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ABSTRACT

Scaling laws are useful guides for derisking expensive training runs, as they predict
performance of large models using cheaper, small-scale experiments. However,
there remain gaps between current scaling studies and how language models are
ultimately trained and evaluated. For instance, scaling is usually studied in the
compute-optimal training regime (i.e., “Chinchilla optimal” regime). In contrast,
models are often over-trained to reduce inference costs. Moreover, scaling laws
mostly predict loss on next-token prediction, but models are usually compared on
downstream task performance. To address both shortcomings, we create a testbed
of 104 models with 0.011B to 6.9B parameters trained with various numbers
of tokens on three data distributions. First, we fit scaling laws that extrapolate
in both the amount of over-training and the number of model parameters. This
enables us to predict the validation loss of a 1.4B parameter, 900B token run
(i.e., 32→ over-trained) and a 6.9B parameter, 138B token run (i.e., a compute-
optimal run)—each from experiments that take 300→ less compute. Second, we
relate the perplexity of a language model to its downstream task performance
by proposing a power law. We use this law to predict top-1 error averaged over
downstream tasks for the two aforementioned models, using experiments that
take 20→ less compute. To facilitate further research on reliable scaling, we
provide all results of our experiments. Our experiments are available at https:
//github.com/mlfoundations/scaling.

1 INTRODUCTION

Training large language models is expensive. Furthermore, training high-quality models requires a
complex recipe of algorithmic techniques and training data. To reduce the cost of finding successful
training recipes, researchers first evaluate ideas with small experiments and then extrapolate their
efficacy to larger model and data regimes via scaling laws. With reliable extrapolation, it is possible to
quickly iterate at small scale and still pick the method that will perform best for the final large training
run. Indeed, this workflow has become commonplace for training state-of-the-art language models
like Chinchilla 70B (Hoffmann et al., 2022), PaLM 540B (Chowdhery et al., 2022), GPT-4 (OpenAI,
2023), and many others.

Despite their importance for model development, published scaling laws differ from the goals of
training state-of-the-art models in important ways. For instance, scaling studies usually focus on the
compute-optimal training regime (“Chinchilla optimality” (Hoffmann et al., 2022)), where model
and dataset size are set to yield minimum loss for a given compute budget. However, this setting
ignores inference costs. As larger models are more expensive at inference, it is now common practice
to over-train smaller models (Touvron et al., 2023a). Another potential mismatch is that most scaling
laws quantify model performance by perplexity in next-token prediction instead of accuracy on
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Figure 1: Reliable scaling with over-training and on downstream error prediction. (left) We fit
a scaling law for model validation loss, parameterized by (i) a token multiplier M = D/N , which
is the ratio of training tokens D to parameters N and (ii) the compute C in FLOPs used to train a
model, approximated by C = 6ND. Larger values of M specify more over-training. We are able
to extrapolate, in both N and M , the validation performance of models requiring more than 300→
the training compute used to construct the scaling law. (right) We also fit a scaling law to predict
average downstream top-1 error as a function of validation loss. We find that fitting scaling laws
for downstream error benefits from using more expensive models when compared to fitting for loss
prediction. We predict the average error over 17 downstream tasks for models trained with over 20→
the compute. For this figure, we train all models on RedPajama (Together Computer, 2023).

widely used benchmark datasets. However, practitioners usually turn to benchmark performance, not
loss, to compare models.

In this paper, we conduct an extensive set of experiments to address both scaling in the over-trained
regime and benchmark performance prediction.

Motivated by the practice of training beyond compute-optimality, we first investigate whether scaling
follows reliable trends in the over-trained regime. We notice, as implied by Hoffmann et al. (2022),
for a set of models of different sizes trained with a constant ratio of tokens to parameters, models’
reducible loss L↑ (Hestness et al., 2017; Hoffmann et al., 2022) follows a power law (L↑ = ω · C↓ω)
in the amount of training compute C. We find that as one increases the ratio of tokens to parameters,
corresponding to more over-training, the scaling exponent ε remains about the same, while the scalar
ω changes. We explain our observations by reparameterizing existing scaling laws in relation to the
amount of over-training.

To establish empirically that scaling extrapolates in the over-trained regime, we further experiment
with a testbed of 104 models, trained from scratch on three different datasets: C4 (Raffel et al., 2019;
Dodge et al., 2021), RedPajama (Together Computer, 2023), and RefinedWeb (Penedo et al., 2023).
We find that scaling laws fit to small models can accurately predict the performance of larger models
that undergo more over-training. Figure 1 (left) illustrates our main over-training result, where we
invest 2.4e19 FLOPs to extrapolate the C4 validation performance of a 1.4B parameter model trained
on 900B tokens, which requires 300→ more compute to train.

In addition to over-training, we also investigate if scaling laws can predict the performance of a
model on downstream tasks. We establish a power law relationship between language modeling
perplexity and the average top-1 error on a suite of downstream tasks. While it can be difficult to
predict the error on individual tasks, we find it possible to predict aggregate performance from a
model’s perplexity among models trained on the same training data. Figure 1 (right) presents our
main downstream error prediction result, where we invest 2.7e20 FLOPs to predict the average top-1
error over a set of downstream tasks to within 1 percentage point for a 6.9B compute-optimal model,
which requires 20→ more compute to train.

2



Published as a conference paper at ICLR 2025

Our results suggest that the proposed scaling laws are promising to derisk (i) the effects of over-
training models and (ii) the downstream performance of scaling up training recipes. To facilitate
further research on reliable scaling, we will provide all results of our experiments.

2 DEVELOPING SCALING LAWS FOR OVER-TRAINING AND DOWNSTREAM
TASKS

In this section, we develop scaling laws to predict over-trained and downstream performance. First,
we provide key definitions (Section 2.1). We next present a scaling law for over-training drawing on
empirical observation and prior work (Section 2.2). To connect loss scaling and downstream error
prediction, we observe that average top-1 error decreases exponentially as a function of validation loss,
which we formalize as a novel scaling law (Section 2.3). In later sections, we build an experimental
setup (Section 3) to quantify the extent to which our scaling laws extrapolate reliably (Section 4).

2.1 PRELIMINARIES

Scaling laws for loss. Typically, scaling laws predict model loss L as a function of the compute C

in FLOPs used for training. If one increases the number of parameters N in a model or the number of
tokens D that a model is trained on, compute requirements naturally increase. Hence, we assume
C is a function of N,D. Following Kaplan et al. (2020), we use the approximation C = 6ND,
which Hoffmann et al. (2022) independently verify. We consider,

L(C) = E + L
↑(C), (1)

where E is an irreducible loss and L
↑ is the reducible loss. E captures the Bayes error or minimum

possible loss achievable on the validation domain. The L
↑(C) term captures what can possibly be

learned about the validation domain by training on a source domain. L↑(C) should approach zero
with increased training data and model capacity. L

↑(C) is often assumed to follow a power law:
L
↑(C) = ω · C↓ω (i.a., Hestness et al. (2017); OpenAI (2023)). It is also often helpful to consider a

power law in a log-log plot, where it appears as a line with slope ↑ε and y-intercept log (ω).

Token multipliers. We define a token multiplier M = D/N as the ratio of training tokens to model
parameters for notational convenience. M allows us to consider fixed relationships between D and
N even as a model gets bigger (i.e., as N becomes larger).

Compute-optimal training. Hoffmann et al. (2022) establish compute-optimal training, where, for
any compute budget H , the allocation of parameters and tokens is given by,

argmin
N,D

L(N,D) s.t. C(N,D) = H. (2)

To solve for the optimal N→
, D

→, one can sweep N,D for each compute budget, retaining the best
configurations. Hoffmann et al. (2022) find that as the compute budget increases, N→ and D

→

scale roughly evenly. Assuming equal scaling, there is a fixed compute-optimal token multiplier
M

→ = D
→
/N

→ per training distribution.

Over-training. We define over-training as the practice of allocating compute sub-optimally, so
smaller models train on a disproportionately large number of tokens (i.e., M > M

→). While loss
should be higher than in the compute-optimal allocation for a given training budget, the resulting
models have fewer parameters and thus incur less inference cost.

2.2 SCALING LAWS FOR OVER-TRAINING

To propose a scaling law for over-trained models, we first turn to empirical observation. We train four
model configurations with parameter counts between 0.011B and 0.411B for token multipliers M
between 20 and 640, where M = 20 points lie roughly on the compute-optimal frontier, and larger
M corresponds to more over-training. We defer experimental details to Section 3 to focus on our
observations first. In Figure 2, we show loss against compute in a log-log plot for the models trained
on three datasets and evaluated on the C4 eval set. We notice parallel lines when fitting power laws to
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Figure 2: Scaling in the over-trained regime follows consistent power law exponents. We notice
parallel lines in the log-log plots of reducible loss vs. training compute for a range of token multipliers
M , which give the ratio of training tokens to model parameters. Larger M corresponds to more
over-training. For a power law giving reducible loss as a function of compute: L↑(C) = ω · C↓ω , the
exponent ε remains relatively constant resulting in lines with approximately fixed slope (Figure 17).
The scalar ω that determines the y-intercept, however, shifts with different token multipliers. This
suggests ω is a function of the token multiplier, while ε is not.

the reducible loss, which suggests a near-constant scaling exponent even with increased over-training.
This indicates that scaling behavior should be describable in the amount of over-training.

In search of an analytic expression for the observations in Figure 2, we consider existing scaling
literature. A common functional form for the risk of a model, as proposed in prior work (Rosenfeld
et al., 2020; Hoffmann et al., 2022) is,

L(N,D) = E +AN
↓ε +BD

↓ϑ
. (3)

Recall from Section 2.1, N is the number of parameters and D the number of training tokens. The
constants E,A,ϑ, B,ϖ are fit from data. By fitting this parametric form, Hoffmann et al. (2022)
find that scaling exponents ϑ and ϖ are roughly equal, suggesting that one should scale N and D

equally as compute increases. Hence, we assume ϑ = ϖ. With this assumption, we reparameterize
Equation (3) in terms of compute C = 6ND and a token multiplier M = D/N . We get,

L(C,M) = E +
(
aM

ω + bM
↓ω

)
C

↓ω
, (4)

where ε = ϑ/2, a = A(1/6)↓ω, b = B(1/6)↓ω gives the relation to Equation (3). For a complete
derivation, see Appendix A.

Equation (4) has the following interpretation: (i) The scaling exponent ε is not dependent on M .
Thus, we always expect lines with the same slope in the log-log plot—as in Figure 2. (ii) The term
aM

ω + bM
↓ω determines the offsets between curves with different token multipliers. Hence, we

expect non-overlapping, parallel lines in the log-log plot for the range of M we consider—also
consistent with Figure 2.

Recall that we make the assumption ϑ = ϖ, which implies equal scaling of parameters and tokens
as more compute is available. However, as explained in Appendix A, even if ϑ ↓= ϖ, we get a
parameterization that implies the power-law exponent remains constant with over-training.

2.3 SCALING LAWS FOR DOWNSTREAM ERROR

Scaling is typically studied in the context of loss (Kaplan et al., 2020; Hoffmann et al., 2022;
Muennighoff et al., 2023b), which Schaeffer et al. (2023) note is smoother than metrics like accuracy.
However, practitioners often use downstream benchmark accuracy as a proxy for model quality
and not loss on perplexity evaluation sets. To better connect scaling laws and over-training to task
prediction, we revisit the suite of models plotted in Figure 2. In Figure 3, we plot average downstream
top-1 errors over evaluations sourced from LLM-Foundry (MosaicML, 2023) against the C4 eval loss.
We defer details of the setup to Section 3 to focus here on a key observation: average error appears to
follow exponential decay as loss decreases.
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Figure 3: Average top-1 error scales as a function of loss. We plot models trained on three datasets
and notice an exponential decay of average top-1 error as C4 eval loss, on the x-axis, decreases. We
consider on the y-axes average error on 17 evaluations where performance is at least 10 points above
random chance for at least one 0.154B scale model. These observations suggest that average top-1
error should be predictable with reliable loss estimates.

Based on the exponential decay we observe in Figure 3, we propose the following relationship
between downstream average top-1 error Err and loss L,

Err(L) = ϱ↑ k · exp (↑ςL), (5)

where ϱ, k, ς are fit from data. Equation (5) also has an interpretation in terms of model perplexity
PP(L) = exp (L),

Err(PP) = ϱ↑ k · PP↓ϖ
. (6)

Namely, Err follows a power law in PP that is bounded from above by ϱ signifying arbitrarily high
error and from below by ϱ↑ k · exp(↑ςE), where E is the Bayes error from Equation (4).

Equation (5) in conjunction with Equation (4) suggests a three-step method to predict Err as a function
of compute and the amount of over-training. For choices of training and validation distributions, (i)
fit a scaling law to Equation (4) using triplets of compute C, token multiplier M , and measured loss
L on a validation set to yield (C,M) ↔↗ L. (ii) Fit a scaling law to Equation (5) using pairs of loss L
and downstream error Err for models to get L ↔↗ Err. (iii) Chain predictions to get (C,M) ↔↗ Err.

3 CONSTRUCTING A SCALING TESTBED

In this section, we discuss our experimental setup to test the predictions suggested by Equations (4)
and (5). We first present our general language modeling setup (Section 3.1). Next, we discuss our
strategy for determining model configurations for our scaling investigation (Section 3.2) and fitting
scaling laws (Section 3.3). We then present metrics to validate how well scaling laws predict loss and
downstream performance (Section 3.4).

3.1 TRAINING SETUP

We train transformers (Vaswani et al., 2017) for next token prediction, based on architectures like
GPT-2 (Radford et al., 2019) and LLaMA (Touvron et al., 2023a). We employ GPT-NeoX (Black
et al., 2022) as a standardized tokenizer for all data. See Appendix B for architecture, optimization,
and hyperparameter details.

3.2 MODEL CONFIGURATIONS

To get final configurations for the 0.011B to 0.411B parameter models plotted in Figures 2 and 3, we
first conduct a wide grid search over a total of 435 models, trained from scratch, from 0.01B to 0.5B
parameters (Figure 4 (left)). We train on the original OpenLM data mix (Gururangan et al., 2023),
which largely consists of RedPajama (Together Computer, 2023) and The Pile (Gao et al., 2020).
While we eventually plan to over-train models, at this step we search for base configurations near
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Figure 4: Search, filter, fit: A recipe for selecting configurations for scaling. (left) To generate the
final configurations presented in Table 3, we run a 435 model grid search over model width, hidden
dimension, number of attention heads, batch size, and warmup steps. All models are trained near
compute-optimally. (center) We plot the efficient frontier of models, which appear to follow a trend,
excluding models from 5.2→ 1016 to 5.2→ 1017, which fall below the trend. (right) We fit a power
law with irreducible error to the remaining configurations, picking four configurations that closely
track the full model suite (“Selected models”). These models extrapolate the performance of 1.4B,
6.9B target models. Shaded regions represent bootstrap 95% confidence intervals.

compute-optimality. We train on 20 tokens per parameter (M = 20), which, in early experiments,
gives models near the compute-optimal frontier. This is similar to findings in Hoffmann et al. (2022)’s
Table 3, which suggests that M = 20 is near-optimal for the Chinchilla experimental setup.

To find maximally performant small-scale models on validation data, we tune model width, number
of layers, number of attention heads, warmup steps, and batch size. Our validation set, OpenLM
eval, contains tokens from recent arXiv papers, the OpenLM codebase itself, and news articles. We
find in early experiments that qk-LayerNorm makes models less sensitive to learning rate, which
is a phenomenon Wortsman et al. (2023) report in their Figure 1. Hence, we fix the learning rate
(3e-3) for our sweeps. We also perform smaller grid searches over 1.4B and 6.9B parameter model
configurations at M = 20, retaining the best configurations.

At this point, we have many models, several of which give poor performance; following prior
work (Kaplan et al., 2020; Hoffmann et al., 2022), we want to keep only models that give best
performance. Hence, in Figure 4 (center), we filter out models that do not lie on the Pareto frontier.
While there appears to be a general trend, configurations between 5.2→ 1016 and 5.2→ 1017 FLOPs
lie below the frontier established by other models. We hypothesize these models over-perform as
they are trained for more optimization steps than their neighbors based on our power-of-two batch
sizes. We provide support for this hypothesis in Appendix E, but opt to remove these models from
our investigation.

To ensure tractable compute requirements for our scaling experiments, we require a subset of models
that follows the trend of the entire Pareto frontier. In Figure 4 (right), we fit trends to the Pareto
models and to a subset of four models. We notice that the trends closely predict both the performance
of the 1.4B and 6.9B models, suggesting that our small-scale configurations reliably extrapolate in
the compute-optimal setting.

Moving forward, we do not tune hyperparameters for other token multipliers (i.e., M ↓= 20), on
other training or evaluation distributions, or on validation sets for downstream tasks. For more details
including specific hyperparameters, see Appendix C.

To create our scaling testbed, we start with the four small-scale, base configurations from
our grid search: N ↘ {0.011B, 0.079B, 0.154B, 0.411B}. To ensure our conclusions are not
particular to a single training distribution, we train models on each of C4 (Raffel et al., 2019;
Dodge et al., 2021), RedPajama (Together Computer, 2023), and RefinedWeb (Penedo et al.,
2023), which have 138B, 1.15T, and 600B tokens, respectively, for different token multipliers
M ↘ {5, 10, 20, 40, 80, 160, 320, 640}. We omit runs that require more tokens than are present
in a dataset (i.e., N = 0.411B,M = 640 for C4). We additionally train N = 1.4B models at
M = 20 and at the largest token multiplier possible without repeating tokens (i.e., 80 for C4, 640 for
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Table 1: Default number of parameters N and token multiplier M to fit our scaling laws. We
invest ≃100 A100 hours to fit Equation (4) and ≃1,000 A100 hours to fit Equation (5).

N M Used to fit Equation (4) Used to fit Equation (5)

0.011B 20 ✁ ✁
0.079B 20 ✁ ✁
0.154B 20 ✁ ✁
0.411B 20 ✁ ✁
0.011B 320 ✁ ✁
1.4B 20 ✂ ✁

Total compute C [FLOPs] 2.4e19 2.7e20

RedPajama, and 320 for RefinedWeb). We train N = 6.9B,M = 20 models on each dataset given
the relevance of 7B parameter models (Touvron et al., 2023a; Jiang et al., 2023). In total this results
in a testbed of 104 models.

3.3 FITTING SCALING LAWS

We fit Equation (4) to approximate E, a, b, ε using curve-fitting in SciPy (Virtanen et al., 2020)
(i.e., Levenberg-Marquardt to minimize non-linear least squares). We repeat this process to fit
Equation (5) to approximate ϱ, k, ς. We invest ≃100 A100 hours to train the models required to fit a
scaling law for loss and ≃1,000 A100 hours for a corresponding law for downstream error. Unless
otherwise specified, we fit to the N,M pairs in Table 1, which are a subset of our full testbed. Our
configurations allow us to test for extrapolation to the N = 1.4B,M = 640 (900B token) and the
N = 6.9B,M = 20 (138B token) regimes.

3.4 EVALUATION SETUP

Evaluation datasets. Unless otherwise stated, our default validation loss dataset is C4 eval. For
downstream tasks, we adopt a subset from 46 tasks from LLM-foundry (MosaicML, 2023), which
includes standard tasks with both zero-shot and few-shot evaluations. Specifically, we consider a
17-task subset where, for each evaluation, at least one 0.154B scale model—trained with as many
as 99B tokens—gets 10 percentage points above chance accuracy: ARC-Easy (Clark et al., 2018),
BIG-bench: CS algorithms (bench authors, 2023), BIG-bench: Dyck languages (bench authors,
2023), BIG-bench: Novel Concepts (bench authors, 2023), BIG-bench: Operators (bench authors,
2023), BIG-bench: QA WikiData (bench authors, 2023), BoolQ (Clark et al., 2019), Commonsense
QA (Talmor et al., 2019), COPA (Roemmele et al., 2011), CoQA (Reddy et al., 2019), HellaSwag
(zero-shot) (Zellers et al., 2019), HellaSwag (10-shot) (Zellers et al., 2019), LAMBADA (Paperno
et al., 2016), PIQA (Bisk et al., 2020), PubMed QA Labeled (Jin et al., 2019), SQuAD (Rajpurkar
et al., 2016), and WinoGrand (Levesque et al., 2012). For more details on evaluation datasets
see Appendix D. We focus on this subset to ensure we are measuring signal, not noise. Including
downstream tasks like MMLU (Hendrycks et al., 2021), where performance is close to random chance,
however, does not invalidate our results as we show in our evaluation set ablations (Appendix E).

Metrics. We consider three main metrics: Validation loss, which is the cross entropy between a
model’s output and the one-hot ground truth token, averaged over all tokens in a sequence and over
all sequences in a dataset. Average top-1 error, which is a uniform average over the 17 downstream
evaluations, as mentioned in the above paragraph. To measure how good a prediction φ(C,M) is,
we measure Relative prediction error: |φ(C,M)↑ φGT |/φGT , where φ is the predicted loss L or the
average top-1 error Err. φGT is the ground truth measurement to predict.

4 RESULTS: RELIABLE EXTRAPOLATION

In this Section, we quantify the extent to which the scaling laws developed in Section 2 extrapolate
larger model performance using the scaling testbed from Section 3. By default, we fit Equations (4)
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Figure 5: Relative error on C4 eval for different training distributions. Boxes highlighted in
yellow correspond to pairs—number of parameters N , token multiplier M—used to fit Equation (4).
Larger values of M correspond to more over-training. The prediction error is low in both interpolation
and extrapolation ranges. Below N = 1.4B, empty squares correspond to runs that were not possible
due to the limited dataset size for single epoch training. At N = 1.4B we run at M = 20 and at the
largest possible multiplier. At N = 6.9B, we run at M = 20.

and (5) to the configurations in Table 1, use C4 eval for loss, and the 17-task split from Section 3.4
for average top-1 error.

Over-trained performance is predictable. We highlight our main over-training results in
Figure 1 (left). Namely, we are able to extrapolate both in the number of parameters N and the
token multiplier M to closely predict the C4 eval performance of a 1.4B parameter model trained on
900B RedPajama tokens (N = 1.4B,M = 640). Our prediction, which takes 300→ less compute
to construct than the final 1.4B run, is accurate to within 0.7% relative error. Additionally, for the
N = 6.9B,M = 20 run, near compute-optimal, the relative error is also 0.7%.

These results support several key takeaways. (i) Scaling can be predictable even when one increases
both the model size and the amount of over-training compared to the training runs used to fit a scaling
law. (ii) The form presented in Equation (4) is useful in practice for predicting over-trained scaling
behavior. (iii) Fitting to Equation (4) gives good prediction accuracy near compute-optimal. More
specifically, predictions are accurate both for the 1.4B over-trained model and the 6.7B compute-
optimal model using a single scaling fit.

While Figure 1 explores a specific case of making predictions in the over-trained regime, we aim to
understand the error profile of our predictions across training datasets, token multipliers, and number
of parameters. Hence, Figure 5 shows the relative error between ground truth loss and predicted
loss on C4 eval for models in our testbed. We notice uniformly low prediction error suggesting that
predictions are accurate in many settings.

Average top-1 error is predictable. Figure 1 (right) presents our main result in estimating scaling
laws for downstream error. Concretely, we use the models indicated in Table 1 to fit Equations (4)
and (5), chaining the scaling fits to predict the average top-1 error as a function of training compute
C and the token multiplier M . Our fits allow us to predict, using 20→ less compute, the downstream
performance of a 6.9B model trained on 138B RedPajama tokens to within 0.05% relative error and a
1.4B model trained on RedPajama 900B tokens to within 3.6% relative error.

Table 2 additionally shows the relative error of our downstream performance predictions for models
trained on C4, RedPajama, and RefinedWeb, indicating that our scaling law functional forms are
applicable on many training datasets. We note that while average accuracy is predictable, individual

downstream task predictions are significantly more noisy. We report relative error for more model
predictions in Figures 11 and 12. We also find that if we remove the 1.4B model for the Equation (5)
fit, relative error jumps, for instance, from 0.05% to 10.64% on the 17-task split for the 6.9B,
138B token RedPajama prediction. This highlights the importance of investing more compute when
constructing scaling laws for downstream task prediction compared to loss prediction.
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Table 2: Downstream relative prediction error at 6.9B parameters and 138B tokens. While
predicting accuracy on individual zero-shot downstream evaluations can be challenging (“Individual”),
predicting averages across downstream datasets is accurate (“Avg.”).

Individual top-1 error Avg. top-1 error

Train set ARC-E LAMBADA OpenBook QA HellaSwag 17-task split

C4 28.96% 15.01% 16.80% 79.58% 0.14%
RedPajama 5.21% 14.39% 8.44% 25.73% 0.05%
RefinedWeb 26.06% 16.55% 1.92% 81.96% 2.94%

Under-training, out-of-distribution scaling, compute-reliability trade-offs. In addition to our
main results presented above, we include additional results in Appendix E, which we summarize
here. First, we notice that when token multipliers become too small (i.e., M = 5) scaling becomes
unreliable and lies off the trend. Additionally, multipliers other than 20, such as 10, 40, and 80, garner
points that are roughly on the compute optimal frontier (Figure 9). This observation suggests that the
compute-optimal multiplier may lie in a range rather than take a single value. To probe the limits
of reliable scaling, we attempt to break our scaling laws in out-of-distribution settings. We find that
models trained on C4—English filtered—and evaluated on next token prediction on code domains
have a high relative error in many cases. Perhaps surprisingly, evaluating the same models on German
next token prediction gives reliable loss scaling (Figure 10). We additionally examine the compute
necessary to create accurate scaling laws, finding that scaling laws can be constructed more cheaply
for loss prediction than for downstream error prediction (Figures 15 and 16).

5 RELATED WORK

We review the most closely related work in this section. For additional related work, see Appendix F.

Scaling laws. Early works on scaling artificial neural networks observe predictable power-law
scaling in the training set size and number of model parameters (Hestness et al., 2017; 2019; Rosenfeld
et al., 2020). Alabdulmohsin et al. (2022) stress the importance of looking at the extrapolation regime
of a scaling law. Yang et al. (2021) prescribe architectural and hyperparameter changes when scaling
model width to realize performant models; Yang et al. (2024) make analogous recommendations
when scaling model depth. Bi et al. (2024) propose hyperparameter aware scaling laws. Unlike the
aforementioned work, our investigation focuses on over-training and predicting downstream accuracy.

Hoffmann et al. (2022) investigate how the number of model parameters N and training tokens D
should be chosen to minimize loss L given a compute budget C. Hoffmann et al. (2022) find that
when scaling up C, both N and D should be scaled equally up to a multiplicative constant (i.e.,
N ⇐ C

↔0.5 and D ⇐ C
↔0.5) to realize compute-optimality. Appendix C of the Chinchilla paper

additionally suggests that these findings hold across three datasets. However, Hoffmann et al. (2022)
do not verify their scaling laws for training beyond compute-optimality, or for downstream error
prediction—both of which are central to our work.

Sardana & Frankle (2023) propose modifications to the Chinchilla formulation to incorporate
inference costs into the definition of compute-optimality and solve for various fixed inference
budgets. Their key finding, which is critical for our work, is that when taking into account a large
enough inference budget, it is optimal to train smaller models for longer than the original Chinchilla
recommendations. Our work presupposes that over-training can be beneficial. Instead of solving for
inference-optimal schemes, we support empirically a predictive theory of scaling in the over-trained
regime. Additionally, we provide experiments across many validation and training sets.

For predicting downstream scaling beyond loss, Isik et al. (2024) relate the number of pre-training
tokens to downstream cross-entropy and machine translation BLEU score (Papineni et al., 2002) after
fine-tuning. In contrast, we take a holistic approach to evaluation by looking at top-1 error over many
natural language tasks. Schaeffer et al. (2023) argue that emergent abilities (Wei et al., 2022b) are a
product of non-linear metrics and propose smoother alternatives. As a warmup for why non-linear
metrics may be hard to predict, Schaeffer et al. (2023) consider predicting an ↼ length sequence
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exactly: Err(N, ↼) ⇒ 1↑ PP(N)↓ϱ, where N is the number of parameters in a model and PP is its
perplexity. This is a special case of our Equations (5) and (6), where the number of training tokens
does not appear, ϱ = 1, k = 1, and ς = ↼. In contrast, we treat ϱ, k, ς as free parameters for a scaling
law fit, finding that average error over downstream tasks can make for a predictable metric. Owen
(2024) observe the scaling behavior of many open source models on downstream tasks. However,
their study does not control for different architectures, training codebases, optimization schemes, and
training datasets. We create a standardized, open-source setting, which controls these factors.

Over-training in popular models. There has been a rise in over-trained models (Touvron et al.,
2023a;b; Llama Team, 2024) and accompanying massive datasets (Together Computer, 2023; Penedo
et al., 2023; Soldaini et al., 2024; Albalak et al., 2024). For example, Chinchilla 70B (Hoffmann
et al., 2022) is trained with a token multiplier of 20, while Llama-2 7B (Touvron et al., 2023b) uses a
token multiplier of 290. In our investigation, we look at token multipliers from 5 to 640 for coverage
of popular models. The recent Llama3 8B model is a notable outlier, with token multipliers of ≃1900.
However, it is unclear if, at 15T tokens, Llama3 8B was trained in the single epoch regime we considr
in this paper. Practically, training a 1.4B parameter model at this multiplier is prohibitive due to 1)
compute limitations and 2) the 2.8T training token requirement for a single-epoch run, which is larger
than public datasets at the time of our training runs.

6 LIMITATIONS, FUTURE WORK, AND CONCLUSION

Limitations and future work. We identify limitations, which provide motivation for future work.

• Hyperparameters. While our configurations are surprisingly amenable to reliable scaling across
many training and testing distributions without further tuning, there is a need to develop scaling
laws that do not require extensive hyperparameter sweeps.

• Scaling up. Validating the trends in this paper for even larger runs is a valuable direction.
Additionally, repeating our setup for models that achieve non-trivial performance on harder
evaluations like MMLU is left to future work.

• Scaling down. Actualizing predictable scaling with even cheaper runs is important to make this
area of research more accessible, especially for downstream error prediction.

• Failure cases. While we present a preliminary analysis of when scaling is unreliable, future work
should investigate conditions under which scaling breaks down.

• Post-training. It is common to employ fine-tuning interventions after pre-training, which we do
not consider. Quantifying to what degree over-training the base model provides benefits after

post-training is an open area of research.
• Individual downstream task prediction. Accurate per-task predictions are left to future work.
• In-the-wild performance. Downstream task performance is a proxy for the in-the-wild user

experience. Analyzing scaling trends in the context of this experience is timely.
• Dataset curation. Our work only deals with existing training datasets. Exploring dataset curation

for improved model scaling is another promising direction.

Conclusion. We show that the loss of over-trained models, trained past compute-optimality, is
predictable. Furthermore, we propose and validate a scaling law relating loss to average downstream
task performance. We hope our work will inspire others to further examine the relationship between
model training and downstream generalization. Our testbed will be made publicly available, and we
hope it will make scaling research more accessible to researchers and practitioners alike.
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