
Supplementary Material1

In this section, we categorize our discussion into three main parts. Initially, we delve into the sources2

and processing methods for motion data used in training. Following that, we explore how observations3

are constructed and how reward functions are established. Finally, we describe the implementation4

details including physics simulation and hyperparameters in network training.5

A Sources and Processing of Motion Data6

We collected a total of four types of basic reference motion data, including 9 motions related to7

walking, 5 related to picking up, 4 related to carrying, and 5 related to putting down. All these data8

are in SMPL format and recorded at 30 fps over 139 frames. They all originate from the ACCAD9

subset of the AMASS [4] dataset. Additionally, to ensure the stability of cooperative tasks involving10

multiple individuals, we included data for sidewalk and reverse carry motions. The sidewalk data11

comes from the CMU subset within AMASS, while reverse carry data was scarce. Therefore, we12

created reverse carry data by reversing the process of the carry data. In total, we used 26 motion13

data as references. Additionally, we performed a simple visualization of the extended objects as in14

Figure 1, which sampled from dataset [1].
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Figure 1: Some visualization of daily-life objects.
15

B Task Formulation16

We formulate our approach as goal-conditioned reinforcement learning. At each discrete step t, the17

policy π (at | st,gt) generates an action at, based on the current state st and a goal-specific feature18

gt. Following this action, the environment transitions into a subsequent state, and the agent receives19

a reward rt. An episode concludes either after reaching a predetermined length or if conditions for20

early termination (ET) are met. Further details are provided below.21

B.1 Task Observation22

The observational for the task is divided into two primary elements: the state feature s, which23

encapsulates the character’s bodily configuration, and the goal feature g, which pertains to tasks24

involving object manipulation.25

The state feature s is constituted by a 225-dimensional vector, encompassing:26

• Height of the root: 1 dimension.27
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• Rotation of the root: 6 dimensions.28

• Linear and angular velocity of the root: 6 dimensions.29

• Position of local joints: 42 dimensions.30

• Rotations of local joints: 84 dimensions.31

• Linear and angular velocity of local joints: 84 dimensions.32

While the root height is measured in the global reference frame, all other components are defined in33

the frame local to the character. Rotations follow a 6-dimensional representation for continuity [10].34

The simulated character aligns with [8, 7, 2, 6], featuring 12 internally movable joints and a total of35

28 degrees of freedom.36

The goal feature g comprises a 75-dimensional vector, including:37

• Position of the object: 3 dimensions.38

• Rotation of the object: 6 dimensions.39

• Dynamics of the object, which cover the bounding box position, along with linear and40

angular velocities: 33 dimensions.41

• Target location: 3 dimensions.42

• Target orientation: 6 dimensions.43

• Dimensions of the target’s bounding box: 24 dimensions.44

These are measured in the frame local to the character.45

B.2 Reward Functions46

The agent’s reward rt at each time step t is defined by47

rt = wGrG (st,gt, st+1) + wSrS (st, st+1) (1)

Follow the formulation of the AMP framework [8], the style reward rS is calculated according to48

the discriminator:49

rS (st, st+1) = − log (1−D (st, st+1)) (2)
And the discriminator is trained by the following objective:50

argmin
D

− EdM(s,st+1) [log (D (s, st+1))]

− Edπ(s,st+1) [log (1−D (s, st+1))]

+ wgpEdM(s,st+1)

[∥∥∥∇ϕD(ϕ)|ϕ=(s,st+1)

∥∥∥2]
(3)

The task reward function rG is generally segmented into three components, as in Equation (4): 1)51

rGwalk, which encourages the agent to approach the object intended for manipulation. 2) rGheld, which52

encourages the agent to align the center of its hands with the center of the box. 3) rGtarget, which53

encourages the agent to transport the object to the specified destination.54

rG = 0.2 ∗ rGwalk + 0.4 ∗ rGheld + 0.4 ∗ rGtarget (4)

The walk reward rGwalk is formulated as Equation (5), where xstanding
t denotes the position of the55

standing point near the object,v∗ denotes the target velocity, and d∗ denotes the desired direction56

from root to the object.57

rGwalk =


0.4 exp

(
−0.5

∥∥∥xstanding
t − xroot

t

∥∥∥2)+

0.4 exp
(
−2.0 ∥v∗ − droot

t · ẋroot
t ∥2

)
+

0.2 ∥d∗ · droot
t ∥2 , ∥x∗

t − xroot
t ∥ > 0.2m

1.0, otherwise

(5)
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The held reward rGheld is formulated in Equation (6), where xhand
t denotes the center of the agent’s two58

hands and ht is the position of the object helding point.59

rGheld = exp
(
−5.0∥xhand

t − ht∥2
)

(6)

The target reward rGtarget consist of two parts, rcarry and rface, as described in Equation (7).60

rGtarget = 0.5 ∗ rcarry + 0.5 ∗ rface. (7)

The face reward rface guides the agent to walk either forwards or backward. As shown in Equation (8),61

this is achieved by comparing the agent’s velocity direction with its orientation relative to the62

endpoint’s location, thereby cultivating the agent’s proficiency in bidirectional locomotion.63

rface =

{
xface
t · vface

t , xface
t · (dt − xroot

t ) ≥ 0

−xface
t · vface

t , xface
t · (xroot

t − dt) ≥ 0
(8)

The carry reward rcarry, is designed to guarantee that the object is delivered to the precise location64

at a specific angle. As outlined in Eq. 9, we constrain the agent’s movement direction, alongside65

the proximity to the end destination and the intended angle. Within this context, x∗
t signifies the66

3D coordinates of the destination, while p∗t represents the 2D destination coordinates. Similarly,67

proot
t indicates the 3D position of the agent’s root. Furthermore, rot∗ designates the object’s desired68

orientation.69

rcarry =

{
0.5 ∗ rnear

t + 0.25 ∗ rfart + 0.25 ∗ rdir
t ,

∥∥x∗
t − xroot

t

∥∥ > 0.1m

0.5 ∗ rnear
t + 0.25 ∗ rdir

t + 0.25, otherwise,
(9)

where70

rfar
t = exp

(
−0.5

∥∥p∗t − proot
t

∥∥2)
rnear
t = exp

(
−10.0

∥∥x∗
t − xroot

t

∥∥2)
rdir
t =

∥∥∥rot∗ · rotobject
t

∥∥∥2
B.3 Reset and early termination condition71

An episode ends either after reaching a predetermined duration or upon the activation of early72

termination (ET) conditions. During our experiments, we observed that lower object heights could73

lead to kicking actions, where the agent tend to kick the object to destination, significantly slowing74

down the training process. To address this, we assess the object’s velocity and height to determine the75

presence of kicking phenomena. If the height of the object is lower than 0.3m and its velocity in x-y76

plane is greater than 1m/s, the kicking early termination (KET) condition is triggered. Experimental77

results show that this strategy significantly stabilize the training process.78

C Implementation Details79

C.1 Training Details.80

Adopting the methodology of AMP [8], we develop a low-level controller encompassing both policy81

and discriminator networks. The policy network is bifurcated into a critic and an actor-network, each82

initiating with a CNN layer and proceeding to two MLP layers configured with [1024, 1024, 512]83

units. The discriminator network is similarly structured, featuring two MLP layers with [1024, 1024,84

512] units. We select PPO [9] as the primary reinforcement learning algorithm, coupled with the85

Adam optimizer [3] at a learning rate of 2e-5. The only difference between the multi-agent setting and86

the single-agent setting during training is whether a pre-trained weight is loaded. Our experiments87

are conducted on the IsaacGym simulator [5] using a single Nvidia GTX 3090Ti GPU. We run 409688

parallel environments across 15,000 epochs, which takes approximately 15 hours to complete.89
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C.2 Hyperparameters90

Following previous work[8, 2, 6], we use the Isaac Gym simulator [5]. The simulation runs at 60Hz91

and the control policy runs at 30Hz.92

Besides, the hyperparameters we used in the training process is detailed below:

Table 1: Hyperparameters for CooHOI.

Parameter Value

Number of Environments 4096
wG Task-Reward Weight 0.5
wS Style-Reward Weight 0.5

PPO Minibatch Size 16384
AMP Minibatch Size 4096

Horizon Length 32
Learning Rate 2e− 5

PPO Clip Threshold ϵ 0.2
γ Discount 0.99
GAE (λ) 0.95

T Episode Length 600

93

D Failure case visualization.94

Here, we conducted a visual analysis of the fail cases. First, for the case lacking a stand point, we95

can clearly see that the agent moves towards the nearest face, even though it is not the shortest edge,96

which leads to the agent’s inability to carry the object. In the second image, in the absence of dynamic97

input, we observe that the agent stands still, unable even to squat. In the third image, which depicts98

the scenario without reverse walking, the agent is able to lift the box, but because it cannot learn the99

backward gait, the two agents end up pushing the box against each other, causing a deadlock.

No stand point No Dynamic Observation No Reverse Walk

wrong face stand still deadlock
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Figure 2: Some visualization on failure cases. "Stand point" means a leading point behind the object
to encourage the agent to walk to the object. "Dynamic Observation" means that each agent has its
unique input. "Reverse Walk" indicates whether a single agent possesses the skill to walk backward.
Without any of the methods we propose, the policy cannot be successfully trained.

100

References101

[1] Mohamed Hassan, Duygu Ceylan, Ruben Villegas, Jun Saito, Jimei Yang, Yi Zhou, and102

Michael J Black. Stochastic scene-aware motion prediction. In Proceedings of the IEEE/CVF103

International Conference on Computer Vision, pages 11374–11384, 2021.104

[2] Mohamed Hassan, Yunrong Guo, Tingwu Wang, Michael Black, Sanja Fidler, and Xue Bin105

Peng. Synthesizing physical character-scene interactions. arXiv preprint arXiv:2302.00883,106

2023.107

4



[3] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint108

arXiv:1412.6980, 2014.109

[4] Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Gerard Pons-Moll, and Michael J110

Black. Amass: Archive of motion capture as surface shapes. In Proceedings of the IEEE/CVF111

international conference on computer vision, pages 5442–5451, 2019.112

[5] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles113

Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High114

performance gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470,115

2021.116

[6] Liang Pan, Jingbo Wang, Buzhen Huang, Junyu Zhang, Haofan Wang, Xu Tang, and Yan-117

gang Wang. Synthesizing physically plausible human motions in 3d scenes. arXiv preprint118

arXiv:2308.09036, 2023.119

[7] Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler. Ase: Large-scale120

reusable adversarial skill embeddings for physically simulated characters. ACM Transactions121

On Graphics (TOG), 41(4):1–17, 2022.122

[8] Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. Amp: Adversarial123

motion priors for stylized physics-based character control. ACM Transactions on Graphics124

(ToG), 40(4):1–20, 2021.125

[9] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal126

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.127

[10] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. On the continuity of rotation128

representations in neural networks. In Proceedings of the IEEE/CVF conference on computer129

vision and pattern recognition, pages 5745–5753, 2019.130

5


	Sources and Processing of Motion Data
	Task Formulation
	Task Observation
	Reward Functions
	Reset and early termination condition

	Implementation Details
	Training Details.
	Hyperparameters

	Failure case visualization.

