
A Dataset Details1

A.1 Robot Tasks and Implementations2

We automated four mobile manipulation tasks in a home environment: putting a cup in the sink,3

microwaving food, hanging a hat, and collecting dirty clothes. The implemented tasks made up of4

autonomous navigation, perception, and manipulation actions. We navigate to specified positions5

and orientations using SLAM implemented in Stretch Nav2, detect and localize specified objects by6

either running ArUco marker detection or YOLO-World object detection with FastSAM segmenta-7

tion, and perform manipulation using inverse kinematics with demonstrated poses. The task-specific8

descriptions and implementations are described below:9

• Put Cup in Sink: The task is performed in a connected kitchen and lounge environment10

with a dirty cup in the lounge and a sink in the kitchen. The specific sequence of states11

executed by the robot is as follows: the robot navigates to a table, looks for a cup, picks up12

a cup from the table, navigates to the sink, looks for the sink, then places it in a sink.13

• Microwave Food: The task is performed in a kitchen environment with a microwave and14

food near the microwave. The specific sequence of states executed by the robot is as fol-15

lows: the robot navigates to the microwave, looks for the microwave, opens the microwave16

door, navigates to the food, looks for the food, picks up the food, navigates to the mi-17

crowave, looks for the microwave, places the food inside the microwave, then closes the18

microwave door.19

• Hang Hat: The task is performed in a lounge environment with a human wearing a hat20

and a hook. The specific sequence of states executed by the robot is as follows: the robot21

navigates to the human, is handed a hat from the human, navigates to the hook, looks for22

the hook, then hangs the hat on the hook.23

• Collect Dirty Clothes: The task is performed in a lounge environment with a laundry24

basket and clothes arranged around the room. The specific sequence of states executed by25

the robot is as follows: the robot navigates to the clothes, looks around for clothes, classifies26

dirty clothes, picks up dirty clothes, navigates to the laundry basket, looks for the laundry27

basket, then places the clothes in the laundry basket.28

Figure 1: The robot detects and localizes the cup using YOLO-World and segments the result with
FastSAM on a frame captured from its head camera for perception.
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A.1.1 State Machine Synthesis29

We represent sequences of actions that accomplish a subgoal of a task as a state, and manage transi-30

tions between states using state machines. To simplify the development process, we create config-31

urable templates to synthesize state machine code from a list of linear states. In each implemented32

task, we add in additional query user and teleoperation states on top of each existing action state.33

This allows us to manage the state of the robot after the robot experiences failures and teleoperate34

the robot to recover from failures.35

A.2 Dataset Overview36

Failure Counts

Task Trials Navigation Detection Manipulation

Put Cup In Sink 32 10 2 18
Microwave Food 17 2 0 22

Hang Hat 16 0 0 14
Collect Dirty Clothes 5 0 5 0

Total 70 12 7 54
Table 1: List of autonomous tasks implemented on the Stretch mobile manipulator, along with the
number of trials and failure counts separated by failure type collected for the dataset.

Tasks are run across different trials. Throughout each trial, whenever the robot encounters an inci-37

dent that prevents the robot from completing its task, a failure is marked. If the failure is recoverable,38

a human will teleoperate the robot to resolve the failure. Otherwise, the task is aborted and marked39

accordingly. Room arrangements are changed to inject failures into trials. Each trial can have from40

zero to three failures. The tasks and failure counts are shown in Table 1.41

A.3 Data Collection42

The data is collected as a rosbag that has RGB-D, joint, odometry, state information, and more43

beginning at the start of the task and ending after the task is complete. The full list of collected44

topics and topic descriptions are provided in 2.45

Topic Name Description
/state machine/smach/container status Current state status information

/state machine/smach/container structure State machine container information
/camera/aligned depth to color/image raw Head mounted D435i stereo depth

/camera/color/image raw Head mounted D435i RGB image
/gripper camera/color/image rect raw Gripper mounted D405 RGB image

/camera/aligned depth to color/camera info Head mounted D435i camera intrinsics
/stretch/joint states Joint positions, velocities, and efforts

/odom Base odometry information
/imu mobile base Base mounted IMU information

/tf Transforms for moving robot parts
/tf static Transforms for static robot parts

/robot description The robot’s URDF
/rosout ROS console logs

/diagnostics Diagnostics information
/amcl pose The robot’s Nav2 pose with covariance

Table 2: List of all of the ROS topics and topic descriptions collected in each trial of the dataset.
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B Implementation Details46

This section introduces the implementation details about the framework which is not demonstrated47

in the main paper due to page limit.48

B.1 Multi-Modal Key Event Selection49

B.1.1 A Formalism for Key Event Selection50

We define a key event as the event which contains important and critical information on robot ob-51

servations and robot status during task execution. These events are selected across all the modalities52

of the robot. Since key events can have different definitions depending on the modalities, based on53

the properties of the data, we categorize robot data into three categories: Environment (E), Internal54

(I) and Task Planning (TP):55

• Environment (E): Sensory data used to observe the external world, such as RGB images,56

point clouds, audio, tactile feedback, etc.57

• Internal (I): Sensory data related to the internal state of the robot, including internal sen-58

sors, joint angles, base velocity, battery levels, and other diagnostic information.59

• Task Planning (TP): High-level planning data that contains overall task objectives, sub-60

task sequences, execution history, and plan outcomes.61

These categorizations can group the robot data in a structured way and make key event selection62

across modalities easier. Then, we represent each aligned multi-modal frame with the following63

parameters across different data categories:64

• Optical Flow (E): the optical flows generated from the RGB images collected by the robot65

head camera. Since the optical flow vary largely at different stages of task operation, we de-66

fine average flow magnitudes on different part movements of the robot. It has the following67

parameters:68

– λpos: Average flow magnitude for frames with base positional movements.69

– λrot: Average flow magnitude for frames with base rotational movements.70

– λcam: Average flow magnitude for frames with camera movements.71

– λarm: Average flow magnitude for frames with arm positional movements.72

• Joint State (I): the internal joint state readings from the robot which reflects the robot73

internal status. It has following parameters:74

– xpos: Change in meters of the position of the robot from the odometry reading.75

– xrot: Change in radians of the orientation of the robot from the odometry reading.76

– xcam: Change in radians of the pan and tilt of the robot’s head camera.77

– xarm: Change in meters of the robot’s arm.78

• Planner State (TP): the planning-level state information of the robot during the task exe-79

cution. It has following parameter:80

– s: The robot’s current state.81

For key event selection, we first calculate the mean and standard deviation of each parameter in82

optical flow and joint state across each task. Then, for each multi-modal frame, we normalize each of83

these parameter values by the mean and standard deviation of the specified task. We only take multi-84

modal frames with normalized values above 0 as the candidates of key events. The normalization on85

environment and internal parameters ensures values across different modalities are weighted equally,86

and that only values that are higher than the average frame value will be considered for contributions87

to the set threshold and further to become a key event. These values are accumulated along with the88

task execution and a set threshold is set for the cumulative sum. Additional to optical flow and joint89
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state, planner state is used separately for key event selection. As in task planner, the most important90

events are the beginning and finishing of each planner state, and therefore, these events should be91

also considered as key events. In summary, when either the cumulative sum of values reaches the92

set threshold or the planner state changes, the multi-modal frame is labeled as key event. For our93

data, we aligned frames with a sample rate of 0.2 and set our key event threshold to 80. The key94

event selection can be modeled as a binary classifier, Ckey , which runs across all the multi-modal95

frames in a given task and outputs a binary prediction, 0 (not a key event) or 1 (a key event). It can96

be represented as following:97

Ckey(fi) =


1,

i∑
k=c

 ∑
a∈{pos, rot, cam, arm}

(N (λa
k) +N (xa

k))

 > threshold,

where c = index of last key event
1, si ̸= si−1

0, otherwise

(1)

where fi is the multi-modal frame at timestamp i.98

B.1.2 Adjacent Image Selection with Clarity Score99

After selecting the key event, one additional step in our framework is to select the best quality RGB100

image adjacent to the key event. During the experiments, we found that there is a big impact on101

the clarity of the image for object detection, especially during navigation. Therefore, in order to102

improve the detection accuracy and further enhance the overall system, we define a clarity score103

on the RGB images and conduct an adjacent image selection. The clarity score is defined by the104

variance of the Laplacian of the image. The 2-D Laplacian operator is defined as:105

∇2f = [f(x+ 1, y) + f(x− 1, y) + f(x, y + 1) + f(x, y − 1)]− 4f(x, y) (2)
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Figure 2: Adjacent image selection using clarity score.
The left dark blue frame is the key event correspond-
ing RGB image. The right orange frame is the se-
lected frame used for experience summarization by us-
ing clarity score.

We can use the equation to derive a 3 × 3106

Laplacian kernel. Then, we use the ker-107

nel to convolve with the original image to108

get the activation map. By calculating the109

variance of the activation map, we can get110

a clarity score of the image. The higher111

the score is, the more clear the image is.112

We use the clarity score function to calcu-113

late clarity scores for all the frames within114

1 second of the key event and select the115

RGB image with the highest clarity score116

as the image used for experience summa-117

rization.118

B.2 RONAR-UI119

To create better user experiences, we also120

design an user interface for the key event121

and narration display, RONAR-UI. The122

RONAR-UI has two modes, offline mode123

and online mode. The offline mode is used124

for users to log and analyze the collected125

robot data. Addtionally, it is also used for126

user studies in C.2. The online mode is127

used for robot operators to lively monitor128

and control the robot. It integrates with129
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ROS2 with a user-friendly interface to allow users to learn the status of the robot system and do130

interventions during task execution. The RONAR-UI interfaces are shown in Figure 3.131

Key Event Info

Live Video Key Event Control

Narration (Alert)

Narration (Info)

Live Video Key Event Info Narration

Key Event ControlIntervention

Figure 3: RONAR-UI interfaces. Left: RONAR-UI with offline mode. Right: RONAR-UI with
online mode.
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C Experiment Details132

RONAR can generate multi-modal experience summaries and progressive narrations with different133

modes. In order to prove the effectiveness of these generated natural language groundings, we design134

multiple experiments. There are two main parts we want to prove RONAR can help with:135

• Robot System: RONAR can improve the capability of robot systems on failure analysis.136

• Human Interaction: RONAR can improve the interaction experience between human and137

robot. As well, RONAR can enhance the effectiveness and efficiency of failure identifica-138

tion by human users.139

In order to prove RONAR can improve the robot system, we design an experiment on failure analysis140

by using generated experience summaries and you can find details in C.1. To prove the quality,141

effectiveness and efficiency of the narrations, we design two user studies shown in C.2. In C.2.2,142

we introduce the details of the user study on the narration quality evaluation. In C.2.3, we introduce143

the details of the user study on users’ effectiveness and efficiency on failure identification by using144

narrations.145

C.1 Failure Analysis with Experience Summary146

In order to make intellegent robots, it is important for robot systems to have reliable and efficient147

methods to identify and analyze failures. In this experiment, we aim to demonstrate that RONAR’s148

generated experience summaries can significantly enhance the failure analysis capabilities of robot149

systems. In order to have a thorough analysis, we break down the failure analysis problem into four150

sub-tasks:151

• Risk Estimation / Failure Prediction (Pred): given previous key events, percentage of152

predicted failures are the actual failure in the actual failure key event.153

• Failure Localization (Loc): given the all key events, percentage of predicted failure time154

are aligned with the ground truth failure time.155

• Failure Explanation (Exp): given previous key events and current key event (when failure156

happened), percentage of generated failure explanations are aligned with the ground truth157

failure explanation.158

• Recovery Recommendation (Rec): given previous key events and current key event (when159

failure happened), percentage of recovery recommendation are aligned with the ground160

truth recovery recommendation.161

These sub-tasks include most scenarios the robot systems need to face during the operations. The162

methods used for comparison are:163

• BLIP2: use BLIP2 to generate a caption for the RGB image of the key event.164

• REFLECT: current state of the art LLM-based failure explanation framework.165

• TEM-LLM: send all raw sensory and planning data directly to the LLM for failure analysis.166

• TEM-VLM: send all raw sensory and planning data directly to the VLM for failure analy-167

sis. We use GPT-4o as VLM.168

• RONAR-vision only: our method without internal and planning inputs.169

• RONAR-no prior: our method only uses current key events for failure analysis.170

Baseline methods, which require an LLM, use GPT-4o as the backbone. For REFLECT, we use the171

general pipeline of the method, but we did not use the audio modality since the original robot does172

not have microphone which might have potential effects on the performance of the method on some173

tasks. The results are evaluated by human expert based on the reasonableness and deviation from174

the ground truth labels.175
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C.2 User Studies176

In order to prove the quality, effectiveness and efficiency of RONAR narrations, we carefully design177

two experiments, narration quality evaluation and failure identification using narration, and recruit178

a number of participants to conduct a thorough user study.179

C.2.1 Demographics and Robot Background of Participants180

We recruited 24 participants with different background to conduct the user studies on narration qual-181

ity evaluation and failure identification using narration. We create a questionnaires to ask for partic-182

ipants’ background at the end of the user study. The questionnaires include two parts: demographics183

and robot background. For the demographics, we include the following questions:184

• Age: Select your age range (under 18, 18-24, 25-35, 35-44, 45-54, 55-64, over 65)185

• Education: What is your highest level of education? (High school diploma / GED, Asso-186

ciate degree, Bachelor’s degree, Master’s degree, Doctorate)187

• Filed: Have you studied or worked in a tech or STEM related field? (Yes or No)188

The details of participant demographics can be found in Figure 4. From Figure 4, we can see that189

the user study involved a predominantly young and highly educated group of participants. The190

age distribution shows a significant concentration in the 18-24 age range, while the educational191

background highlights that most participants hold at least a Bachelor’s degree, with nearly half192

having attained a Master’s degree. This demographic profile suggests that the findings of the study193

might be particularly relevant to younger, well-educated individuals.194

Figure 4: Demographics of the participants. Left: Age ranges of the participants of the user study.
Right: Highest degrees earned by the participants of the user study.

We also create questions on robot familiarity for participants to answer. These questions inlcude:195

• Expertise Level (Robot): Rate your expertise in robotics (1-5)196

• Hours Spent (Robot:) Estimate how many hours have you worked with real robot? (Never,197

0-10h, 10-30h, 30-50h, 50-100h, More than 100h)198

• Expertise Level (Stretch): Rate your expertise with Hello Robot’s Stretch mobile manip-199

ulator (1-5)200

• Hours Spent (Stretch): Estimate how many hours have you worked with stretch robot?201

(Never, 0-10h, 10-30h, 30-50h, 50-100h, More than 100h)202

The details of participant expertise on robots can be found in Figure 5. From Figure 5, it is clear203

that while the participant pool is quite diverse in terms of general robotics experience, they predom-204

inantly lack familiarity with the Stretch robot. Despite a few individuals with substantial robotic205

experience, the overall expertise with Stretch is low. Furthermore, the distribution of expertise level206

7



Figure 5: Expertise of the participants with robot and Stretch. Top Left: Hours spent by the par-
ticipants on robots in general. Top Right: Hours spent by the participants on Stretch. Bottom:
Subjective self-evaluation on the expertise level of the participants on general robot and Stretch.

on general robots shows a relatively even spread of expertise levels, with a notable concentration207

at both the novice and intermediate levels, reflecting a varied participant pool in terms of general208

robotics knowledge.209

C.2.2 Narration Quality Evaluation210

The study of narration quality evaluation has two parts: a tutorial and a formal evaluation. Before211

the start of the tutorial, we introduce the four metrics the participants give ratings on:212

• Naturalness: Does the narration feel natural and human-like? (1-5)213

• Informativeness: Does the narration provide useful information about the robot’s behav-214

ior? (1-5)215

• Coherence: Does the narration organize information logically and clearly? (1-5)216

• Overall: What is your overall assessment of the narration’s quality? (1-5)217

It uses 1 to 5 Likert Scale to measure the preferences from the participants on the metrics. We218

confirm and explain the metrics until the participants fully understand the task and the terminologies.219

Then, the participants are given a short tutorial on two samples of the image-narration pairs to get220

familiar with the format and questions. They can ask any related questions during the tutorial. After221

the tutorial, it goes to the formal evaluation of the narrations generated by different methods. In the222

formal evaluation, we select three frames from three tasks in the dataset: put cup in sink, microwave223

lunch and hang hat. There are 5 methods evaluated by the participants: BLIP2, REFECLET, TEM-224
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(a) RAW-VID interface (b) RAW-ALL interface

(c) KEYFRAME interface (d) RONAR-UI interface

Figure 6: Four interfaces used for failure identification in user study.

LLM, TEM-VLM and RONAR. We pair the three selected frames with the corresponding narrations225

generated by different methods. In order to prevent biases from the orders of methods, for each226

participant, we generate a random order of methods and all the names of the methods are hidden.227

After the participants saw all three image-narration pairs, they can give scores on the four metrics228

for the corresponding method. Since the order is very critical and users might change their mind by229

seeing the following narrations, we allow the users to go back and change their ratings by seeing the230

new narrations.231

C.2.3 Failure Identification Using Narration232

The second user study is to evaluate the effectiveness and efficiency of narrations on failure identi-233

fication. The key question we want to answer is how effective and efficient the narration can help234

users to identify the failures. We design two tasks for the failure identification problem:235

• Failure time identification: How accurate and efficient can participant correctly identify236

the time of failure in a demo?237

• Failure explanation: How accurate and efficient can participant have a reasonable expla-238

nation about the failure?239

In this study, we design four interfaces which the users will be used to identify the failure time and240

failure reason. The four failure identifications interfaces are:241

• RAW-VID: a traditional video player interface which only shows the raw video captured242

by the robot camera.243

• RAW-ALL: a video player interface which displays the raw video and all raw sensor read-244

ings (both joint and base) from the robot. The sensor readings are visualized by line plots245

and synchronized with the raw video.246
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• KEYFRAME: the RONAR-UI interface without narration. It includes the raw video, se-247

lected keyframes, and state information.248

• RONAR-UI: the RONAR-UI interface with fully functionalities. It includes both narra-249

tions with alert mode and info mode generated RONAR.250

The appearances of all interfaces can be found in Figure 6. The effectiveness and efficiency are251

measured by accuracy and time spent on each of the task. For failure time identification, we have252

the ground truth failure time and set a time tolerance for each of the demonstrations. If the participant253

gives an estimated time within the time tolerance, it is marked as correct. Otherwise, it is marked254

as incorrect. For failure explanation, we ask the participants to write 1-2 sentences to explain the255

failure in each of the demonstration. Then, three robot experts evaluate the users’ answer based256

on reasonableness independently. The accuracy on failure explanation is the average of rate of257

correctness marked by the experts. For measuring efficiency, we record the time which participants258

used to fulfill each task. This time is measured by an expert supervisor with a stopwatch beside the259

participant. For failure time identification, the start time is when the user click the play button of the260

video and the finish time is when the user finish typing and click next button. For failure explanation,261

the start time is when the user saw the ground truth failure time and the finish time is when the user262

finish typing and click next.263

This study is also consist of two parts: an introductory tutorial and a thorough evaluation of inter-264

faces. In the tutorial, we prepare examples of each interface for users to interact with. We give265

enough time for them until they are familiar with all the interfaces and comfortable to continue for266

the actual evaluation. For the formal evaluation, we select four demonstrations from the task, put267

cup in sink, with failures in different states and we make sure that each demonstration only contains268

one failure. These are the failures for the formal evaluation. In order to prevent the biases from269

the demo-interface pairs, we make a full set of permutations of the four demos and four interfaces,270

which results 24 permutations. We assign each different permutation to different participants, which271

covers exact 24 participants.272
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D Experience Summary and Narration Examples273

D.1 Experience Summary Example274

I observe: 
stool_0: 0.93 meters and in front of the robot, left of sofa_0, right of coffee table_0. 
sofa_0: 1.13 meters and in front of the robot, right of chair_0, left of chair_1, right of stool_0, left of coffee 
table_0. 
chair_1: 1.24 meters and above the robot, right of chair_0, left of sofa_0, left of stool_0. 
chair_0: 1.25 meters and above the robot, left of sofa_0, left of stool_0, right of coffee table_0. 
coffee table_0: 1.27 meters and in front of the robot, right of chair_0, right of chair_1, left of sofa_0, right of 
stool_0.

Environment Summary

Here is what I am doing: 
wrist_extension: 
 Descriptions: position at 19.23% of its maximum extension, velocity nearly at a standstill with a very 

slight retraction  (-0.000226 m/s), effort is very minimal (4.39623047631315e-45%). 
 Grounded: My arm is mostly retracted and not moving much. 
joint_lift: 
 Descriptions: position at 54.59% of its maximum height, velocity nearly at a standstill with a very  slight 

downward motion (-0.000206 m/s), effort at 40.91% of maximum torque. 
 Grounded: My arm is raised to about halfway up and holding steady. 
joint_head_pan: 
 Descriptions: position at 76.49% of its maximum left pan, velocity at standstill (0.0 rad/s), effort at 0.0%. 
 Grounded: My camera is facing mostly straight ahead and not moving. 
joint_head_tilt: 
 Descriptions: position at 64.78% of its maximum upward tilt, velocity at standstill (0.0 rad/s), effort at 

0.0%. 
 Grounded: My camera is tilted slightly upwards and not moving. 
joint_wrist_yaw: 
 Descriptions: position at 15.97% of its maximum yaw to the right, velocity at standstill (0.0 rad/s), effort at 

0.0%. 
 Grounded: My wrist is slightly rotated to the right and not moving.
joint_wrist_pitch: 
 Descriptions: position at -94.22% of its maximum downward pitch, velocity at 0.0 rad/s, effort at -0.10%. 

Grounded: My wrist is pitched downward quite a bit and holding steady. 
joint_wrist_roll: 
 Descriptions: position at 50% of its range, velocity at 0.0 rad/s, effort at 0.0%. 
 Grounded: My wrist is in a neutral roll position and not moving. 
joint_gripper_finger_left: 
 Descriptions: position at 50% of its opening range, velocity at 0.0 rad/s, effort at 0.0%. 
 Grounded: The left gripper finger is halfway open and not moving. 
joint_gripper_finger_right: 
 Descriptions: position at 50% of its opening range, velocity at 0.0 rad/s, effort at 0.0%. 
 Grounded:  The right gripper finger is halfway open and not moving. 
position: 
 Descriptions: x at 1.627e-5 m, y at -4.526e-11 m. 
 Grounded:  My base is almost at the same spot, with very minimal movement. 
orientation: 
 Descriptions: orientation at -0.0000289 radians. 
 Grounded:  I am nearly in the same direction I started. 
velocity: 
 Descriptions: velocity moving forward at 0.000166 m/s. 
 Grounded: I am barely moving forward. 
angular_velocity: 
 Descriptions: angular velocity rotating clockwise at -0.00187 rad/s. 
 Grounded:  I am turning right very slowly.”

Internal Summary
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My plan is: 
Task: Pick and place the cup in the sink: 
 Description: The robot should navigate to the table with dirty cup on it, pick up the cup, find the sink, 

navigate to the sink and place the cup in the sink. 
Overall plan: 
 Step 1: Begin operation from the START state.
 Step 2: Navigate to the location of the cup. 
 Step 3: Execute pick operation to grab the cup. 
 Step 4: Navigate to the location of the sink. 
 Step 5: Detect the precise position to place the cup. 
 Step 6: Place the cup in the sink. 
 Step 7: End the operation and transition to END state.
Current state: NAVIGATE_TO_CUP 
State History: [['START', 'success']]

Planning Summary

D.2 Narration Examples275

We have shown narration examples generated by RONAR with different modes in the main paper.276

In this section, we want to show some interesting cases the narration can help users to identify the277

status of the robot and failures the robot is experiencing.

RONAR Narration (Info): 
The robot is navigating to the sink with 
its arm slightly extended, moving for-
ward quickly while turning right, but 
there's a risk of not detecting the sink 
or encountering navigation obstruct-
ions that need to be monitored clos-
ely.

Failure Explanation (GT): 
The extended robot arm collides with 
a chair during navigation.

RONAR Narration (Info): 
The robot continues actively scanning for the cup, 
carefully aligning its sensors to ensure accurate 
detection. Despite the initial failure to detect the 
cup, it is now prepared to query the user for 
assistance. Maintaining a stable posture with its 
arm and wrist slightly extended, the robot aims to 
successfully identify the cup for subsequent pickup.

Failure Explanation (GT): 
The cup is occluded by other objects and the 
robot fails to detect it.

Figure 7: Narration examples generated by RONAR.
278

As shown in Figure 7, the left example shows an interesting failure case which cannot be identified279

by the vision system alone. In the left example, the robot arm is extended and the arm hits a chair280

which impedes the movement of the robot. As shown in the frame, users cannot identify what the281

failures the robot is current facing. During the user study, most participants reason the failure is282

caused by the robot cannot successfully find and locate the sink, which is due to the detection and283

mapping errors. The RONAR narration successfully captures the robot arm status (”its arm slightly284

extended”) and the movement of the robot (”moving quickly while turning right”). As well, it285

notifies the users of the potential risks which could cause failures. It successfully identifies the risks286

of navigation obstruction during the task execution without direct visual information.287

In the right example, the robot fails to detect the cup with the first attempt. From the visual inputs,288

it is hard to identify what the robot is doing. Most users consider the robot is navigating to the289

sink even by watching the video. The narration generated by RONAR successfully captures the290

past experiences of the robot and explains clearly what the robot is currently doing. In summary,291

demonstrated by the user studies, it shows significant improvements for users on understanding robot292

behaviors by using the narrations generated by RONAR.293

D.3 Extensions of Narration294

The use of narrations uss not only limited to failure analysis and transparency. There could be much295

more applications and extensions. We study some of the extensions and welcome for more follow-up296

research on related studies.297
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D.3.1 Trajectory Summarization298

Trajectory Summary

The robot began its task of picking and placing a cup in the sink 
at 0:00, initially assessing an environment cluttered with 
obstacles such as stools and chairs. After finalizing its initial 
assessment by 0:02, it navigated towards the cup on the table, 
carefully maneuvering around furniture. By 0:13, upon reaching 
the table, the robot transitioned to a state where it scanned for 
the cup before successfully identifying and picking it up. After 
identifying the cup by 0:23, the robot transitioned to pick up the 
cup, secure the cup and prepare to move towards the sink. Next, 
the robot navigated towards the sink, moving cautiously while 
continually adjusting for minor obstacles and ensuring the cup 
remained secure by 0:43. Despite successful navigation, the 
robot initially failed to correctly place the cup into the sink by 
1:45, prompting user intervention. Following user guidance, the 
robot retried and successfully maneuvered into position for 
precise placement. By 2:21, the robot's careful adjustments in 
arm and wrist movements aimed to ensure the cup was 
accurately positioned before final release. The task finished with 
the robot successfully placing the cup into the sink.

Figure 8: Trajectory summarization

The narration generated by RONAR is299

event-level, which means each of the nar-300

ration corresponds to a single key event.301

It only captures a snapshot of the pro-302

cess, but cannot show an overview of303

the demonstration. Therefore, we cre-304

ate a higher level summarization, trajec-305

tory summarization, which is generated by306

LLMs using the narration history and cap-307

tures the details of the trajectory in a hu-308

man readable way.309

It enables the question and answering ca-310

pability of robot trajectories and create311

richer ways of interactions with robot data.312

One potential use of the trajectory sum-313

marization is to have customized trajec-314

tory retrieval. As shown in Figure 9,315

for a collection of robot demonstrations,316

RONAR can generate corresponding tra-317

jectory summary for each trajectory. Then, these summaries can be used for trajectory retrieval318

purposes. Users can search and retrieval trajectories with customized queries. These queried tra-319

jectories can be used for model training for various types of learning algorithms, such as imitation320

learning. It makes robot data search and retrieval much more efficient and accessible.321

Result 1

User Query 2 User Query 3User Query 1

Trajectory Summary

The robot began its task of picking and placing a cup 
in the sink at 0:00, initially assessing an environment 
cluttered with obstacles such as stools and chairs. 
After finalizing its initial assessment by 0:02, it navig-
ated towards the cup on the table, carefully maneu-
vering around furniture…

The robot began the task of picking and placing a cup 
in the sink, initiating with a START state where it 
assessed initial conditions and faced various obstac-
les like stools and chairs at 0:00. It success-fully 
transitioned to NAVIGATE_TO_CUP, carefully navigat-
ing through tight spaces, …
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The robot begins the task of picking and placing a 
cup in the sink at 0:00, assessing the environment 
filled with obstacles like stools and chairs.  At 0:08, 
The robot transitions to the NAVIGATE_TO_CUP state, 
carefully planning its movements to avoid nearby 
furniture while navigating towards the table …

Tr
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ry
 3

…

LLM

Give me the trajectories failed 
both pick up the cup and place 
the cup.

Give me the trajectories finished 
the task within 2mins. 

Give me the trajectories completed 
to pick up the cup in 45s but failed to 
navigate to sink by hitting a chair.

Traj 1 Traj 3 … Traj 2 Traj 5 Traj 6 … Traj 9 Traj 10

Result 2 Result 3

Figure 9: A pipeline for customized trajectory retrieval. For each demonstration, RONAR can
generate trajectory-level summarization by using event-level narrations. This summarization con-
tains the detailed information of the trajectory and users can retrieve trajectories with customized
queries. These customized trajectories can be used for further downstream tasks, such as model
training and system analysis.

D.3.2 System Overview322

Not limited to trajectory-level summaries, RONAR can generate summaries in an even higher-level.323

With a collection of trajectory summaries, RONAR can generate a system-level summary to give324

users an overview of the robot system. As shown in Figure 10, users can generate robot sys-325

tem overview by using a collection of trajecory summaries and RONAR. The system overview is326

customizable based on users’ requirements. In this example, we ask RONAR to generate system327

overview on failures, recoveries and improvement recommendations based on the experiments. The328

13



system overview can give users a big picture of the overall system and assist to make improvements.329

As well, users can also compare system overviews between different experiment dates to keep track330

of the system improvement progress.331

D
ate: Jun 6

th, 2024 

System  Overview

Trajectory Summary

The robot begins the task of picking and placing a 
cup in the sink at 0:00, assessing the environment 
filled with obstacles like stools and chairs.  At 0:08, 
The robot transitions to the NAVIGATE_TO_CUP state, 
carefully planning its movements to avoid nearby 
furniture while navigating towards the table …

The robot began the task of picking and placing a cup 
in the sink, initiating with a START state where it 
assessed initial conditions and faced various obstac-
les like stools and chairs at 0:00. It success-fully 
transitioned to NAVIGATE_TO_CUP, carefully navigat-
ing through tight spaces, …

Failure Summary:
1.Navigation Failure (3 occurrence):

Common reasons: An unexpected force on the ground detected by 
the robot's wheels, possibly due to an obstacle or unusual floor 
condition. This issue occurred in an office environment cluttered 
with objects like stools, tables, and storage shelves, which 
complicated the navigation.

2.Detection Failure (1 occurrence):
Common reasons: The robot's inability to detect a bottle with an 
AR marker despite having functioning navigation and detection 
systems. This indicates challenges in adapting current detection 
algorithm to complex, real-world environments where variables can 
significantly differ from those in controlled settings.

The robot began its task of picking and placing a cup 
in the sink at 0:00, initially assessing an environment 
cluttered with obstacles such as stools and chairs. 
After finalizing its initial assessment by 0:02, it navig-
ated towards the cup on the table, carefully maneu-
vering around furniture…

Recovery Summary:
•Navigation Failure:

• Most common recovery method: Employing teleoperation to 
bypass the navigational error, allowing the robot to maneuver 
past the detected obstacle under direct user control.

•Detection Failure:
• Most common recovery method: Human intervention to adjust 

the bottle's position, making it more detectable for the robot.

Improvement Recommendations:
1.Enhance obstacle detection and floor condition analysis to prevent 
similar navigational errors in the future.
2.Implement more robust recovery protocols that allow the robot to 
autonomously navigate around unexpected obstacles without 
necessitating human intervention.

LLM

Figure 10: System overview generated by RONAR
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