uses gated
attention to compute a fused representation of instructions and im-
ages to predict actions. ORAR [25] adds junction-type embedding
and a heading delta to improve the generalization of the agent in
unseen scenarios. Additionally, many works[2, 15, 39] adopt the
Transformer architecture for navigation, where VLN-Transformer
[39] is the first transformer-based model of outdoor VLN. PM-VLN
[2] method introduces the pre-training of priority map to achieve
the temporal sequence alignment.

However, previous studies have overlooked the crucial impor-
tance of spatial positioning in navigation which significantly affects
the agent’s ability to interpret and execute navigation instructions
accurately. In this study, we underscore the importance of initial
spatial localization prior to planning decision actions. We introduce
a novel framework called Locating before Planning (Loc4Plan) to
tackle challenges in outdoor VLN tasks.

2.2 Textual Grounding in VLN
In vision-and-language navigation (VLN) tasks where the agent is
provided with instructions detailing the entire navigation route, it
is crucial to ground the linguistic guidance to the relevant segments
pertaining to the next action. Consequently, developing effective
techniques for textual grounding of step-wise navigation guidance

2
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Figure 2: The overall framework of our proposed Loc4Plan. The image and text encoder extract features of visual observation
and instructions, respectively. Initially, the block-aware spatial locating (BAL) serves to leverage the visual representation and
spatial information (i.e. junction-type embedding, heading delta) of trajectory to locate the agent’s position relative to the
current block. Then we identify the corresponding guidance that the agent needs to follow by associating spatial-aware state
representation with provided instructions in a hierarchical manner, ranging from sentence-level to token-level granularity.
Finally, the agent further incorporates spatial locating information into action decision planning.

has emerged as a core challenge in VLN research. This challenge is
not unique to VLN and represents an important issue that needs
to be addressed for other multimodal tasks as well, as explored by
various works[14, 16, 17, 27]. To achieve textual grounding, a main
line of research [25, 28, 37, 39] employs cross-modal grounding
over individual words between the natural language instruction
and the environmental scene. And some of works[31, 39] implicitly
make multi-modal alignment in an attention-based component of
a transformer. Other works [2, 13, 15, 20, 33] focus on improving
the representations of vision and language modalities, proposing
auxiliary tasks to enhance grounding.

However, we find that relying solely on word-level localization
for planning is insufficient, particularly when instructions are ex-
tensive. In this work, we align the observation and the instruction
in a hierarchical manner, ranging from coarse to fine granularity.

3 LOCATING BEFORE PLANNING
3.1 Priliminary
Problem Formulation. Given a natural language instruction, a
Vision-and-Language Navigation (VLN) agent is tasked with navi-
gating from the starting position to the destination by following
the guidance provided in the instruction. All navigation paths are
instantiated on the directed graph environment G = (𝑉 , 𝐸) with

nodes 𝑣 ∈ 𝑉 and labeled edges (𝑢, 𝑣) ∈ 𝐸. Each node is associ-
ated with a 360◦ panorama image and each edge is labeled with
an angle 𝛼𝑢,𝑣 . At each timestep 𝑡 , the agent’s state 𝑠𝑡 ∈ S is de-
fined by 𝑠𝑡 = (𝑣𝑡 , 𝛼 (𝑣𝑡−1,𝑣𝑡 ) ), where 𝑣𝑡 is the node at timestep 𝑡 , and
𝛼 (𝑣𝑡−1,𝑣𝑡 ) is the heading angle from previous state’s node 𝑣𝑡−1 to
the current state’s node 𝑣𝑡 . Given the current navigation state 𝑠𝑡 ,
the agent receives the corresponding visual observation from the
environment. Based on the instruction information I and observed
visual information x𝑡 , the agent infers the action 𝑎𝑡 from the can-
didate actions list of [𝐹𝑂𝑅𝑊𝐴𝑅𝐷, 𝐿𝐸𝐹𝑇 , 𝑅𝐼𝐺𝐻𝑇, 𝑆𝑇𝑂𝑃], and then
executes the chosen action to update the next state 𝑠𝑡+1. The agent
must produce a sequence of state-action pairs [(𝑠1, 𝑎1), (𝑠2, 𝑎2), ...,
(𝑠𝑛, 𝑎𝑛)], where 𝑎𝑛 = 𝑆𝑇𝑂𝑃 , to reach the goal location.
Block Definition. We define a "block" as the region within the
environment graph bounded by adjacent intersections, where tra-
versal is constrained to a single path without the possibility of
intersection crossings. An example of a block is shown in Figure.1.

3.2 Model Overview
Figure 2 provides an overview of our Locating before Planning
(Loc4Plan) framework. Inspired by previous work [25], the model
adopts a sequence-to-sequence architecture, which takes observa-
tional images and navigation instructions as input and outputs a
sequence of agent actions. The Loc4Plan framework comprises a

3
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block-aware spatial locating (BAL) module and a spatial-aware ac-
tion planning (SAP) module. Specifically, the BAL module localizes
the spatial position on the block level, which enables the agent to
be aware of its relative location position within the current block.
After this locating process, the SAP module leverages the spatial
information (obtained in the BAL module) to identify the corre-
sponding guidance that the agent needs to follow and make the
action prediction. Further details of our Loc4Plan framework are
presented below.

3.3 Block-Aware Spatial Locating
In human navigation, the initial stage entails identifying the user’s
current location before providing a routed path to the desired end-
point, which requires prior knowledge of the navigated region’s
topology. Drawing inspiration from human navigation, we integrate
spatial localization into outdoor VLN tasks. However, navigating
in outdoor VLN scenarios presents the challenge of maneuvering
through unknown terrains where the complete environmental lay-
out remains undisclosed. To address this, we introduce the block-
aware spatial locating (BAL) module tailored for outdoor VLN,
which establishes spatial positioning at a block-level granularity.
We define blocks using intersections as demarcations, guaranteeing
that the space between adjacent intersections pertains to the same
block. Through the learning process facilitated by the BAL module,
the agent gains an awareness of its current location, indicative of
its relative position within the observation field at the block level.

Formally, consistent with the prior work [25], at timestep 𝑡 on
node 𝑣𝑡 , we incorporate the action embedding a𝑡−1 at timestep
𝑡 − 1, visual representation x𝑡 of current observation, the turning
angle of the current node 𝑔𝑐𝑡 , and the junction type embedding n𝑡
into a sequence modeling function to obtain the representation
of the current state. Besides, we introduce the long-term turning
angle 𝑔𝑙𝑡 as a novel input feature to model the long-range direction
information. Then the state representation of the current node can
be obtained by:

o𝑡 = 𝜙1 (o𝑡−1, a𝑡−1, [x𝑡 ⊕ 𝑔𝑐𝑡 ⊕ 𝑔𝑙𝑡 ⊕ n𝑡 ]), (1)

where 𝜙1 is a feature encoder, ⊕ denotes the concatenation opera-
tion, o𝑡−1 is the previous state of time step 𝑡−1, n𝑡 is the embedding
indicating the number of outgoing edges of the node at timestep
𝑡 , and 𝑔𝑐𝑡 = 𝑁𝑜𝑟𝑚(𝛼 (𝑣𝑡−1,𝑣𝑡 ) ) is a value in (−1, 1] that encodes
the turning angle relative to the previous timestep. The long-term
turning angle 𝑔𝑙𝑡 is computed by:

𝑔𝑙𝑡 =

𝐾∑︁
𝑘=0

𝑔𝑐
𝑡−𝑘 , (2)

indicates the turning angle across consecutive steps, where 𝐾 de-
notes the number of steps involved in this calculation. When the
special case that 𝑡 − 𝑘 < 0 occurs, we set 𝑔𝑐

𝑡−𝑘 = 0. The concept
of the long-term turning angle is introduced to aggregate turning
angles across multiple consecutive steps, recognizing the process
of turning left or right typically spans several individual actions.

The obtained node state presentation o𝑡 has encoded informa-
tion of previous states and observation visual and topological (e.g.
junction-type embedding and heading delta) information of the
current timestep. Further, we expect the agent can be aware of

the spatial position where they have achieved. To address this, we
locate the relative position of the agent with the observation field
under the block level. Specifically, we first obtain the spatial-aware
state representation of the node 𝑣𝑡 by:

o𝑝𝑡 = 𝑅𝑒𝐿𝑈 (W⊤
𝑏
o𝑡 ), (3)

whereW𝑏 ∈ R𝑑×𝑑 is a linear layer, and ⊤ indicates the transpose
operation. We assume that the o𝑝𝑡 accumulates relevant information
beneficial for spatial localization.
Optimization of BAL. To ensure that spatial perception repre-
sentation o𝑝𝑡 can be aware of the information related to navigation
progress within a block, we feed forward o𝑝𝑡 to the spatial predictor
to predict a navigation process score within current block by:

𝑒
𝑝
𝑡 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (W⊤

𝑝 o
𝑝
𝑡 ), (4)

whereW𝑝 ∈ R𝑑×1 is a linear layer. 𝑒𝑝𝑡 ∈ [0, 1) indicates the agent’s
spatial position relative to the current block, where 0 indicates the
start node of the block and 1 indicates the end. Block process score
𝑒
𝑝
𝑡 is supervised by the MSE loss:

𝐿𝐵𝐴𝐿 =

𝑇∑︁
𝑡

(𝑒𝑝𝑡 − 𝑒𝑝𝑡 )
2, (5)

where 𝑇 is the number of time steps to complete the entire naviga-
tion. And 𝑒

𝑝
𝑡 is the ground-truth block progress score at timestep

𝑡 , which is calculated based on the number of nodes within the
current block:

𝑒
𝑝
𝑡 =

𝑁
𝑠𝑡𝑒𝑝
𝑡

𝑁𝑎𝑙𝑙𝑡

. (6)

where 𝑁 𝑠𝑡𝑒𝑝𝑡 indicates the number of steps to "forward" to the next
intersection node. And 𝑁𝑎𝑙𝑙𝑡 indicates the number of nodes in the
current block (excluding the starting node). For example, when the
agent is at the position shown in Figure 1, 𝑁 𝑠𝑡𝑒𝑝𝑡 = 3 and 𝑁𝑎𝑙𝑙𝑡 = 5.
Discussion. With the learning of the BAL module, we assume the
spatial-aware state representation has accumulated the information
related to the spatial position. This suggests that the agent develops
a self-awareness of location ability, just like humans.

3.4 Spatial-Aware Action Planning
The self-awareness of location ability developed in the BAL is ben-
eficial for textual grounding, thereby facilitating further action
plannin. Therefore, we introduce the spatial-aware action planning
(SAP) module, which incorporates spatial locating information (i.e.,
the spatial-aware state representation obtained in the BAL module)
to associate the corresponding guidance and enhance the precision
of action planning. In detail, we first propose a hierarchical semantic
association (HSA) submodule to identify the corresponding guid-
ance that the agent needs to follow by associating spatial-aware
state representation with provided instructions in a hierarchical
manner, ranging from sentence-level to token-level granularity. We
have found that relying solely on word-level localization is inad-
equate, especially when instructions are intricate and extensive.
Consequently, we initially align spatial perception observations
with instructions at the sentence level, leveraging the broader con-
textual understanding and richer semantics afforded by sentences.
Subsequently, we devise a fine-grained mask derived from this

4
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sentence-level alignment to selectively filter out irrelevant informa-
tion within the instructions, thereby identifying the corresponding
guidance for the current step. Based on this, the agent further incor-
porates spatial locating information into action decision planning.
Hierarchical Semantic Association.We first identify the corre-
sponding guidance that the agent needs to follow by associating
spatial-aware state representation with provided instructions in a
hierarchical manner, ranging from coarse to fine granularity.

We start with associating the visual and textual in a sentence
level. Specifically, given natural-language instructions I = {w1, ...,
w𝐿} with 𝐿 words, we use a period delimiter to split the instruction
into multiple sentences and obtain the sentence-level embeddings
I𝑠 = {s0, .., s𝑁𝑠

} ∈ R𝑁𝑠×𝑑𝑡 by average pooling the token embed-
ding of each sentence, where 𝑁𝑠 is the number of sentences. The
sentence-level embedding I𝑠 is then queried by the spatial-aware
state representation o𝑝𝑡 to model the sentence-level contextual fea-
ture Î𝑠 ∈ R𝑑 by adopting multi-head cross-attention [34], which
can be denoted as follows:

Î𝑠 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(o𝑝𝑡 , I
𝑠 ), (7)

where o𝑝𝑡 serves as the query and I𝑠 is utilized to calculate the keys
and values. The sentence-level contextual feature contains coarsely-
grained guidance relevant to the current state. Then, we utilize the
sentence-level contextual feature Î𝑠 as long as the sentence features
I𝑠 to calculate the relevance scores between the sentences and the
current state in the relevance predictor:

r𝑠𝑡 = 𝑅𝑒𝐿𝑈 (W⊤
𝑠
Î𝑠 ), r𝑠𝑡 = 𝑅𝑒𝐿𝑈 (W⊤

𝑠 I
𝑠 ),

r𝑡 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (W⊤ (r𝑠𝑡 ⊙ r𝑠𝑡 )),
(8)

where W ∈ R𝑑×1, W𝑠 ∈ R𝑑𝑡×𝑑 , W𝑠 ∈ R𝑑𝑡×𝑑 , and ⊙ denotes the
Hadamard production. The relevance scores r𝑡 = [𝑟𝑡,1, ..., 𝑟𝑡,𝑁𝑠

] ∈
R𝑁𝑠 represents the possibility of each sentence being attended at
timestep 𝑡 .

Subsequently, we devise a fine-grained mask derived from this
coarsely-grained relevance scores, which is utilized to filter out
irrelevant information in the token embedding for fine-grained
instruction attention. Specifically, for the 𝑖-th sentence, we obtain
its corresponding token level maskm𝑡,𝑖 = [𝑟𝑡,𝑖 , ..., 𝑟𝑡,𝑖 ] by repeating
the sentence-level relevance score 𝑟𝑡,𝑖 with 𝐿𝑠𝑖 times, where 𝐿𝑠

𝑖
denotes the length of the 𝑖-th sentence. Then the complete mask of
the instruction can be denoted as M𝑡 = [m𝑡,𝑖 , ...,m𝑡,𝑁𝑠

]. We utilize
the token mask M𝑡 to filter out the irrelevant information in the
instruction by:

I𝑚𝑡 = I ⊙ M𝑡 , (9)
Then the masked instruction I𝑚𝑡 is used to obtain the attended
instruction feature with the spatial-aware state representation o𝑝𝑡
as query:

I𝑎𝑡𝑡𝑛𝑡 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(o𝑝𝑡 , I
𝑚
𝑡 ). (10)

Then we utilize the I𝑎𝑡𝑡𝑛𝑡 as query to obtain the attended visual
feature:

x𝑎𝑡𝑡𝑛𝑡 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(I𝑎𝑡𝑡𝑛𝑡 , x𝑡 ), (11)
Action Planning.With the attended visual representation x𝑎𝑡𝑡𝑛𝑡 ,
attended textual representation I𝑎𝑡𝑡𝑛𝑡 , state representation o𝑡 , as
long as spatial-aware state representation o𝑝𝑡 , we feed-forward the

concatenation of these representations to the action decoder 𝜙2 (.)
to obtain the final representation for the action decision:

z𝑡 = 𝜙2 (z𝑡−1, [x𝑎𝑡𝑡𝑛𝑡 ⊕ I𝑎𝑡𝑡𝑛𝑡 ⊕o𝑡 ⊕ o𝑝𝑡 ⊕ t̄]), (12)

where t̄ is the embedded timestep 𝑡 . z𝑡 contains cross-modal infor-
mation for action planning, which is then integrated with turning
angles 𝑔𝑎𝑡 of each action to predict action scores for the next step:

𝑐𝑎𝑡 = W⊤
𝑎 [z𝑡 ⊕ 𝑔𝑎𝑡 ], (13)

where W𝑎 ∈ R𝑑×1 is a linear layer. We define 𝑔𝑎𝑡 to represent
the turning angles obtained if the agent executes action 𝑎𝑐𝑡𝑖𝑜𝑛 ∈
[𝐹𝑂𝑅𝑊𝐴𝑅𝐷, 𝐿𝐸𝐹𝑇 , 𝑅𝐼𝐺𝐻𝑇, 𝑆𝑇𝑂𝑃] at timestep 𝑡 . After the calcula-
tion of action scores for all candidate actions, the agent will execute
the corresponding action of the maximum score and update the
navigation state.
Optimization of SAP. The optimization of SAP comprises the
learning of the hierarchical semantic association and the action
planning loss. For the hierarchical semantic association, the sen-
tence level relevance score r𝑡 (Eq. (8)) is learned under the supervi-
sion of the sentence-level corresponding labels, which indicates the
alignment of the sentences and nodes along the trajectory. Specifi-
cally, by referring to the multi-label classification method [32], a
binary cross-entropy loss is used to supervise each sentence:

𝐿𝐻𝑆𝐴 = −𝛾𝑏
𝑇∑︁
𝑡

𝑁𝑠∑︁
𝑖

(𝑟𝑡,𝑖𝑙𝑜𝑔(𝑟𝑡,𝑖 ) + (1 − 𝑟𝑡,𝑖 )𝑙𝑜𝑔(1 − 𝑟𝑡,𝑖 )), (14)

where 𝑟𝑡,𝑖 is a binary label indicating whether the agent needs to
attend to the 𝑖-th sentence when navigating to the node 𝑣𝑡 . This
label is generated from an economy-efficient method of template
matching[12, 38]. 𝛾𝑏 is the weight related to the confidence of the
corresponding pseudo-label, which is used to control the influence
of 𝐿HSA on training. More details can be found in Supplementary.

The action planning loss 𝐿𝐴𝑃 is a regular cross-entropy loss:

𝐿𝐴𝑃 = −
𝑇∑︁
𝑡

4∑︁
𝑖

𝑐
𝑎𝑖
𝑡 𝑙𝑜𝑔(𝑐

𝑎𝑖
𝑡, ), (15)

where 𝑐𝑎𝑖𝑡 denotes the binary ground-truth label indicating whether
execute action 𝑎𝑖 at time step 𝑡 , and 𝑖 indicates the action index of
[𝐹𝑂𝑅𝑊𝐴𝑅𝐷, 𝐿𝐸𝐹𝑇 , 𝑅𝐼𝐺𝐻𝑇, 𝑆𝑇𝑂𝑃].
Discussion. By involving the spatial location information into
the learning of the SAP module, we can ground the instruction
guidance that the agent should adhere to in the current stage and
facilitate action prediction.

3.5 The Overall Training
Asmentioned above, our proposed Loc4Plan is optimized with three
losses, i.e., 𝐿𝐴𝑃 , 𝐿𝐵𝐴𝐿 , and 𝐿𝐻𝑆𝐴 . The overall loss function can be
written as:

𝐿 = 𝐿𝐴𝑃 + 𝐿𝐵𝐴𝐿 + 𝐿𝐻𝑆𝐴 . (16)

During training, we use Teacher-Forcing [19] strategy to achieve
stable optimization.
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Table 1: Comparisons with state-of-the-arts on the Touchdown and map2seq datasets for the seen and unseen scenario. The *
indicates that the agent requires extra ground truth path traves during inference.

Seen Unseen
Touchdown map2seq Touchdown map2seq

dev test dev test dev test dev test
Model TC↑ SPD↓ TC↑ SPD↓ TC↑ SPD↓ TC↑ SPD↓ TC↑ SPD↓ TC↑ SPD↓ TC↑ SPD↓ TC↑ SPD↓
GA[3, 4] 9.9 21.4 9.7 21.5 8.1 39.1 7.3 40.7 2.5 30.1 1.8 30.2 1.1 45.4 0.5 45.6

RCONCAT[4, 21] 11.1 19.9 9.7 21.7 11.0 38.2 7.3 39.5 3.6 29.1 2.4 29.1 1.5 44.7 0.6 45.6
ARC+L2STOP[37] 19.5 17.1 16.7 18.8 - - - - - - - - - - - -

VLN Transformer[39] 14.0 21.5 14.9 21.2 18.6 18.6 17.0 19.0 2.3 29.5 3.1 29.6 3.6 - 3.5 -
ORAR[25] 29.9 11.1 29.1 11.7 43.4 7.2 41.7 7.6 15.4 20.0 14.9 20.7 27.6 11.9 30.3 12.7
PM-VLN*[2] 33.0 23.6 33.4 23.8 - - - - - - - - - - - -

Ours 34.5 10.5 32.9 11.5 48.0 7.0 45.3 7.2 20.6 20.0 18.2 19.9 32.8 10.0 35.1 10.5

4 EXPERIMENTS
4.1 Experimental Setup
Datasets. We conduct experiments on two popular outdoor VLN
datasets, i.e, the Touchdown [4] and the map2seq [24] datasets.
The Touchdown dataset [4] is built based on Google Street View
in real urban environments of New York City, whose environment
graph includes 29,641 panoramas and 61,319 edges. It contains 9,326
paired samples of English instructions and trajectory descriptions,
where the samples in train and test sets are mixed in terms of their
geographic locations (i.e. seen scenarios). The unseen scenarios are
then conducted by [25] that makes geographic separation of the
training and testing area. The map2seq dataset [24] was created for
the task of navigation instructions generation and introduced in
outdoor VLN [25]. It is also constructed in New York environment,
containing 7,672 samples with both seen and unseen scenarios.
Evaluation Metrics. Following [2, 4, 15], we adopt Task Comple-
tion (TC), Shortest-path Distance (SPD), and Success weighted by
Edit Distance (SED) to evaluate the models. Specifically, TC repre-
sents the percentage of successful agent navigation. SPD measures
the shortest path distance from the node the agent stopped to the
goal node within the environment graph. SED represents the task
completion weighted by the Levenshtein edit distance between
prediction and ground-truth trajectories.
Implementation Details. We use a bidirectional LSTM [9] as the
text encoder to extract token-level embedding. A ResNet pretrained
on ImageNet [23] is utilized as image encoder to extract visual
representation 𝑥𝑡 . Following [25, 29, 37], we implement 𝜙1 (.) and
𝜙2 (.) as LSTMs [10]. We set the dimension of token embedding 𝑑𝑡 =
512 and the hidden dimension of model 𝑑 = 256. The dimension of
timestep embedding is 32, and the size of action embedding and
junction type embedding is 16. For the specific process of generating
sentence-level label 𝑟𝑡,𝑖 (Eq. (14)) and other training details, please
refer to the Supplementary.

4.2 Comparisons with SOTA VLN Methods
In this section, we compare our proposed locating before plan-
ning (Loc4Plan) framework with previous state-of-the-art (SOTA)
approaches [2–4, 21, 25, 39]. Except for ORAR [25], these meth-
ods only report results for the seen scenario on Touchdown. To
enable a comprehensive comparison, we evaluate methods with
published code, supplementing results on the map2seq dataset and
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Figure 3: Performance comparison with different instruction
lengths and trajectory complexity.

the unseen scenario of Touchdown. The results, as illustrated in
Table 1, indicate that our method exhibits superior performance
on both Touchdown and map2seq datasets. Remarkably, on the
challenging test unseen split, our model showcases significant im-
provements over ORAR [25] by 3.3% on the Touchdown dataset and
4.8% on the map2seq dataset. This demonstrates the effectiveness
of our Loc4Plan framework. In the test seen split of Touchdown,
our Loc4Plan achieves performance comparable to that of PM-VLN,
despite PM-VLN relying on additional ground-truth trajectory in-
formation for trajectory planning, which is not necessary for our
Loc4Plan. Furthermore, our agent significantly enhances the SPD
score by 12.3% compared to PM-VLN, underscoring its superior
ability to adhere to instructions while navigating accurately.

Furthermore, we investigate the performance of different agents
under varying trajectory complexities and instruction lengths, as
illustrated in Figure 3. Specifically, we utilize the SED score to
evaluate the navigation capabilities of these agents on the test set
of the Touchdown dataset. Trajectory complexity is quantified by
the number of intersections, while instruction length serves as a
proxy for the level of difficulty in comprehension. As depicted,
the Loc4Plan agent exhibits significant improvements, particularly
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Table 2: Ablation study of overall design on the test set in
seen scenario.

ID Models Touchdown map2seq
TC↑ SPD↓ SED↑ TC↑ SPD↓ SED↑

1 Baseline 22.6 12.3 22.1 34.6 10.0 33.8
2 With BAL 30.3 11.0 29.6 39.0 8.7 38.4
3 With SAP 29.7 11.5 29.0 39.0 7.5 38.2
4 Full model 32.9 11.5 32.1 45.3 7.2 44.3

Table 3: Ablation studies of detailed design of the block-aware
spatial locating on test set in seen scenario..

ID glt gct LBAL LGAL
Touchdown map2seq

TC↑ SPD↓ SED↑ TC↑ SPD↓ SED↑
1

√ √
30.0 11.7 29.3 41.8 7.0 41.1

2
√ √

30.3 11.6 29.6 42.0 7.3 41.1
3

√ √
30.3 11.6 29.7 41.0 7.8 40.2

4
√ √ √

30.7 11.0 30.1 41.1 7.5 40.2
5

√ √ √
32.9 11.5 32.1 45.3 7.2 44.3

in scenarios involving longer instructions and complex trajecto-
ries, demonstrating our ability to handle challenging long-term
navigation tasks.

4.3 Ablation Studies
In this section, we conduct detailed ablation experiments to evaluate
the effectiveness of each component proposed in our Loc4Plan,
including the block-aware spatial locating (BAL)module and spatial-
aware action planning (SAP) module.
Effectiveness of the BAL and SAP module. We first investigate
the effectiveness of our overall design in Table 2. Row #1 presents
the performance derived from our baseline approach. In this con-
figuration, the agent’s state representation relies exclusively on
factors such as junction type, current heading angle, and visual
cues. Instruction representation is attained through the average
pooling of token embeddings. The results presented in Table 2 indi-
cate that both the BAL and SAP modules contribute significantly
to performance improvement. Specifically, the results delineated in
rows #1 and #2 exhibit a promising enhancement in performance
with the integration of the BAL module compared to the baseline.
Furthermore, the inclusion of the SAP module, as evidenced in rows
#1 and #3, yields notable improvements, enhancing the TC metric
by 6.3% and 2.5% on map2seq and Touchdown, respectively.
Investigation of the BAL module. The BAL module is proposed
to establish spatial positioning, which indicates its relative position
within the observation field at the block level. Here, we investigate
the components within the BAL module in Table 3. In addition to
incorporating the current turning angle 𝑔𝑐𝑡 , we innovatively intro-
duced the long-term turning angle 𝑔𝑙𝑡 (Eq. (1)) for spatial perception.
By separately comparing #1, #2 with the full model (#5), we can find
that adding both the current and long-term turning angles results
in improvements, validating their effectiveness. By comparing the
results without supervision of the block process score (Eq. (5)) (#3)
and with supervision (#5), we find that the inclusion of this super-
vision leads to a significant improvement of 4.3% and 2.6% in the
TC metric on the map2seq and Touchdown datasets, respectively.

Table 4: Ablation study of the perception length of long-term
turning angle on test set in seen scenario.. The entriesmarked
in gray indicate the default setting.

ID Value of K Touchdown map2seq
TC↑ SPD↓ SED↑ TC↑ SPD↓ SED↑

1 1 30.0 11.7 29.3 41.8 7.0 41.1
2 2 29.5 11.8 28.9 42.4 7.1 41.6
3 3 32.9 11.5 32.1 45.3 7.2 44.3
4 4 30.8 11.3 30.2 40.9 7.1 40.1
5 5 31.2 10.8 30.7 42.0 7.2 41.1

Table 5: Ablation study of the spatial information usage in
spatial-aware action planning module on test seen scenario.

ID Model Touchdown map2seq
TC↑ SPD↓ SED↑ TC↑ SPD↓ SED↑

1 W/o spatial info 32.4 11.4 31.7 42.3 7.3 41.4
2 Full model 32.9 11.5 32.1 45.3 7.2 44.3

Table 6: Ablation studies of the submodules of the hierarchi-
cal semantic association on test set in seen scenario.

ID Token Sentence LHSA
Touchdown map2seq

TC↑ SPD↓ SED↑ TC↑ SPD↓ SED↑
1

√
30.4 11.6 29.6 42.1 7.6 41.3

2
√ √

28.7 12.2 27.5 41.4 7.5 40.6
3

√ √
31.6 11.1 30.9 44.4 7.2 43.6

4
√ √ √

32.9 11.5 32.1 45.3 7.2 44.3

Notably, in row #4, we replace the 𝐿𝐵𝐴𝐿 with the global-level locat-
ing loss 𝐿𝐺𝐴𝐿 , which leverages global position signals to guide the
spatial locating learning process. Our findings indicate the superior-
ity of the block-level locating, given the agent’s visual observation
perception constrained within a localized region. To further inves-
tigate the effectiveness of perception length of long-term turning
angle for the BAL module, we conducted experiments by varying
the value of 𝐾 (Eq. (2)) in our model. The corresponding results
are presented in Table4. Specifically, 𝐾 = 0 implies that the model
only utilizes the turning angle of the current node, while increasing
values of 𝐾 expand the model’s perception range to encompass a
longer history of turning angles. The result shows that the agent
achieves optimal performance when 𝐾 = 3. This phenomenon indi-
cates that a proper perception length of long-term turning angle is
mandatory to achieve better performance.
Investigation of the SAP module. To investigate the impact of
spatial information obtained from the BAL module on the action
planning stage, we first show the results without using spatial infor-
mation in the SAP module in table 5. Specifically, "W/o spatial info"
means using the state representation o𝑡 to replace the spatial-aware
feature o𝑝𝑡 . Clearly, with the absence of spatial locating information,
the agent’s performance decreases on both datasets.

Moreover, to investigate the impact of the components involved
in hierarchical semantic association, we conducted a series of abla-
tion experiments, with the results presented in Table 6. Specifically,
the label "token" and "sentence" refer to the multi-head attention

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Block 2

Bl
oc

k 
1

Block 3 Block 4

Start Node
End Node

Figure 4: Qualitative results of block process score (Eq. (5)) prediction in the BAL module. The green polyline represents the
ground-truth block process across the entire trajectory, while the purple polyline depicts the corresponding predictions made
by our method. The red brackets divided the navigation into multiple stages, with each stage encompassing nodes that belong
to a single block.

①[get turned so the open wooden doors are on your left side.] ②[go straight to the first 
intersection that is very close and make a right turn.] ③[go straight one block then make 
another right turn.] ④[once you turn you'll see a building with stripes on it to the left 
that is in the brick/stonework design and some white pillars on an entrance just ahead on 
the right side.] ⑤[go straight all the way down this long block.] ⑥[when you get to this 
intersection make a right turn then stop immediately.] ⑦[on your right will be a theater 
with large arches.]

1 2 3

2

1

3

Start Node
End Node

0.25

0.50

0.75

Figure 5: Visualization of the sentence relevance scores (Eq. (8)) in HSA module. ①-⑦ indicate the range of each sentence in the
instruction. The heatmap shows the degree of attention of our model to each sentence at each step. The red arrows pointed out
three key navigation step, whose corresponding node positions in the scene graph are labeled with white box.

on token level (Eq. (14)) and sentence level (Eq. (7)). "LHSA" de-
notes the supervision on the sentence relevance score (Eq. (14)).
The results reveal that using both sentence and token-level atten-
tion yields significantly better results than using either one alone,
demonstrating their complementary roles in facilitating semantic
association. Interestingly, the introduction of explicit supervision
on sentence attention did not have as significant an impact as an-
ticipated. Even without such supervision (#3), the model was able
to achieve competitive navigation performance.

4.4 Visualization and Qualitative analysis
To intuitively show the effect of our method in spatial locating, a
qualitative result is shown in Figure 4 that visualizes an example of
the block progress score. It can be seen that our agent can track the
progress of navigation across different blocks, which proves the
ability in spatial localization.Moreover, Figure 5 presents a visualiza-
tion of the agent’s attention dynamics on the instruction sentences
progress over multiple time steps. As shown in the heatmap of
sentence relevance scores, our agent is able to focus on the rele-
vant sentences within the instruction at different steps, especially
exhibiting precise decision-making at several key steps.

5 CONCLUSION
In this work, drawing the inspiration from human navigation, we
propose a “Locating before Planning (Loc4Plan)” framework. For
the first time, this framework enables agents to locate their spatial
position before planning a decision action based on corresponding
guidance. The Loc4Plan framework comprises a block-aware spatial
locating (BAL) module and a spatial-aware action planning (SAP)
module. The BALmodule is proposed to localize the spatial position
on the block level, which enables the agent to be aware of its rela-
tive location position within the current block. The self-awareness
of location ability developed in the BAL is beneficial for textual
grounding, thereby facilitating further action planning. Therefore,
we propose the SAP module for the planning process, which asso-
ciates spatial-aware state representation with provided instructions
in a hierarchical manner, promoting a comprehensive understand-
ing of the provided instructions and make the action prediction.
Benefiting from the ahead localization to the agent’s position and
comprehensive understanding of the provided instructions, our
Loc4Plan achieves the new state-of-the-art for Touchdown and
map2seq dataset on both seen and unseen scenarios.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Loc4Plan: Locating Before Planning
for Outdoor Vision and Language Navigation ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünder-

hauf, Ian Reid, Stephen Gould, and Anton Van Den Hengel. 2018. Vision-and-
language navigation: Interpreting visually-grounded navigation instructions in
real environments. In Proceedings of the IEEE conference on computer vision and
pattern recognition(CVPR). 3674–3683.

[2] Jason Armitage, Leonardo Impett, and Rico Sennrich. 2023. A Priority Map for
Vision-and-Language Navigation with Trajectory Plans and Feature-Location
Cues. In Proceedings of the IEEE Winter Conference on Applications of Computer
Vision(WACV). 1094–1103.

[3] Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pa-
sumarthi, Dheeraj Rajagopal, and Ruslan Salakhutdinov. 2018. Gated-attention
architectures for task-oriented language grounding. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI). 2819–2826.

[4] Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. 2019.
Touchdown: Natural language navigation and spatial reasoning in visual street
environments. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR). 12538–12547.

[5] Kevin Chen, Junshen K Chen, Jo Chuang, Marynel Vázquez, and Silvio Savarese.
2021. Topological planning with transformers for vision-and-language nav-
igation. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR). 11276–11286.

[6] Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid, and Ivan Laptev. 2021. History
aware multimodal transformer for vision-and-language navigation. Advances in
neural information processing systems (NeurIPS) (2021), 5834–5847.

[7] Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi, Cordelia Schmid, and Ivan
Laptev. 2022. Think global, act local: Dual-scale graph transformer for vision-
and-language navigation. In Proceedings of the IEEE conference on computer vision
and pattern recognition (CVPR). 16537–16547.

[8] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas, Louis-
Philippe Morency, Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, and Trevor
Darrell. 2018. Speaker-follower models for vision-and-language navigation.
Advances in neural information processing systems(NeurIPS) (2018), 3318–3329.

[9] Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. 2005. Bidirectional
LSTM networks for improved phoneme classification and recognition. In Inter-
national conference on artificial neural networks (ICANN). 799–804.

[10] Alex Graves and Alex Graves. 2012. Long short-term memory. Supervised
sequence labelling with recurrent neural networks (2012), 37–45.

[11] Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin, and Jianfeng Gao. 2020.
Towards learning a generic agent for vision-and-language navigation via pre-
training. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR). 13137–13146.

[12] Yicong Hong, Cristian Rodriguez Opazo, Qi Wu, and Stephen Gould. 2020. Sub-
Instruction Aware Vision-and-Language Navigation. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing(EMNLP). 3360–3376.

[13] Ronghang Hu, Daniel Fried, Anna Rohrbach, Dan Klein, Trevor Darrell, and Kate
Saenko. 2019. Are You Looking? Grounding to Multiple Modalities in Vision-
and-Language Navigation. In Association for Computational Linguistics(ACL).
6551–6557.

[14] Tung Le, Khoa Pho, Thong Bui, Huy Tien Nguyen, and Minh Le Nguyen. 2022.
Object-less Vision-language Model on Visual Question Classification for Blind
People.. In Proceedings of the International Conference on Agents and Artificial
Intelligence (ICAART). 180–187.

[15] Jialu Li, Aishwarya Padmakumar, Gaurav S. Sukhatme, and Mohit Bansal. 2024.
VLN-Video: Utilizing Driving Videos for Outdoor Vision-and-Language Navi-
gation. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).
18517–18526.

[16] Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang, Lijuan
Wang, Houdong Hu, Li Dong, Furu Wei, et al. 2020. Oscar: Object-semantics
aligned pre-training for vision-language tasks. In Proceedings of the European
Conference on Computer Vision (ECCV). 121–137.

[17] Yan-Bo Lin and Yu-Chiang Frank Wang. 2020. Audiovisual transformer with
instance attention for audio-visual event localization. In Proceedings of the Asian
Conference on Computer Vision (ACCV). 274–290.

[18] Rui Liu, Xiaohan Wang, Wenguan Wang, and Yi Yang. 2023. Bird’s-Eye-View
Scene Graph for Vision-Language Navigation. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV). 10968–10980.

[19] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effec-
tive approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025 (2015).

[20] Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh,
and Dhruv Batra. 2020. Improving vision-and-language navigation with image-
text pairs from the web. In Proceedings of the European Conference on Computer
Vision (ECCV). 259–274.

[21] Piotr Mirowski, Matt Grimes, Mateusz Malinowski, Karl Moritz Hermann, Keith
Anderson, Denis Teplyashin, Karen Simonyan, Andrew Zisserman, Raia Hadsell,
et al. 2018. Learning to navigate in cities without a map. Advances in neural

information processing systems (NeurIPS) (2018), 2424–2435.
[22] Yanyuan Qiao, Yuankai Qi, Yicong Hong, Zheng Yu, PengWang, and QiWu. 2022.

Hop: History-and-order aware pre-training for vision-and-language navigation.
In Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR). 15418–15427.

[23] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. International Journal of
Computer Vision(IJCV) (2015), 211–252.

[24] Raphael Schumann and Stefan Riezler. 2021. Generating Landmark Navigation
Instructions from Maps as a Graph-to-Text Problem. In Proceedings of the Asso-
ciation for Computational Linguistics and the International Joint Conference on
Natural Language Processing (ACL/IJCNLP). 489–502.

[25] Raphael Schumann and Stefan Riezler. 2022. Analyzing Generalization of Vi-
sion and Language Navigation to Unseen Outdoor Areas. In Association for
Computational Linguistics(ACL). 7519–7532.

[26] Kunal Pratap Singh, Jordi Salvador, Luca Weihs, and Aniruddha Kembhavi. 2023.
Scene graph contrastive learning for embodied navigation. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV). 10884–10894.

[27] Alessandro Suglia, Qiaozi Gao, Jesse Thomason, Govind Thattai, and Gaurav
Sukhatme. 2021. Embodied bert: A transformer model for embodied, language-
guided visual task completion. arXiv preprint arXiv:2108.04927 (2021).

[28] Yanjun Sun, Yue Qiu, Yoshimitsu Aoki, and Hirokatsu Kataoka. [n. d.]. Boosting
Outdoor Vision-and-Language Navigation with On-the-route Objects. ([n. d.]).

[29] Yanjun Sun, Yue Qiu, Yoshimitsu Aoki, and Hirokatsu Kataoka. 2023. Outdoor
Vision-and-Language Navigation Needs Object-Level Alignment. Sensors (2023),
6028.

[30] Hao Tan, Licheng Yu, and Mohit Bansal. 2019. Learning to Navigate Unseen
Environments: Back Translation with Environmental Dropout. In Proceedings of
the Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT). 2610–2621.

[31] Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, J Zico Kolter, Louis-Philippe
Morency, and Ruslan Salakhutdinov. 2019. Multimodal transformer for unaligned
multimodal language sequences. In Association for Computational Linguistics
(ACL). 6558.

[32] Grigorios Tsoumakas and Ioannis Katakis. 2007. Multi-label classification: An
overview. International Journal of Data Warehousing and Mining (IJDWM) (2007),
1–13.

[33] Arun Balajee Vasudevan, Dengxin Dai, and Luc Van Gool. 2021. Talk2nav: Long-
range vision-and-language navigation with dual attention and spatial memory.
International Journal of Computer Vision(IJCV) (2021), 246–266.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems (NeurIPS) (2017),
5998–6008.

[35] Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao, Dinghan Shen, Yuan-
Fang Wang, William Yang Wang, and Lei Zhang. 2019. Reinforced cross-modal
matching and self-supervised imitation learning for vision-language navigation.
In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion(CVPR). 6629–6638.

[36] Xin Wang, Wenhan Xiong, Hongmin Wang, and William Yang Wang. 2018. Look
before you leap: Bridging model-free andmodel-based reinforcement learning for
planned-ahead vision-and-language navigation. In Proceedings of the European
Conference on Computer Vision (ECCV). 37–53.

[37] Jiannan Xiang, Xin Eric Wang, and William Yang Wang. 2020. Learning to stop:
A simple yet effective approach to urban vision-language navigation. arXiv
preprint arXiv:2009.13112 (2020).

[38] Wang Zhu, Hexiang Hu, Jiacheng Chen, Zhiwei Deng, Vihan Jain, Eugene Ie,
and Fei Sha. 2020. Babywalk: Going farther in vision-and-language navigation
by taking baby steps. arXiv preprint arXiv:2005.04625 (2020).

[39] Wanrong Zhu, Xin Wang, Tsu-Jui Fu, An Yan, Pradyumna Narayana, Kazoo Sone,
Sugato Basu, and William Yang Wang. 2021. Multimodal Text Style Transfer
for Outdoor Vision-and-Language Navigation. In Proceedings of the European
Chapter of the Association for Computational Linguistics (EACL). 1207–1221.

9


	Abstract
	1 Introduction
	2 Related works
	2.1 Vision-and-Language Navigation
	2.2 Textual Grounding in VLN

	3 Locating Before Planning
	3.1 Priliminary
	3.2 Model Overview
	3.3 Block-Aware Spatial Locating
	3.4 blackSpatial-Aware Action Planning
	3.5 The Overall Training

	4 Experiments
	4.1 Experimental Setup
	4.2 Comparisons with SOTA VLN Methods
	4.3 Ablation Studies
	4.4 Visualization and Qualitative analysis

	5 Conclusion
	References

