A  Proofs

Proof of Theorem2} Let z* € argmax, (o 1) f(z). Because K = |T%/*], we can find k* such that
lo* — k/K| < 1/(2|T/*]). Therefore, we have

T
R(T) =Tf(z*) = > E[f(X)]
T
=Tf(z*) - Tf(k*/K)+ (Tf(k*/K) = Y _E[f(X

T
< Teja* — k/K|+ (Tf(k*/K) = > E[f(X
t=1

cT

T
=5t (Tf(k*/K) — ;E (1)

Here the first inequality is due to Assumption Next we can focuson T'f (k* / K ) — Zle E[f(X0)]),
the regret relative to the best arm in {0,1/K,..., (K —1)/K,1}.

Consider m IID random rewards Z,’C’l, o ,’C m having the same distribution as Z; when X; = k /K,
fork=0,...,K.Let Z; = =~ > | Z; . Consider the event E as

_ 21 - 21
E= {z,;_a,/ ‘;%m < f(k/K) < Z} + o/ ‘:jm, Vke{O,...,K}}.

If we couple Z ,’C ;» 1 =1,..., m, with the rewards generated in the algorithm pulling arm k /K, then

the event represents the high-probability event that the f(k/K) is inside the confidence interval
[L By, UBjy). Using the standard concentration bounds for subgaussian random variables (note that
Z}, is 0/ /m-suggaussian), we have

P(E) < UK P <|Z,’c —E[Z}]| > 01/21(;57”)

2021 2(K +1
g(K+1)2exp{—m 7 Ogm}: (K+1)
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202 m m

Based on the event E, we can decompose the regret as

F(k* /K - ZE () Z (F(k*/K) — F(X)) L] + S E[(f(K/K) — f(X0) L]

Ms\

E[(f(k*/K) = f(Xi))1g] + TP(E®)

~
I
—

B[k /K) — f(X0)1g] + 2D 3)

m
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<

~
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where the first inequality follows from f(k*/K) < 1 and the second inequality follows from (2).

Next we analyze the first term of (3). Suppose T} is the stopping time when the stopping criterion
S — 1is triggered in Algorithm 1} We can divide the horizon into two phases [0, 73] and [T} + 1,T].
Before the stopping criterion, the first term of (3) is bounded by

ZE (k*/K) = F(X)Lg]| < (K + \mf(k*/K) < (K + )m )
To analyze the second phase, since we can couple the random variables Z/, i.m and the rewards of arm

k/K, we can suppose that LBy, < f(k / K) < UBj onevent F for all k dunng Algornhml 1} Note
that when the stopping criterion S < 1 is triggered for some arm /K in Algonthm we must have

f(k/K)<UBy < LB; < f(i/K) (5
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for some 7 < k. Note that @), combined with Assumption implies that 2* < k/K. Otherwise we
have f(z*) > f(i/K) > f(k/K) while i/K < k/K < z*, which contradicts Assumption 3| This
fact then implies that k* < k and furthermore k* < k — 1 because f(k/K) < f(i/K).

Because the stopping criterion is triggered for the first time, it implies that

F((k—1)/K) > LBy = UBy_y — 20\/m S 1B 2(,\/@
m m
21 21
ZUBi—4J\/WZf(Z'/K)_4O_\/m. ©)
m m

Here the first inequality is due to event E. The first equality is due to the definition of UB and LB.
The second inequality is due to the fact that the stopping criterion is not triggered for arm &’/ K. The
last inequality is again due to event E. Moreover, because arm ¢/ K is historically the best among
{0,1/K,...,(k—1)/K}, we have

1 1
F(i/K) > LB > LBy = UBp — 201 228™ > 1(1/ /) — 20 2208 %
m m

forall 0 < k' < k — 1. Now (6) and (7), combined with £* < k — 1, imply that

f (?) > fi/K) — 40\/@ > f(k*/K) - 60\/@,

By Assumption[I] we then have

K m

Plugging the last inequality back into the first term of (3)) in the second phase, we have

ST(f(k*/K)—f(k/K))§%+60 2logm

T
> El(f(k"/K) — f(Xi)1g]

t=T1+1

Combining (1), (3), @ and (8), we have
I 2(K+1)T T 2logm
< — - -
Rﬂ(T)_2K+ - +(K+1)m+K+6m/ - T
< 3cT3/* 4 4T3/ 4 gT3/4 + 4v/30+/log TT?/*
11
< <3c +5+ 4\/§ax/logT> T3/4,

where we have plugged in K = |T"/*| and m = |T''/?], and moreover,

K<TY4*<2K K+1< ng/‘l, %TUQ <TYV?_1<m<TY?,

E T. 8)

m

because 7' > 16. This completes the proof.
O

Proof of TheoremPB} Let K = |T'/*] and construct a family of functions f,() as follows. For
k€ [K], let
K z€0,(k—1/2)/K)
filw) = {max{(?k —1)/K — 2,0} x€[(k—-1/2)/K,1]
As a result, we can see that max,¢jo,1) fx(z) = (K — 1/2)/K is attained at z = (k — 1/2)/K.
Clearly, all the functions satisfy Assumptionwith c=1and Assumption For each fi(x), we

construct the associated reward sequence by Z; ~ N'(fx(X¢), 1), which is a normal random variable
with mean fi(X;) and standard deviation 1. It clearly satisfies Assumption
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Consider a particular policy 7. Let
Ry, = R, »(T)
be the regret incurred when the objective function is fj(z) for k € [K]. Because of the construction,

it is easy to see that for the objective function fi(z), if X; ¢ [(k — 1)/ K, k/K], then a regret no less
than 1/(2K) is incurred in period ¢. Therefore, we have

T
1
Ry 2 57 > Erllx, -1y K0/ 5)- ©)

t=1

Here we use Ej, to denote the expectation taken when the objective function is fi(x). On the other
hand, if we focus on Ry, then it is easy to see that

T
1 1
Ri > (2 — 2[() ;EK[RX&K/Q 1K), (10)

because a regret no less than 1/2 — 1/2K is incurred in the periods when X; < 1/2.
Based on the regret decomposition in (9) and (I0), we introduce T}, ; for k,i € K| as

T
Tyi = Z Ex[lx,el(i-1)/K.i/K)]-

t=1

In other words, T} ; is the number of periods in which the policy chooses = from the interval

[(i — 1)/K,i/K) when the reward sequence is generated by the objective function f (x) A key
observation due to Requirement|[T]is that

Tiv1i=Tiy2;="=Tk;. (11)

This is because for k£ > 4, the function fj(z) is identical for z < /K. Before reaching some ¢
such that X; > i/K, the policy must have spent the same number of periods on average in the
interval [(i — 1)/ K, /K ) no matter the objective function is f;+1(z), ..., fx—1(z), or fx(z). But
because of Requirement |1} once X, > i/K for some ¢, the policy never pulls an arm in the interval
[(i—1)/K,i/K) afterwards. Therefore, holds. This allows us to simplify the notation by letting
T; == Ty,; for k > i. In particular, by (I0), we have

LK/2] LK/2]

K-1 K—-1
> - -
Ry > e ;:1 Tk e ;:1 T; (12)

Next we are going to show the relationship between T, ; (or equivalently T;) and T; ; for k > i. We
introduce a random variable 7;

7; = max {t| Xy <i/K}.
Because of Requirement we have {1, <t} € 0(X1, 21, X2, Zo,..., X4, Z4, Ut) Therefore, 7;
is a stopping time. We consider the two probability measures, induced by the objective functions
fi(x) and fi(x) respectively, on (X1, Z1, ..., X,,, Z,,7;). Denote the two measures by p; ; and
i, respectively. Therefore, we have

> Ixeri-n/ki/) | = Buis [Z 1Xte[<z’—1>/K,z‘/K)1 )

Ty — Ty = (Eu
=1 =1

< TSI;P(Mz‘,i(A) — pr,i(A)) (13)

1
< T/ §D(Mm‘ | fore,i)- (14)

*We let T,k = > 1, Ex [1x,e[1—1/k,1]] include the right end. This is a minor technical point that doesn’t
affect the steps of the proof.

3Recall that U is an internal randomizer. Since we can always couple the values of U; under the two
measures, we omit the dependence hereafter.
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Here (13) follows the definition of the total variation distance and the fact that
Y req Ixeii—1)/k,i/Kk) < T. The second inequality (T4) follows from Pinsker’s inequality (see
[40] for an introduction) and D(P || Q) denotes the Kullback-Leibler divergence defined as

D(P Q) = / log(4E )a

dQ
We can further bound the KL-divergence in (T4) by:
:uZZ -’171,21,---73715,275)
Hii k, z / ( ) d )
( ||M Z Ti=t /Lklevzla"'axhzt) K
/ Zlog </J/z K Zs‘xs) ) d,U/z,z
” 143 L(Zé|xé)

i=t g=1

)dP.

GG

t=1 st g=1

I
Me

L] S DWE) ) IV ), Dt )

o~
Il

1
t

[ > %(fzv(xs) (o) Ao, m)
Ti=t g—1

[
B

~~
Il

1

In the first line we use the fact that the normal reward has support R. Hence if the sample path

(1,21,...,%¢, 2¢) has positve density under p; ; then it has positive density under fg,i- As aresult,

we establish the absolute continuity of p;; w.rt. uy,; and the existence of the adon-Nikodym
derivative. The second equality follows from the fact that for the same policy 7, we have

Pii(Ts|T1, 21,0 o1, 2s—1) = fkyi(Ts|T1, 21500 To—1, Zs—1)-

The fourth equality uses the conditional independence of z given x. Note that on the event 7; = £, we
have x5 < i/K for s < t. Therefore, we have

Lz, i— i

by the construction of f;(x) and fi(z). As a result,

Dl | Z/ el )<
1,1 l 0,1 :C P y — .
Hai 1l B, 22 2K
Plugging it into (T4), we have Therefore, (T4) implies
T T
Tig <Thi+ =—=VTks =T + ==V T;. 15
: kit 5 VI, togV 15)
Combining (T3) and (9), we can provide a lower bound for the regret R; fori = 1,..., |K/2|/K
1 1 T
> —=(T —-T;, T-T, - T; 1
Rz m>_2K( Y ) (16)

Next, based on (12)) and (T6), we show that for k € {1,...,|K/2]/K, K}, there exists at least one

k such that
R > T3/4,
B2

If the claim doesn’t hold, then we have Ry > T°/4 /32. By (12) and the pigeonhole principle, there

exists at least one 7 such that
2K
T <

R CE T
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Because 7' > 16 and K > 2, we have K/(K — 1) < 2and | K /2| > T'/* /4. Therefore,

1)
T, < Lpie,
2

Now by (T6), for this particular i, we have

1 1 T
> —— (T — T2 — —\/TY2/2
R _2K< 2 2K /

1 2
> o 1/4 (T VeI fT) (17)
2 2
S (T a) s Lpsna (18)
“\2 =330

resulting in a contradiction. Here @]} follows from the fact that 2K > T4 > K whenT' > 16;
(T8) follows from T'*/2 > 4. Therefore, we have proved that for at least one k, Ry, > T°/*/32. This
completes the proof. O
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