
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1

2 Developing scaling laws for over-training and downstream tasks 2
2.1 Preliminaries . 3

2.2 Scaling laws for over-training . 3

2.3 Scaling laws for downstream error . 4

3 Constructing a scaling testbed 5
3.1 Training setup . 5

3.2 Model configurations . 6

3.3 Fitting scaling laws . 6

3.4 Evaluation setup . 7

4 Results: Reliable extrapolation 7

5 Related work 9

6 Limitations, future work, and conclusion 10

A Scaling-law derivations 24

B Additional training details 25

C Additional grid search details 25

D Evaluation dataset details 25

E Additional results 25

F Additional related work 35

G Broader impact 36

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

A SCALING-LAW DERIVATIONS

We first show that reparameterizing Equation (3) in terms of the compute C and token multiplier M
for ↵ = � yields Equation (4). Combining C = 6ND and M = D/N yields N =

p
C/(6M) and

D =
p
CM/6. Inserting these into Equation (3) yields,

L(C,M) = E +A

✓
C

6M

◆�↵
2

+B

✓
CM

6

◆�↵
2

,

= E +

A

✓
1

6

◆�↵
2

M
↵
2 +B

✓
1

6

◆�↵
2

M
�↵

2

!
C

�↵
2 .

This is equal to Equation (4), making the substitutions ⌘ = ↵/2, a = A(1/6)�⌘ , b = B(1/6)�⌘ , as
noted in the main body.

Relation to compute-optimal training. Recall that we made the assumption ↵ = �, which implies
equal scaling of parameters and tokens to realize compute-optimal models. While this assumption is
empirically justified (Hoffmann et al., 2022), even if ↵ 6= �, we get a parameterization that implies
the power law exponent in Equation (4) remains constant with over-training, while the power law
scalar changes.

To find a compute-optimal training setting, Hoffmann et al. (2022) propose to minimize the right-hand
side of Equation (3) subject to the compute constraint C = 6ND. This yields, N⇤ = �

1
↵+� (C/6)

�
↵+�

and D
⇤ = �

� 1
↵+� (C/6)

↵
↵+� , where � = ↵A

�B , for notational convenience. The associated risk is,

L(N⇤
, D

⇤) = E +
⇣
A�

�↵
�+↵ +B�

�
�+↵

⌘✓
C

6

◆� ↵�
↵+�

.

We now deviate from compute-optimal training by modifying the model size and tokens by
multiplication with a constant

p
m, according to

Nm =
1p
m
N

⇤
, Dm =

p
mD

⇤
. (7)

This modification keeps the compute constant (i.e., 6NmDm = 6N⇤
D

⇤). The risk, then, becomes

L(fNm,Dm) = E +
⇣
m

↵
2 A�

�↵
�+↵ +m

� �
2 B�

�
�+↵

⌘
C

� ↵�
↵+� . (8)

We again expect the same power law exponent and changing power law scalar. Note that m in
Equation (8) is similar to M in Equation (4). Specifically, m is a multiple of the Chinchilla-optimal
token multiplier M⇤ = D

⇤
/N

⇤, which is no longer fixed as a compute budget changes for ↵ 6= �.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 3: Main models and hyperparameters used in our investigation. Models have number of
parameters N , with number of layers nlayers, number of attention heads nheads, model width dmodel,
and width per attention head dhead. Batch sizes are global and in units of sequences. Each sequence
has 2,048 tokens. A100 GPU hours are at M = 20, which are near compute-optimal runs. For the
1.4B scale, a batch size of 256 performs slightly better than 512.

N nlayers nheads dmodel dhead Warmup Learning rate Batch size M = 20 A100 hours

0.011B 8 4 96 24 100 3e-3 64 0.3
0.079B 8 4 512 128 400 3e-3 512 5
0.154B 24 8 576 72 400 3e-3 512 12
0.411B 24 8 1,024 128 2,000 3e-3 512 75

1.4B 24 16 2,048 128 5,000 3e-3 256 690
6.9B 32 32 4,096 128 5,000 3e-4 2,048 17,000

B ADDITIONAL TRAINING DETAILS

Architecture. As stated in the main paper, we train transformers (Vaswani et al., 2017), based
on auto-regressive, decoder-only, pre-normalization architectures like GPT-2 (Radford et al., 2019)
and LLaMA (Touvron et al., 2023a). We adopt OpenLM (Gururangan et al., 2023) for modeling,
which utilizes PyTorch (Paszke et al., 2019; Ansel et al., 2024), xformers (Lefaudeux et al., 2022),
triton (OpenAI, 2021), FlashAttention (Dao et al., 2022), FSDP (Zhao et al., 2023), and bfloat16
automatic mixed precision. Like LLaMA, we omit bias terms, but replace RMSNorm (Zhang &
Sennrich, 2019) with LayerNorm (Ba et al., 2016), which has readily available fused implementations.
Following Wortsman et al. (2023), we apply qk-LayerNorm (Dehghani et al., 2023), which adds
robustness to otherwise poor hyperparameter choices (e.g., learning rate). We use SwiGLU (Shazeer,
2020) activations and depth-scaled initialization (Zhang et al., 2019). We use a sequence length of
2,048, rotary positional embeddings (Su et al., 2021), and the GPT-NeoX-20B tokenizer (Black et al.,
2022), which yields a vocabulary size of 50k. We do not use weight tying (Press & Wolf, 2017; Inan
et al., 2017). We sample without replacement during training and employ sequence packing without
attention masking. We separate documents in our training corpora with end-of-text tokens.

Objectives and optimization. We train with a standard causal language modeling objective
(i.e., next token prediction) with an additive z-loss (Chowdhery et al., 2022) (coefficient 1e-4),
which mitigates output logit norm growth (Merrill et al., 2021) instabilities. We use the AdamW
optimizer (Loshchilov & Hutter, 2017) (PyTorch defaults except beta2 = 0.95), with independent
weight decay (Wortsman et al., 2023) (coefficient 1e-4). For the learning rate schedule, we use linear
warmup and cosine decay. We cool down to a low learning rate (3e-5).

C ADDITIONAL GRID SEARCH DETAILS

Final model configurations. We present our final hyperparameters in Table 3.

Grid search configuration selection. Recall in Section 3.3, we run a grid search over many
configurations. We present the architectures we sweep over in Table 4.

D EVALUATION DATASET DETAILS

All 46 downstream evaluations are based on MosaicML’s LLM-foundry evaluation suite (MosaicML,
2023). We specifically consider the datasets given in Table 5. Recall that we use a subset of 17 of
these evaluations that give signal (are above random chance) for the compute range we consider. See
Appendix E, where we ablate over the 17 subset design choice by including more and less evaluations.

E ADDITIONAL RESULTS

Scaling law fits. We present specific coefficients for our fits in Table 6.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 4: Topologies for our grid searches. We consider 130 architectures for our grid search. After
sweeping over batch size and warmup, we get a total of 435 configurations.

nlayers nheads dmodel Number of
parameters [B]

4 4 96 0.010
4 12 96 0.010
12 12 96 0.011
12 4 96 0.011
8 4 96 0.011
16 4 96 0.011
16 12 96 0.011
8 12 96 0.011
24 4 96 0.012
24 12 96 0.012
4 4 192 0.021
4 8 192 0.021
4 12 192 0.021
8 8 192 0.023
8 4 192 0.023
8 12 192 0.023
12 4 192 0.025
12 8 192 0.025
12 12 192 0.025
16 4 192 0.026
16 8 192 0.026
16 12 192 0.026
24 8 192 0.030
24 4 192 0.030
24 12 192 0.030
4 12 288 0.033
4 4 288 0.033
8 12 288 0.037
8 4 288 0.037
4 4 320 0.038
4 8 320 0.038
12 12 288 0.041
12 4 288 0.041
8 8 320 0.043
8 4 320 0.043
16 4 288 0.045
16 12 288 0.045
12 4 320 0.049
12 8 320 0.049
24 4 288 0.053
24 12 288 0.053
16 8 320 0.055
16 4 320 0.055
4 12 488 0.062
4 4 512 0.065
4 16 512 0.065
4 8 512 0.065
24 8 320 0.066
24 4 320 0.066
4 4 576 0.074
4 8 576 0.074
4 12 576 0.074
8 12 488 0.075
8 4 512 0.079
8 8 512 0.079
8 16 512 0.079
4 4 640 0.085
4 16 640 0.085
4 8 640 0.085
12 12 488 0.087
8 4 576 0.090
8 12 576 0.090
8 8 576 0.090
12 16 512 0.093
12 8 512 0.093

nlayers nheads dmodel Number of
parameters [B]

12 4 512 0.093
16 12 488 0.100
8 16 640 0.105
8 4 640 0.105
8 8 640 0.105

12 8 576 0.106
16 16 512 0.106
4 4 768 0.106

12 12 576 0.106
16 8 512 0.106
4 8 768 0.106

12 4 576 0.106
4 16 768 0.106

16 4 512 0.106
4 12 768 0.106

16 12 576 0.122
16 4 576 0.122
16 8 576 0.122
12 4 640 0.126
24 12 488 0.126
12 16 640 0.126
12 8 640 0.126
24 8 512 0.133
24 4 512 0.133
24 16 512 0.133
8 8 768 0.134
8 16 768 0.134
8 4 768 0.134
8 12 768 0.134

16 16 640 0.146
16 8 640 0.146
16 4 640 0.146
24 8 576 0.154
24 4 576 0.154
24 12 576 0.154
4 8 1024 0.155
4 16 1024 0.155
4 4 1024 0.155

12 8 768 0.162
12 4 768 0.162
12 12 768 0.162
12 16 768 0.162
24 16 640 0.186
24 8 640 0.186
24 4 640 0.186
16 16 768 0.191
16 4 768 0.191
16 8 768 0.191
16 12 768 0.191
8 8 1024 0.206
8 4 1024 0.206
8 16 1024 0.206

24 8 768 0.247
24 12 768 0.247
24 4 768 0.247
24 16 768 0.247
12 8 1024 0.257
12 4 1024 0.257
12 16 1024 0.257
16 8 1024 0.309
16 4 1024 0.309
16 16 1024 0.309
24 16 1024 0.412
24 8 1024 0.412
24 4 1024 0.412

Small-scale experiments can predict model rank order. We expect to be able to rank hypothetical
models based on their predicted performance, which is useful when deciding what large-scale runs
to train. To verify, we rank 9 testbed models with N � 1.4B by ground-truth top-1 error and by
estimated top-1 error. We find high rank correlation of 0.88 for the 17-task split.

Over-performing grid search models experience more optimization steps. As mentioned in
Section 3.3 and Figure 4, we notice that models between 0.011B to 0.079B (i.e., 5.2 ⇥ 1016 to
5.2⇥ 1017 FLOPs trained near compute-optimal) over-perform compared to the trend established by
other models in our initial grid searches. This results in a bump in the scaling plot. While we choose
to exclude this range of models for our scaling study, we additionally investigate this phenomenon.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 5: 46 downstream tasks. All downstream tasks considered in this work, evaluated via
LLM-foundry MosaicML (2023). For more information on each dataset and specifics about
the LLM-foundry category and evaluation type, please see: https://www.mosaicml.com/
llm-evaluation.

Downstream task LLM-foundry category Evaluation type Shots Samples Baseline

AGIEval LSAT AR Zhong et al. (2023; 2020); Wang et al. (2021) symbolic problem solving multiple choice 3 230 0.25
AGIEval LSAT LR Zhong et al. (2023; 2020); Wang et al. (2021) reading comprehension multiple choice 3 510 0.25
AGIEval LSAT RC Zhong et al. (2023; 2020); Wang et al. (2021) reading comprehension multiple choice 3 268 0.25
AGIEval SAT English Zhong et al. (2023) reading comprehension multiple choice 3 206 0.25
ARC-Challenge Clark et al. (2018) world knowledge multiple choice 10 2376 0.25
ARC-Easy Clark et al. (2018) world knowledge multiple choice 10 2376 0.25
BBQ Parrish et al. (2022) safety multiple choice 3 58492 0.50
BIG-bench: CS algorithms bench authors (2023) symbolic problem solving language modeling 10 1320 0.00
BIG-bench: Conceptual combinations bench authors (2023) language understanding multiple choice 10 103 0.25
BIG-bench: Conlang translation bench authors (2023) language understanding language modeling 0 164 0.00
BIG-bench: Dyck languages bench authors (2023) symbolic problem solving language modeling 10 1000 0.00
BIG-bench: Elementary math QA bench authors (2023) symbolic problem solving multiple choice 10 38160 0.25
BIG-bench: Language identification bench authors (2023) language understanding multiple choice 10 10000 0.25
BIG-bench: Logical deduction bench authors (2023) symbolic problem solving multiple choice 10 1500 0.25
BIG-bench: Misconceptions bench authors (2023) world knowledge multiple choice 10 219 0.50
BIG-bench: Novel Concepts bench authors (2023) commonsense reasoning multiple choice 10 32 0.25
BIG-bench: Operators bench authors (2023) symbolic problem solving language modeling 10 210 0.00
BIG-bench: QA WikiData bench authors (2023) world knowledge language modeling 10 20321 0.00
BIG-bench: Repeat copy logic bench authors (2023) symbolic problem solving language modeling 10 32 0.00
BIG-bench: Strange stories bench authors (2023) commonsense reasoning multiple choice 10 174 0.50
BIG-bench: Strategy QA bench authors (2023) commonsense reasoning multiple choice 10 2289 0.50
BIG-bench: Understanding fables bench authors (2023) reading comprehension multiple choice 10 189 0.25
BoolQ Clark et al. (2019) reading comprehension multiple choice 10 3270 0.50
COPA Roemmele et al. (2011) commonsense reasoning multiple choice 0 100 0.50
CoQA Reddy et al. (2019) reading comprehension language modeling 0 7983 0.00
Commonsense QA Talmor et al. (2019) commonsense reasoning multiple choice 10 1221 0.25
Enterprise PII classification Patronus AI (2023) safety multiple choice 10 3395 0.50
HellaSwag (10-shot) Zellers et al. (2019) language understanding multiple choice 10 10042 0.25
HellaSwag (zero-shot) Zellers et al. (2019) language understanding multiple choice 0 10042 0.25
Jeopardy MosaicML (2023) world knowledge language modeling 10 2117 0.00
LAMBADA Paperno et al. (2016) language understanding language modeling 0 5153 0.00
LogiQA Liu et al. (2020) symbolic problem solving multiple choice 10 651 0.25
MMLU (5-shot) Hendrycks et al. (2021) world knowledge multiple choice 5 14042 0.25
MMLU (zero-shot) Hendrycks et al. (2021) world knowledge multiple choice 0 14042 0.25
MathQA Amini et al. (2019) symbolic problem solving multiple choice 10 2983 0.25
OpenBook QA Mihaylov et al. (2018) commonsense reasoning multiple choice 0 500 0.25
PIQA Bisk et al. (2020) commonsense reasoning multiple choice 10 1838 0.50
PubMed QA Labeled Jin et al. (2019) reading comprehension language modeling 10 1000 0.00
SIQA Sap et al. (2019) commonsense reasoning multiple choice 10 1954 0.50
SQuAD Rajpurkar et al. (2016) reading comprehension language modeling 10 10570 0.00
Simple Arithmetic: NoSpaces MosaicML (2023) symbolic problem solving language modeling 10 1000 0.00
Simple Arithmetic: WithSpaces MosaicML (2023) symbolic problem solving language modeling 10 1000 0.00
WinoGender MC: Female Rudinger et al. (2018) safety multiple choice 10 60 0.50
WinoGender MC: Male Rudinger et al. (2018) safety multiple choice 10 60 0.50
WinoGrande Sakaguchi et al. (2019) language understanding schema 0 1267 0.50
WinoGrand Levesque et al. (2012) language understanding schema 0 273 0.50

Table 6: Scaling law fit parameters. Here we present our scaling coefficients fit to Equations (4)
and (5) using configurations from Table 1.

Training dataset Fit for Equation (4): L(C,M) = Fit for Equation (5): Err(L) =
E + (a · M⌘ + b · M�⌘)C⌘ ✏ � k · exp (��L)

C4 Raffel et al. (2019); Dodge et al. (2021) 1.51 +
⇣
141 · M0.121 + 190 · M�0.121

⌘
C�0.121 0.850 � 2.08 · exp (�0.756 · L)

RedPajama Together Computer (2023) 1.84 +
⇣
212 · M0.136 + 367 · M�0.136

⌘
C�0.136 0.857 � 2.21 · exp (�0.715 · L)

RefinedWeb Penedo et al. (2023) 1.73 +
⇣
157 · M0.127 + 246 · M�0.127

⌘
C�0.127 0.865 � 2.21 · exp (�0.707 · L)

In Figure 6 we color grid search configurations by the number of optimization steps (i.e., number
of tokens seen divided by batch size divided by sequence length). We notice that models in the
aforementioned range experience more optimization steps than their x-axis neighbors. For context,
Figure 1 (left) in Kaplan et al. (2020) also shows a bump; however, there the performance is worse
than the general trend instead of better as in our work. We leave understanding more fully the
interactions between hyperparameters, scaling, and performance to future work.

Scaling is largely predictable in-distribution (ID). Prior work focuses on understanding scaling
using ID loss, often using training loss directly (Kaplan et al., 2020; Hoffmann et al., 2022). Hence,
we also consider Paloma (Magnusson et al., 2023) loss evaluation sets, which are designed to probe
performance in specific domains. We use Paloma’s C4 (Raffel et al., 2019; Dodge et al., 2021),
RedPajama (Together Computer, 2023), and Falcon-RefinedWeb (Penedo et al., 2023) splits to

27

https://www.mosaicml.com/llm-evaluation
https://www.mosaicml.com/llm-evaluation

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 6: Understanding over-performing models in our grid search. (left) Models trained with
5.2⇥ 1016 to 5.2⇥ 1017 FLOPs over-perform relative to their neighbors. In looking at the number
of optimization steps, we notice that the over-performing models experience more optimization steps
than their x-axis neighbors. We hypothesize that the number of optimization steps is important,
especially for smaller models, when trying to find models that lie along a trend. (right) A view of the
same phenomenon, specifically on the efficient frontier.

Figure 7: In-distribution (ID) settings. Boxes highlighted in yellow correspond to data points used
to fit Equation (4). Relative error is generally low across interpolation and extrapolation regimes.
Relative error is largest for the RedPajama N = 1.4B,M = 640 prediction at 15.4%. In this case,
we find that our scaling law predicts the model should perform worse than it does in practice.

probe for ID loss. As seen in Figure 7, relative error is mostly low. Relative error is largest for the
N = 1.4B,M = 640 RedPajama run at 15.4%. Examining this case specifically, we find that the
model performs better than the scaling law prediction. We hypothesize that as a model sees more
tokens there is an increased likelihood of near-duplicate sequences ID, resulting in performance that
is better than predicted.

Relative error is stable across many choices of downstream evaluation suites. To understand
how sensitive our investigation is to our choices of downstream evaluation sets, we consider several
other options as seen in Figure 8. We find that our prediction errors are fairly (i) low and (ii) consistent
for many choices of downstream evaluation sets including the whole suite of 46 evaluations.

Scaling can break down when under-training. We find that when a token multiple is too small
(i.e., under-training regime), scaling appears unreliable. In Figure 9 we see for M = 5 the scaling
trend is different. We hypothesize that tuning hyperparameters (e.g., warmup, batch size) directly for
smaller multipliers may help mitigate the breakdown in predictability.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 8: Downstream evaluation set ablation for 6.9B parameter, 138B token runs. Recall that
we consider a 17 task evaluation suite created by including only test sets where any 0.154B model we
trained (for any token multiplier and training dataset) gets t = 10 percentage points above random
chance. We evaluate over this subset to make sure we are measuring signal not noise. Here, we wish
to understand how sensitive the relative prediction error is to our choice of t. (left) We see that relative
prediction error is fairly low before a threshold of t = 35 (less than 10% relative error). When too
many tasks are excluded (i.e., t � 40) relative error spikes. Averaging over all 46 datasets (t = �5 as
some evals are worse than random chance) also makes for a predictable metric (less than 3% relative
error). (right) A parallel view, showing how many tasks are removed as t increases. 40 out of the 46
tasks can be removed and relative error is still fairly stable.

Table 7: Downstream relative prediction error at 6.9B, 138B tokens, with and without the 1.4B
data point. Recall in Table 1, we introduce a N = 1.4B, M = 20 run to get better downstream error
predictions. Here we compare, prediction errors with and without this model for fitting the scaling
law. Note that without the model (i.e., rows with “w/o 1.4B”) average top-1 predictions, over the 17
tasks. are less accurate.

Scaling law fit Train set ARC-E LAMBADA OpenBook QA HellaSwag 17 eval
(Clark et al., 2018) (Paperno et al., 2016) (Mihaylov et al., 2018) (Zellers et al., 2019)

Table 1 C4 28.96% 15.01% 16.80% 79.58% 0.14%
Table 1 w/o 1.4B C4 0.92% 2.04% 96.16% 61.79% 0.42%

Table 1 RedPajama 5.21% 14.39% 8.44% 25.73% 0.05%
Table 1 w/o 1.4B RedPajama 8.13% 11.07% 7.56% 30.98% 10.64%

Table 1 RefinedWeb 26.06% 16.55% 1.92% 81.96% 2.94%
Table 1 w/o 1.4B RefinedWeb 15.39% 6.26% 6.79% 6.52% 15.79%

Figure 9: Scaling with small token multipliers. For smaller multipliers (e.g., M = 5 in cyan),
scaling does not follow the same trend as that of larger multipliers. Additionally, many token
multipliers (e.g., M 2 {10, 20, 40, 80}) garner points close to the compute-optimal frontier.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 10: Out-of-distribution (OOD) settings. Boxes highlighted in yellow correspond to data
points used to fit Equation (4). Recall that the C4 training set is English-filtered. Relative error can
spike, suggesting unreliable scaling, for (left) programming languages and (center) Penn Tree Bank,
which contains many frequently occurring, uncommon substrings. However, scaling is relatively
reliable when evaluating on (right) German. These results motivate future studies of OOD conditions
that affect scaling in the over-trained regime.

Figure 11: Relative error on average top-1 predictions (46 task split). Boxes highlighted in yellow
correspond to data points used to fit Equation (5). Using our fits, we accurately predict downstream
average top-1 error across interpolation and extrapolation regimes. This result supports that (i)
chaining a scaling law and our proposed exponential decay function is a valid procedure and (ii)
average top-1 error can be highly predictable.

Scaling can be unpredictable out-of-distribution (OOD). Our main result shows reliable C4 eval
loss predictions with models trained on RedPajama, which is an OOD evaluation setting. However,
both C4 and RedPajama both contain tokens sourced from CommonCrawl.

To further probe OOD performance, we measure the relative error of scaling laws fit to models trained
on C4 and evaluated on Paloma’s 100 programming languages (Magnusson et al., 2023), Paloma’s
Penn Tree Bank (PTB) split (Marcus et al., 1993), and a German version of C4 (Dodge et al., 2021).
Recall that the C4 training set we use has been filtered for English text. Hence we expect (i) the
proportion of code is minimal, (ii) the “<unk>” substrings in PTB raw text do not appear frequently,
and (iii) German is not prevalent. We notice that extrapolation relative error tends to be high for
large M,N on programming languages and PTB (Figure 10 (left, center)). In contrast, for German
C4, relative error is still low across the extrapolation range, with a maximum relative error of 7.6%
at the N =1.4B, M = 80 scale (Figure 10 (right)). We hypothesize that further modifications to
scaling laws are necessary to predict when scaling should be reliable as a function of the training and
evaluation distributions.

Small-scale experiments can predict average downstream top-1 error. To verify that chaining
Equations (4) and (5) is effective in practice, we collect C4 eval loss and downstream error pairs for
the configurations in Table 1. In Figure 11, we look at relative error for our scaling predictions in the
context of Average top-1 error over 46 evals and in Figure 12 over the high-signal 17 eval subset. We

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure 12: Relative error on average top-1 predictions (17 task split). Boxes highlighted in yellow
correspond to data points used to fit Equation (5). Using our fits, we accurately predict downstream
average top-1 error across interpolation and extrapolation regimes. This result supports that (i)
chaining a scaling law and our proposed exponential decay function is a valid procedure and (ii)
average top-1 error can be highly predictable.

Figure 13: Correlation between average top-1 error and evaluation loss. We observe that
regardless of evaluation loss distribution (x-axis), models tend to follow Equation (5). This suggests
that there can be several reasonable choices for the validation loss distribution. Additionally, ID
models trained on C4 and evaluated on a C4 validation set, perform best in terms of loss, but these
gains don’t necessarily translate to lower error downstream (e.g., (left column)). This suggests the

need to fit Equation (5) per dataset and also suggests comparing models trained on different data
distributions with a single loss evaluation can be misleading.

again notice reliable scaling in interpolation and extrapolation regimes, suggesting the validity of our
procedure to predict downstream average top-1 error.

Loss evaluation ablations for downstream trends. Figure 13 presents the correlation between
downstream error and loss evaluated on different validation sets (C4, RedPajama, and RefinedWeb).
Regardless of the validation set (x-axis), models follow the exponential decay relationship given
in Equation (5), suggesting the choice of validation loss is not critical for the appearance of this
phenomenon.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 14: Trade-offs between scaling law for loss fitting considerations and reliability.
Each red circle represents a scaling law fit to Equation (4) with as many as 29 models trained
on RedPajama. Specifically, a grid formed by N 2 {0.011B, 0.079B, 0.154B, 0.411B},M 2
{5, 10, 20, 40, 80, 160, 320} gives 28 models and a N = 1.4B,M = 20 run gives the last model. We
sort models by training FLOPs in increasing order and sample models uniformly from index windows
[1, 2, ..., n] for n 2 [5, 6, .., 29] to fit Equation (4). The blue star represents the default configuration
presented in Table 1. The prediction target is a N = 1.4B,M = 640 (D = 900B) model. As the
amount of compute (left) and the number of points (right) used to fit the scaling law increases, relative
error trends downwards. Our default configuration keeps compute and number of points low, while
still providing low prediction error compared to the trend.

Figure 15: Compute vs. relative error for the 1.4B, 900B token RedPajama run. (left) The
compute necessary to accurately predict loss is less than that needed to accurately predict (right)

average downstream error. This claim is supported by the fact that the slope of the trend for loss is
steeper than for top-1 error. These findings corroborate Figure 16.

Investing more compute in a scaling law makes it more predictive. Thus far we have looked
at standard configurations from Table 1 to construct our scaling laws, mainly to demonstrate
extrapolation to larger N,M . However, for practitioners, the main constraint is often training
compute. Hence, we wish to understand the trade-offs between the amount of compute invested
in creating a scaling law and the relative error of the resulting law in the over-trained regime. In
Figure 14 (left), we see that as one increases the amount of compute, it is possible to get better fits
with lower relative error. In Figure 14 (right), we see a similar trend as one increases the number of
data points used to fit a scaling law. Blue stars indicate the configurations from Table 1, which provide
accurate predictions relative to the general trends—hinting at their usefulness for our investigation.
In Figures 15 and 16 we repeat the compute analysis comparing trade-offs for loss prediction and
error prediction for our RedPajama 1.4B parameter, 900B token and 6.9B parameter, 138B token

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure 16: Compute vs. relative error for the 6.9B, 138B token RedPajama run. (left) The
compute necessary to accurately predict loss is less than that needed to accurately predict (right)

average downstream error. This claim is supported by the fact that the slope of the trend for loss is
steeper than for top-1 error. These findings corroborate Figure 15.

Figure 17: Scaling exponent vs. token multiplier. In Figure 2, we notice roughly parallel lines
(i.e., roughly constant scaling exponent ⌘) in the log-log plot of loss vs. compute, even as the token
multiplier M changes. Here we plot ⌘ vs. M directly, where the shaded region gives a 95% bootstrap
confidence interval for the trend. This view supports that ⌘ is relatively constant.

runs respectively. We find that less compute is generally necessary to construct a loss scaling law that
achieves the same relative error as that of an error prediction scaling law.

On compute-optimal token multipliers. We consider 20 tokens per parameter as close to compute-
optimal for our experiments. Here we investigate, using different approaches, what the compute-
optimal token multipliers are for each dataset—assuming one should scale number of parameter and
training tokens equally as Hoffmann et al. (2022) suggest.

Turning to Figure 9, we notice that there are many multipliers, between 10 and 80 that yield models
close to the frontier. Hence, empirically, it appears choices within this range should be suitable for
the optimal token multiplier.

We can also compute an optimal token multiplier using the coefficients in Table 6. Based on Hoffmann
et al. (2022)’s Equation (4) and the assumption that ↵ = �, we write,

N
⇤(C) = G

✓
C

6

◆ 1
2

, D
⇤(C) = G

�1

✓
C

6

◆ 1
2

, G =
⇣
a

b

⌘ 1
4⌘

. (9)

To compute M
⇤ = D

⇤
/N

⇤, we then have,

M
⇤ =

✓
b

a

◆ 1
2⌘

. (10)

Using the values from Table 6 and Equation (10), we find M
⇤
C4 = 3.36, M

⇤
RedPajama = 7.42,

M
⇤
RefinedWeb = 5.85, where the subscript gives the dataset name. These values conflict with the

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure 18: Downstream top-1 error vs. C4 eval loss for each of the 46 downstream evals. Here
we plot models from our testbed for each scatter plot. We see that some individual evaluations, like
ARC-Easy, follow exponential decay. Others, like BIG-bench: CS algorithms, show step function
behavior. Still others, like MathQA, hover around random chance.

observation in Figure 9, which suggests M = 5 is already too small to give points on the Pareto
frontier. We hypothesize this mismatch arises because we fit our scaling laws using models with
M � 20. Additionally, we hyperparamter-tune at M = 20. As previously discussed, it is likely
possible to find better hyperparameter configurations at M = 5 with further hyperparameter tuning at
this token multiplier.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 8: Token multipliers of existing models. In our work, we run experiments with token
multipliers between 5 and 640 for {GPT-2 Radford et al. (2019), LLaMA Touvron et al. (2023a)}-
style decoder-only architectures.

Model family Parameters N Training tokens D Token multiplier M

T5 Raffel et al. (2020) 11B 34B 3.1
GPT-3 Brown et al. (2020) 175B 300B 1.7
Gopher Rae et al. (2021) 280B 300B 1.1
Chinchilla Hoffmann et al. (2022) 70B 1.4T 20.0
LLaMA Touvron et al. (2023a) 7B 1T 140.0
LLaMA Touvron et al. (2023a) 70B 1.4T 20.0
LLaMA-2 Touvron et al. (2023b) 7B 2T 290.0
LLaMA-2 Touvron et al. (2023b) 70B 2T 30.0
XGen Nijkamp et al. (2023) 7B 1.5T 210.0
MPT Team (2023) 7B 1T 140.0

F ADDITIONAL RELATED WORK

Language modeling. Language models can be grouped into encoder-only (Devlin et al., 2019;
Lan et al., 2019; Liu et al., 2019; Sanh et al., 2019; Clark et al., 2020), encoder-decoder (Lewis
et al., 2020; Raffel et al., 2020), and decoder-only architectures (Radford et al., 2019; Touvron et al.,
2023a;b; Team, 2023; Jiang et al., 2023; Gunasekar et al., 2023; Nijkamp et al., 2023; Artetxe et al.,
2022; Thoppilan et al., 2022; Du et al., 2022; Luukkonen et al., 2023; Scao et al., 2022; BigScience
Workshop et al., 2022; Allal et al., 2023; Li et al., 2023; Lozhkov et al., 2024; Groeneveld et al., 2024).
Most current implementations are based on the transformer (Vaswani et al., 2017). However, there has
been a recent resurgence in scaling language models based on non-transformer architectures (Peng
et al., 2023; Gu et al., 2021; 2022; Gu & Dao, 2023). Further, there has been substantial work on
adapting pre-trained language models to better follow instructions (Wei et al., 2022a; Chung et al.,
2022; Muennighoff et al., 2022; Longpre et al., 2023; Muennighoff et al., 2023a; Zhuo et al., 2024;
Rafailov et al., 2023; Ethayarajh et al., 2024; Üstün et al., 2024; Singh et al., 2024; Muennighoff
et al., 2024). However, following prior work (Hoffmann et al., 2022; Muennighoff et al., 2023b) and
given their overall prevalence, we limit ourselves to GPT-style, decoder-only transformers that have
solely been pre-trained.

Scaling laws. Kaplan et al. (2020) investigate scaling trends in GPT language models. Bahri et al.
(2021) investigate different scaling regimes theoretically, and Sharma & Kaplan (2022) relate scaling
coefficients to data manifold dimensions. Tay et al. (2022; 2023) elucidate the connection between
model architecture and scaling trends, while Hernandez et al. (2021); Tay et al. (2022) develop
scaling laws for transfer learning. Ivgi et al. (2022) also consider transfer learning scaling laws and
highlight the importance of hyperparameter selection in the low-compute regime. Ghorbani et al.
(2021); Gordon et al. (2021); Bansal et al. (2022) develop scaling laws for neural machine translation.
Caballero et al. (2023) propose a scaling law functional form, which they demonstrate is predictive in
several domains. Xiong et al. (2024) develop a hyperbolic-fit scaling law to describe the evolution of
test loss during training based on early training steps. To do so, they consider models that undergo
over-training in their testbed. In contrast, we focus on converged models and investigate predicting
the performance of increased over-training in new runs that undergo more over-training than the
converged models used for the fit.

Scaling beyond language modeling. There is a large body of work on scaling neural networks
beyond language modeling, for example in computer vision (Liu et al., 2022; Zhai et al., 2022;
Sorscher et al., 2022; Abnar et al., 2022; Alabdulmohsin et al., 2022), multimodal learning (Henighan
et al., 2020; Cherti et al., 2023; Gadre et al., 2023), and image reconstruction (Klug et al., 2023).

Over-training in existing models. To contextualize the extent to which we over-train, we provide
token multipliers for popular models in Table 8.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

G BROADER IMPACT

Language models have known risks in terms of harmful language, toxicity, and human automation—
to name a few (Weidinger et al., 2021; Bender et al., 2021). We include the following for our
public release “WARNING: These are base models and not aligned with post-training. They are
provided as is and intended as research artifacts only.” However, even as research artifacts, we
recognize that models can still be misused by malicious actors or can be harmful to benevolent
actors. When deciding to release our models and experiments, we considered (i) the benefit to the
scientific community and (ii) the benchmark performance relative to other models that have already
been released. For (i) we feel that our testbed is of use to others in the community who want to do
scaling research, but do not necessarily have the means to train these model artifacts themselves.
Hence, we predict (and hope) releasing all models and experiments will be helpful to others wanting
to participate in scaling research. For (ii), we note that there are publicly available models (Touvron
et al., 2023a;b; Jiang et al., 2023), which outperform models from our testbed and that are more likely
to be widely adopted. Finally, we recognize that advancing scaling science also has potential for
harm. Specifically, while we are concerned with loss and downstream task performance for popular
evaluation settings, it is possible that nefarious actors may use scaling laws to help design more
harmful models.

36

	Introduction
	Developing scaling laws for over-training and downstream tasks
	Preliminaries
	Scaling laws for over-training
	Scaling laws for downstream error

	Constructing a scaling testbed
	Training setup
	Model configurations
	Fitting scaling laws
	Evaluation setup

	Results: Reliable extrapolation
	Related work
	Limitations, future work, and conclusion
	Scaling-law derivations
	Additional training details
	Additional grid search details
	Evaluation dataset details
	Additional results
	Additional related work
	Broader impact

