
Under review as a conference paper at ICLR 2021

CONSERVATIVE SAFETY CRITICS FOR EXPLORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Safe exploration presents a major challenge in reinforcement learning (RL): when
active data collection requires deploying partially trained policies, we must ensure
that these policies avoid catastrophically unsafe regions, while still enabling trial
and error learning. In this paper, we target the problem of safe exploration in RL
by learning a conservative safety estimate of environment states through a critic,
and provably upper bound the likelihood of catastrophic failures at every train-
ing iteration. We theoretically characterize the tradeoff between safety and policy
improvement, show that the safety constraints are likely to be satisfied with high
probability during training, derive provable convergence guarantees for our ap-
proach, which is no worse asymptotically than standard RL, and demonstrate the
efficacy of the proposed approach on a suite of challenging navigation, manipula-
tion, and locomotion tasks. Empirically, we show that the proposed approach can
achieve competitive task performance while incurring significantly lower catas-
trophic failure rates during training than prior methods. Videos are at this url
https://sites.google.com/view/safe-exploration/

1 INTRODUCTION
Reinforcement learning (RL) is a powerful framework for learning-based control because it can
enable agents to learn to make decisions automatically through trial and error. However, in the real
world, the cost of those trials – and those errors – can be quite high: an aerial robot that attempts to
fly at high speed might initially crash, and then be unable to attempt further trials due to extensive
physical damage. However, learning complex skills without any failures at all is likely impossible.
Even humans and animals regularly experience failure, but quickly learn from their mistakes and
behave cautiously in risky situations. In this paper, our goal is to develop safe exploration methods
for RL that similarly exhibit conservative behavior, erring on the side of caution in particularly
dangerous settings, and limiting the number of catastrophic failures.

A number of previous approaches have tackled this problem of safe exploration, often by formulating
the problem as a constrained Markov decision process (CMDP) (Garcıa & Fernández, 2015; Altman,
1999). However, most of these approaches require additional assumptions, like assuming access to
a function that can be queried to check if a state is safe (Thananjeyan et al., 2020), assuming access
to a default safe controller (Koller et al., 2018; Berkenkamp et al., 2017), assuming knowledge of all
the unsafe states (Fisac et al., 2019), and only obtaining safe policies after training converges, while
being unsafe during the training process (Tessler et al., 2018; Dalal et al., 2018).

In this paper, we propose a general safe RL algorithm, with safety guarantees throughout train-
ing. Our method only assumes access to a sparse (e.g., binary) indicator for catastrophic failure,
in the standard RL setting. We train a conservative safety critic that overestimates the probability
of catastrophic failure, building on tools in the recently proposed conservative Q-learning frame-
work (Kumar et al., 2020) for offline RL. In order to bound the likelihood of catastrophic failures
at every iteration, we impose a KL-divergence constraint on successive policy updates so that the
stationary distribution of states induced by the old and the new policies are not arbitrarily different.
Based on the safety critic’s value, we consider a chance constraint denoting probability of failure,
and optimize the policy through primal-dual gradient descent.

Our key contributions in this paper are designing an algorithm that we refer to as Conservative Safety
Critics (CSC), that learns a conservative estimate of how safe a state is, using this conservative
estimate for safe-exploration and policy updates, and theoretically providing upper bounds on the
probability of failures throughout training. Through empirical evaluation in five separate simulated

1

https://sites.google.com/view/safe-exploration/


Under review as a conference paper at ICLR 2021

Figure 1: Illustration of the approach described in Algorithm 1. env.step(a) steps the simulator to the next
state s′ and provides R(s, a) and C(s′) values to the agent. If C(s′) = 1 (failure), episode terminates.

robotic control domains spanning manipulation, navigation, and locomotion, we show that CSC is
able to learn effective policies while reducing the rate of catastrophic failures by up to 50% over
prior safe exploration methods.

2 PRELIMINARIES

We describe the problem setting of a constrained MDP (Altman, 1999) specific to our approach and
the conservative Q learning (Kumar et al., 2020) framework that we build on in our algorithm.

Constrained MDPs. A constrained MDP (CMDP) is a tuple (S,A, P,R, γ, µ, C), where S is the
state space, A is the action space, P : S × A × S → [0, 1] is a transition kernel, R : S × A → R
is a task reward function, γ ∈ (0, 1) is a discount factor, µ is a starting state distribution, and C =
{(ci : S → {0, 1}, χi ∈ R)|i ∈ Z} is a set of (safety) constraints that the agent must satisfy, with
constraint functions ci taking values either 0 (alive) or 1 (failure) and limits χi defining the maximal
allowable amount of non-satisfaction, in terms of expected probability of failure. A stochastic policy
π : S → P(A) is a mapping from states to action distributions, and the set of all stationary policies
is denoted by Π. Without loss of generality, we can consider a single constraint, where C denotes
the constraint satisfaction function C : S → {0, 1}, (C ≡ 1{failure}) similar to the task reward
function, and an upper limit χ. We define the discounted future state distribution of a policy π as
dπ(s) = (1−γ)

∑∞
t=0 γ

tP (st = s|π), the state value function as V πR (s) = Eτ∼π [R(τ)|s0 = s], the
state-action value function as QπR(s, a) = Eτ∼π [R(τ)|s0 = s, a0 = a], and the advantage function
asAπR(s, a) = QπR(s, a)−V πR (s). we define similar quantities with respect to the constraint function,
as VC , QC , and AC . So, we have V πR (µ) = Eτ∼π [

∑∞
t=0R(st, at)] and V πC (µ) denoting expected

probability of failure as V πC (µ) = Eτ∼π [
∑∞
t=0 C(st)] = Eτ∼π[1{failure}] = P(failure|µ).

When the policy is parameterized as πφ, we will denote dπ(s) as ρφ(s).

Conservative Q Learning. CQL (Kumar et al., 2020) is a method for offline/batch RL (Lange et al.,
2012; Levine et al., 2020) that aims to learn a Q-function such that the expected value of a policy
under the learned Q function lower bounds its true value, preventing over-estimation due to out-of-
distribution actions as a result. In addition to training Q-functions via standard Bellman error, CQL
minimizes the expected Q-values under a particular distribution of actions, µ(a|s), and maximizes
the expected Q-value under the on-policy distribution, π(a|s). CQL in and of itself might lead to
unsafe exploration, whereas we will show in Section 3, how the theoretical tool introduced in CQL
can be used to devise a safe RL algorithm.

3 THE CONSERVATIVE SAFE-EXPLORATION FRAMEWORK
In this section we describe our safe exploration framework. The safety constraint C(s) defined in
Section 2 is an indicator of catastrophic failure: C(s) = 1 when a state s is unsafe and C(s) = 0
when it is not, and we ideally desire C(s) = 0 ∀s ∈ S that the agent visits. Since we do not
make any assumptions in the problem structure for RL, we cannot guarantee this, but can at best
reduce the probability of failure in every episode. So, we formulate the constraint as V πC (µ) =
Eτ∼π [

∑∞
t=0 C(st)] ≤ χ, where χ ∈ [0, 1) denotes probability of failure. Our approach is motivated

by the insight that by being “conservative” with respect to how safe a state is, and hence by over-
estimating this probability of failure, we can effectively ensure constrained exploration.

Figure 1 provides an overview of the approach. The key idea of our algorithm is to train a con-
servative safety critic denoted as QC(s, a), that overestimates how unsafe a particular state is and

2



Under review as a conference paper at ICLR 2021

modifies the exploration strategy to appropriately account for this safety under-estimate (by overes-
timating the probability of failure). During policy evaluation in the environment, we use the safety
critic QC(s, a) to reduce the chance of catastrophic failures by checking whether taking action a in
state s has QC(s, a) less than a threshold ε. If not, we re-sample a from the current policy π(a|s).

We now discuss our algorithm more formally. We start by discussing the procedure for learning the
safety critic QC , then discuss how we incorporate this in the policy gradient updates, and finally
discuss how we perform safe exploration during policy execution in the environment.

Overall objective. Our objective is to learn an optimal policy π∗ that maximizes task rewards, while
respecting the constraint on expected probability of failures.

π∗ = arg max
π∈ΠC

V πR (µ) where ΠC = {π ∈ Π : V πC (µ) ≤ χ} (1)

Learning the safety critic. The safety critic QC is used to obtain an estimate of how unsafe a
particular state is, by providing an estimate of probability of failure, that will be used to guide
exploration. We desire the estimates to be “conservative”, in the sense that the probability of failure
should be an over-estimate of the actual probability so that the agent can err on the side of caution
while exploring. To train such a critic QC , we incorporate tools from CQL to estimate QC through
updates similar to those obtained by reversing the sign of α in Equation 2 of CQL(H) (Kumar et al.,
2020). This gives us an upper bound on QC instead of a lower bound, as guaranteed by CQL. We
denote the over-estimated advantage corresponding to this safety critic as ÂC . Formally the safety
critic is trained via the following objective, where the objective inside arg min is called CQL(ζ), ζ
parameterizes QC , and k denotes the kth update iteration.

Q̂k+1
C ← arg min

QC

α
(
−Es∼Denv,a∼πφ(a|s)[QC(s, a)] + E(s,a)∼Denv [QC(s, a)]

)
+

1

2
E(s,a,s′,c)∼Denv

[(
QC(s, a)− B̂πφQ̂kC(s, a)

)2
] (2)

For states sampled from the replay buffer Denv , the first term seeks to maximize the expectation
of QC over actions sampled from the current policy, while the second term seeks to minimize the
expectation of QC over actions sampled from the replay buffer. Denv can include off-policy data,
and also offline-data (if available). We interleave the gradient descent updates for training of QC ,
with gradient ascent updates for policy πφ and gradient descent updates for Lagrange multiplier λ,
which we describe next.

Policy learning. Since we want to learn policies that obey the constraint we set in terms of the safety
critic, we solve the objective in equation 1 via a surrogate policy improvement problem:

max
πφ

Es∼ρφold ,a∼πφ
[
A
πφold
R (s, a)

]
s.t. Es∼ρφold [DKL(πφold(·|s)||πφ(·|s))] ≤ δ and V

πφ
C (µ) ≤ χ

(3)

Here, we have introduced a DKL constraint to ensure successive policies are close in order to help
obtain bounds on the expected failures of the new policy in terms of the expected failures of the
old policy in Section 4. We replace the DKL(πφold(·|s)||πφ(·|s)) term by its second order Taylor
expansion (expressed in terms of the Fisher Information Matrix) and enforce the resulting constraint
exactly (Schulman et al., 2015a). For the constraint on V πφC (µ), we follow the primal-dual opti-
mization method of Lagrange multipliers without making any simplifications of the constraint term
V
πφ
C (µ). This, as per equation 23 (Appendix) can be rewritten as

max
πφ

Es∼ρφold ,a∼πφ
[
A
πφold
R (s, a)

]
s.t. V

πφold
C (µ) +

1

1− γ
Es∼ρφold ,a∼πφ [AC(s, a)] ≤ χ

s.t. Es∼ρφold [DKL(πφold(·|s)||πφ(·|s))] ≤ δ (4)

We replace the true AC by the learned over-estimated ÂC , and consider the Lagrangian dual of this
constrained problem, which we can solve by alternating gradient descent as shown below.

max
πφ

min
λ≥0

Es∼ρφold ,a∼πφ
[
A
πφold
R (s, a)

]
− λ

(
V
πφold
C (µ) +

1

1− γ
Es∼ρφold ,a∼πφ

[
ÂC(s, a)

]
− χ

)
s.t.

1

2
(φ− φold)TF (φ− φold) ≤ δ (5)

We replace V
πφold
C by its sample estimate V̂

πφold
C and denote χ − V

πφold
C as χ′. Note that χ′ is

independent of parameter φ that is being optimized over. For notational convenience let λ′ denote

3



Under review as a conference paper at ICLR 2021

Algorithm 1 CSC: safe exploration with conservative safety critics
1: Initialize V rθ (task value fn), Qsζ (safety critic), policy πφ, λ, Denv , thresholds ε, δ, χ.
2: Set V̂

πφold
C (µ)← χ. . V̂

πφold
C (µ) denotes avg. failures in the previous epoch.

3: for epochs until convergence do . Execute actions in the environment. Collect on-policy samples.
4: for episode e in {1, . . . , M} do
5: Set ε← (1− γ)(χ− V̂

πφold
C (µ))

6: Sample a ∼ πφold(s). Execute a iff QC(s, a) ≤ ε. Else, resample a.
7: Obtain next state s′, r = R(s, a), c = C(s′).
8: Denv ← Denv ∪ {(s, a, s′, r, c)} . If available, Denv can be seeded with off-policy/offline data
9: end for

10: Store the average episodic failures V̂
πφold
C (µ)←

∑M
e=1 V̂

e
C

11: for step t in {1, . . . , N} do . Policy and Q function updates using Denv
12: Gradient ascent on φ and (Optionally) add Entropy regularization (equation 7)
13: Gradient updates for the Q-function ζ := ζ − ηQ∇ζCQL(ζ)
14: Gradient descent step on Lagrange multiplier λ (equation 9)
15: end for
16: φold ← φ
17: end for

the fraction λ
1−γ , and define Â

πφold
R = A

πφold
R − λ′ÂC . In addition, we can approximate DKL in

terms of the Fisher Information Matrix F , where, F can be estimated with samples as

F = Es∼ρφold
[
Ea∼πφold

[
∇φold log πφold(∇φold log πφold)T

]]
(6)

Following the steps in the Appendix A.2, we can write the gradient ascent step for φ as

φ← φold + βF−1∇φold J̃(φold) β = βj

√
2δ

∇φold J̃(φold)TF∇φold J̃(φold)
(7)

Here βj is the backtracking coefficient and we perform backtracking line search with exponential
decay. ∇φold J̃(φold) is calculated as,

∇φold J̃(φold) = Es∼ρφold ,a∼πφold
[
∇φold log πφold(a|s)ÃπφoldR

]
(8)

For gradient descent with respect to the Lagrange multiplier λ we have,

λ← λ− ηλ
(

1

1− γ
Es∼ρφold ,a∼πφold [ÂC(s, a)]− χ′

)
(9)

ηλ is the learning rate. Detailed derivations of the gradient updates are in Appendix A.2.

Executing rollouts (i.e., safe exploration). Since we are interested in minimizing the number of
constraint violations while exploring the environment, we do not simply execute the learned policy
iterate in the environment for active data collection. Rather, we query the safety critic QC to obtain
an estimate of how unsafe an action is and choose an action that is safe via rejection sampling.
Formally, we sample an action a ∼ πφold(s), and check if QC(s, a) ≤ ε. We keep re-sampling
actions πφold(s) until this condition is met, and once met, we execute that action in the environment.
Here, ε is a threshold that varies across iterations and is defined as ε = (1 − γ)(χ − V̂ πφoldC (µ))

where, V̂
πφold
C (µ) is the average episodic failures in the previous epoch, denoting a sample estimate

of the true V
πφold
C (µ). This value of ε is theoretically obtained such that Lemma 1 holds.

In the replay buffer Denv , we store tuples of the form (s, a, s′, r, c), where s is the previous state, a
is the action executed, s′ is the next state, r is the task reward from the environment, and c = C(s′),
the constraint value. In our setting, c is binary, with 0 denoting a live agent and 1 denoting failure.

Overall algorithm. Our overall algorithm, shown in Algorithm 1, executes policy rollouts in the
environment by respecting the constraint QC(s, a) ≤ ε, stores the observed data tuples in the replay
buffer Denv , and uses the collected tuples to train a safety value function QC using equation 2,
update the policy using equation 7, and update the dual variable λ using equation 9.

4 THEORETICAL ANALYSIS

In this section, we aim to theoretically analyze our approach, showing that the expected probability
of failures is bounded after each policy update throughout the learning process, while ensuring that
the convergence rate to the optimal solution is only mildly bottlenecked by the additional safety
constraint. Our main result, stated in Theorem 1, provides safety guarantees with a high probabil-

4



Under review as a conference paper at ICLR 2021

ity during training, by bounding the expected probability of failure of the policy that results from
Equation 4. To prove this, we first state a Lemma that shows that the constraints in Equation 4 are
satisfied with high probability during the policy updates. Detailed proofs of all the Lemmas and
Theorems are in Appendix A.1.

Notation. Let εC = maxs |Ea∼πφnewAC(s, a)| and ∆ be the overestimation in
Es∼ρφ

old′
,a∼πφold [ÂC(s, a)] due to CQL, such that ∆ = Es∼ρφ

old′
,a∼πφold [ÂC(s, a) − AC(s, a)].

Let ζ denote the sampling error in the estimation of V
πφold
C (µ) by its sample estimate V̂

πφold
C (µ)

and N be the number of samples used in the estimation of VC .

Lemma 1. If we follow Algorithm 1, during policy updates via Equation 4, the following is satisfied
with high probability ≥ 1− ω

V
πφold
C (µ) +

1

1− γ
Es∼ρφold ,a∼πφ [AC(s, a)] ≤ χ+ ζ − ∆

1− γ

Here, ζ captures sampling error in the estimation of V
πφold
C (µ) and we have ζ ≤ C′

√
log(1/ω)

|N | ,
where C ′ is a constant independent of ω obtained from union bounds and concentration inequali-
ties (Kumar et al., 2020) and N is the number of samples used in the estimation of VC .

This lemma intuitively implies that the constraint on the safety critic in equation 4 is satisfied with a
high probability, when we note that the RHS can be made small as N becomes large.

Lemma 1 had a bound in terms of V
πφold
C (µ) for the old policy πφold . We now show that the expected

probability of failure for the policy πφnew resulting from solving equation 4, V πφnewC (µ) is bounded
with a high probability.

Theorem 1. Consider policy updates that solve the constrained optimization problem defined in
Equation 4. With high probability ≥ 1− ω, we have the following upper bound on expected proba-
bility of failure V πφnewC (µ) for πφnew during every policy update iteration:

V
πφnew
C (µ) ≤ χ+ ζ − ∆

1− γ
+

√
2δγεC

(1− γ)2
where ζ ≤

C ′
√

log(1/ω)

|N |
(10)

Since εC depends on the new policy πφnew , it can’t be calculated exactly prior to the update. As
we cap QC(s, a) to be ≤ 1, therefore, the best bound we can construct for εC is the trivial bound
εC ≤ 2. Now, in order to have V πφnewC (µ) < χ, we require ∆ > 2

√
2δγ

1−γ + ζ. To guarantee this, we
can obtain a theoretically prescribed minimum value for α as shown in the proof in Appendix A.1.

So far we have shown that, with high probability, we can satisfy the constraint in the objective
during policy updates (Lemma 1) and obtain an upper bound on the expected probability of failure
of the updated policy πφnew (Theorem 1). We now show that incorporating and satisfying safety
constraints during learning does not severely affect the convergence rate to the optimal solution for
task performance. Theorem 2 directly builds upon and relies on the assumptions in (Agarwal et al.,
2019) and extends it to our constrained policy updates in equation 4.

Theorem 2 (Convergence rate for policy gradient updates with the safety constraint). If we run the
policy gradient updates through equation 4, for policy πφ, with µ as the starting state distribution,
with φ(0) = 0, and learning rate η > 0, then for all policy update iterations T > 0 we have, with
probability ≥ 1− ω,

V ∗R(µ)− V (T )
R (µ) ≤ log |A|

ηT
+

1

(1− γ)2T
+

(
(1− χ) +

(
1− 2∆

(1− γ)

)
+ 2ζ

) ∑T−1
t=0 λ(t)

ηT

Since the value of the dual variables λ strictly decreases during gradient descent updates (Algorithm
1),
∑T−1
t=0 λ(t) is upper-bounded. In addition, if we choose α as mentioned in the discussion of

Theorem 1 (equation 28), we have ∆ > 2
√

2δγ
1−γ + ζ. Hence, with probability≥ 1−ω, we can ensure

V ∗R(µ)− V (T )
R (µ) ≤ log |A|

ηT
+

1

(1− γ)2T
+K

∑T−1
t=0 λ(t)

ηT
where K ≤ (1− χ) +

4
√

2δγ

(1− γ)2

So, we see that the additional term proportional to K introduced in the convergence rate (compared
to (Agarwal et al., 2019)) due to the safety constraint is upper bounded, and can be made small

5



Under review as a conference paper at ICLR 2021

Figure 2: Illustrations of the five environments in our experiments: (a) 2D Point agent navigation avoiding
traps. (b) Car navigation avoiding traps. (c) Panda push without toppling. (d) Panda push within boundary. (e)
Laikago walk without falling.

with a high probability by choosing α appropriately, even after accounting for sampling error. In
addition, we note that the safety threshold χ helps tradeoff the convergence rate by modifying the
magnitude of K (a low χ means a stricter safety threshold, and a higher value of K, implying a
larger RHS and slower convergence). We discuss some practical considerations of the theoretical
results in Appendix A.4.

5 EXPERIMENTS
Through experiments on continuous control environments of varying complexity, we aim to empir-
ically evaluate the agreement between empirical performance and theoretical guidance by under-
standing the following questions:

• How safe is CSC in terms of constraint satisfaction during training?
• How does learning of safe policies trade-off with task performance during training?

5.1 EXPERIMENTAL SETUP

Environments. In each environment, shown in Figure 2, we define a task objective that the agent
must achieve and a criteria for catastrophic failure. The goal is to solve the task without dying. In
point agent/car navigation avoiding traps, the agent must navigate a maze while avoiding traps.
The agent has a health counter that decreases every timestep that it spends within a trap. When the
counter hits 0, the agent gets trapped and dies. In Panda push without toppling, a 7-DoF Franka
Emika Panda arm must push a vertically placed block across the table to a goal location without the
block toppling over. Failure is defined as when the block topples. In Panda push within boundary,
the Panda arm must be controlled to push a block across the table to a goal location without the
block going outside a rectangular constraint region. Failure occurs when the block center of mass
((x, y) position) move outside the constraint region. In Laikago walk without falling, an 18-DoF
Laikago quadruped robot must walk without falling. The agent is rewarded for walking as fast
as possible (or trotting) and failure occurs when the robot falls. Since quadruped walking is an
extremely challenging task, for all the baselines, we initialize the agent’s policy with a controller
that has been trained to keep the agent standing, while not in motion.

Baselines and comparisons. We compare CSC to three prior methods: constrained policy op-
timization (CPO) (Achiam et al., 2017), a standard unconstrained RL method (Schulman et al.,
2015a) which we call Base (comparison with SAC (Haarnoja et al., 2018) in Appendix Figure 7),
and a method that extends Leave No Trace (Eysenbach et al., 2017) to our setting, which we refer to
as Q ensembles. This last comparison is the most similar to our approach, in that it also implements
a safety critic (adapted from LNT’s backward critic), but instead of using our conservative updates,
the safety critic uses an ensemble for epistemic uncertainty estimation, as proposed by Eysenbach
et al. (2017). There are other safe RL approaches which we cannot compare against, as they make
multiple additional assumptions, such as the availability of a function that can be queried to deter-
mine if a state is safe or not Thananjeyan et al. (2020), availability of a default safe policy for the
task Koller et al. (2018); Berkenkamp et al. (2017), and prior knowledge of the location of unsafe
states (Fisac et al., 2019). In addition to the baselines (Figure 3), we analyze variants of our algo-
rithm with different safety thresholds through ablation studies (Figure 4). We also analyze CSC and
the baselines by seeding with a small amount of offline data in the Appendix A.10.
5.2 EMPIRICAL RESULTS

Comparable or better performance with significantly lower failures during training. In Fig-
ure 3, we observe that CSC has significantly lower average failures per episode, and hence lower
cumulative failures during the entire training process. Although the failures are significantly lower

6



Under review as a conference paper at ICLR 2021

Figure 3: Top row: Average task rewards (higher is better). Bottom row: Average catastrophic failures (lower
is better). x-axis: Number of episodes (each episode has 500 steps). Results on four of the five environments
we consider for our experiments. For each environment, we plot the average task reward, the average episodic
failures, and the cumulative episodic failures. The task then is to bootstrap learning so that the agent is able
to remain standing while walking as well. The safety threshold is χ = 0.03 for all the baselines in all the
environments. Detailed results including plots of cumulative failures are in Fig. 6 of the Appendix.

Figure 4: Top row: Average task rewards (higher is better). Bottom row: Average catastrophic failures (lower
is better). x-axis: Number of episodes (each episode has 500 steps). Results on four of the five environments
we consider for our experiments. For each environment we plot the average task reward, the average episodic
failures, and the cumulative episodic failures. All the plots are for our method (CSC) with different safety
thresholds χ, specified in the legend. From the plots it is evident that our method can naturally trade-off safety
for task performance depending on how strict the safety threshold is set to. Detailed results including plots of
cumulative failures are in Fig. 5 of the Appendix.

for our method, task performance and convergence of average task rewards is comparable to or better
than all prior methods, including the Base method, corresponding to an unconstrained RL algorithm.
While the CPO and Q-ensembles baselines also achieve near 0 average failures eventually, we see
that CSC achieves this very early on during training.

CSC trades off performance with safety guarantees, based on the safety-threshold χ. In Fig-
ure 4, we plot variants of our method with different safety constraint thresholds χ. Observe that: (a)
when the threshold is set to a lower value (stricter constraint), the number of avg. failures per episode
decreases in all the environments, and (b) the convergence rate of the task reward is lower when the
safety threshold is stricter. These observations empirically complement our theoretical guarantees
in Theorems 1 and 2. We note that there are quite a few failures even in the case where χ = 0.0,
which is to be expected in practice because in the initial stages of training there is high function ap-
proximation error in the learned critic QC . However, we observe that the average episodic failures
quickly drop below the specified threshold after about 500 episodes of training.

7



Under review as a conference paper at ICLR 2021

6 RELATED WORK

We discuss prior safe RL and safe control methods under three subheadings

Assuming prior domain knowledge of the problem structure. Prior works have attempted to
solve safe exploration in the presence of structural assumptions about the environment or safety
structures. For example, Koller et al. (2018); Berkenkamp et al. (2017) assume access to a safe
set of environment states, and a default safe policy, while in Fisac et al. (2018); Dean et al. (2019),
knowledge of system dynamics is assumed and (Fisac et al., 2019) assume access to a distance metric
on the state space. SAVED (Thananjeyan et al., 2020) learns a kernel density estimate over unsafe
states, and assumes access to a set of user demonstrations and a user specified function that can be
queried to determine whether a state is safe or not. In contrast to these approaches, our method does
not assume any prior knowledge from the user, or domain knowledge of the problem setting, except
a binary signal from the environment indicating when a catastrophic failure has occurred.

Assuming a continuous safety cost function. CPO (Achiam et al., 2017), and (Chow et al., 2019)
assume a cost function can be queried from the environment at every time-step and the objective is to
keep the cumulative costs within a certain limit. This assumption limits the generality of the method
in scenarios where only minimal feedback, such as binary reward feedback is provided (additional
details in section A.3). (Stooke et al., 2020) devise a general modification to the Lagrangian by
incorporating two additional terms in the optimization of the dual variable. SAMBA (Cowen-Rivers
et al., 2020) has a learned GP dynamics model and a continuous constraint cost function that encodes
safety. The objective is to minimize task cost function while maintaining the CVARα of cumulative
costs below a threshold. In the work of Dalal et al. (2018); Paternain et al. (2019b;a); Grbic &
Risi (2020), only the optimal policy is learned to be safe, and there are no safety guarantees during
training. In contrast to these approaches, we assume only a binary signal from the environment
indicating when a catastrophic failure has occurred. Instead of minimizing expected costs, our
constraint formulation directly seeks to constrain the expected probability of failure.

Safety through recoverability. Prior works have attempted to devise resetting mechanisms to re-
cover the policy to a base configuration from (near) a potentially unsafe state. LNT (Eysenbach
et al., 2017) trains both a forward policy for solving a task, and a reset goal-conditioned policy that
kicks in when the agent is in an unsafe state and learns an ensemble of critics, which is substan-
tially more complex than our approach of a learned safety critic, which can give rise to a simple but
provable safe exploration algorithm. In control theory, a number of prior works have focused on
Hamilton-Jacobi-Isaacs (HJI) reachability analysis (Bansal et al., 2017) for providing safety guar-
antees and obtaining control inputs for dynamical systems (Herbert et al., 2019; Bajcsy et al., 2019;
Leung et al., 2018). Our method does not require knowledge of the system dynamics or regularity
conditions on the state-space, which are crucial for computing unsafe states using HJI reachability.

7 DISCUSSION, LIMITATIONS, AND CONCLUSION

We introduced a safe exploration algorithm to learn a conservative safety critic that estimates the
probability of failure for each candidate state-action tuple, and uses this to constrain policy evalua-
tion and policy improvement. We provably demonstrated that the probability of failures is bounded
throughout training and provided convergence results showing how ensuring safety does not severely
bottleneck task performance. We empirically validated our theoretical results and showed that we
achieve high task performance while incurring low accidents during training.

While our theoretical results demonstrated that the probability of failures is bounded with a high
probability, one limitation is that we still observe non-zero failures empirically even when the thresh-
old χ is set to 0. This is primarily because of neural network function approximation error in the
early stages of training the safety critic, which we cannot account for precisely in the theoretical
results, and also due to the fact that we bound the probability of failures, and cannot provably bound
the number of failures.

Although our approach bounds the probability of failure and is general in the sense that it does
not assume access any user-specified constraint function, in situations where the task is difficult to
solve, for example due to stability concerns of the agent, our approach will fail without additional
assumptions. In such situations, some interesting future work directions would be to develop a
curriculum of tasks to start with simple tasks where safety is easier to achieve, and gradually move
towards more difficult tasks, such that the learned knowledge from previous tasks is not forgotten.

8



Under review as a conference paper at ICLR 2021

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. arXiv
preprint arXiv:1705.10528, 2017.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and approximation
with policy gradient methods in markov decision processes. arXiv preprint arXiv:1908.00261,
2019.

Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999.

Andrea Bajcsy, Somil Bansal, Eli Bronstein, Varun Tolani, and Claire J Tomlin. An efficient
reachability-based framework for provably safe autonomous navigation in unknown environ-
ments. In 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 1758–1765. IEEE,
2019.

Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. Hamilton-jacobi reachability: A brief
overview and recent advances. In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), pp. 2242–2253. IEEE, 2017.

Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. In Advances in neural information processing
systems, pp. 908–918, 2017.

Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh. Lyapunov-based safe policy optimization for continuous control. arXiv preprint
arXiv:1901.10031, 2019.

Alexander I Cowen-Rivers, Daniel Palenicek, Vincent Moens, Mohammed Abdullah, Aivar Sootla,
Jun Wang, and Haitham Ammar. Samba: Safe model-based & active reinforcement learning.
arXiv preprint arXiv:2006.09436, 2020.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

Sarah Dean, Stephen Tu, Nikolai Matni, and Benjamin Recht. Safely learning to control the con-
strained linear quadratic regulator. In 2019 American Control Conference (ACC), pp. 5582–5588.
IEEE, 2019.

Benjamin Eysenbach, Shixiang Gu, Julian Ibarz, and Sergey Levine. Leave no trace: Learning to
reset for safe and autonomous reinforcement learning. arXiv preprint arXiv:1711.06782, 2017.

Jaime F Fisac, Anayo K Akametalu, Melanie N Zeilinger, Shahab Kaynama, Jeremy Gillula, and
Claire J Tomlin. A general safety framework for learning-based control in uncertain robotic
systems. IEEE Transactions on Automatic Control, 64(7):2737–2752, 2018.

Jaime F Fisac, Neil F Lugovoy, Vicenç Rubies-Royo, Shromona Ghosh, and Claire J Tomlin. Bridg-
ing hamilton-jacobi safety analysis and reinforcement learning. In 2019 International Conference
on Robotics and Automation (ICRA), pp. 8550–8556. IEEE, 2019.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Djordje Grbic and Sebastian Risi. Safe reinforcement learning through meta-learned instincts. arXiv
preprint arXiv:2005.03233, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Sylvia L Herbert, Somil Bansal, Shromona Ghosh, and Claire J Tomlin. Reachability-based safety
guarantees using efficient initializations. In 2019 IEEE 58th Conference on Decision and Control
(CDC), pp. 4810–4816. IEEE, 2019.

9



Under review as a conference paper at ICLR 2021

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
ICML, volume 2, pp. 267–274, 2002.

Torsten Koller, Felix Berkenkamp, Matteo Turchetta, and Andreas Krause. Learning-based model
predictive control for safe exploration. In 2018 IEEE Conference on Decision and Control (CDC),
pp. 6059–6066. IEEE, 2018.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-
ment learning, pp. 45–73. Springer, 2012.

Karen Leung, Edward Schmerling, Mo Chen, John Talbot, J Christian Gerdes, and Marco Pavone.
On infusing reachability-based safety assurance within probabilistic planning frameworks for
human-robot vehicle interactions. In International Symposium on Experimental Robotics, pp.
561–574. Springer, 2018.

Sergey Levine. Deep reinforcement learning course, 2018. URL http://rail.eecs.
berkeley.edu/deeprlcourse-fa18/static/slides/.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Santiago Paternain, Miguel Calvo-Fullana, Luiz FO Chamon, and Alejandro Ribeiro. Safe policies
for reinforcement learning via primal-dual methods. arXiv preprint arXiv:1911.09101, 2019a.

Santiago Paternain, Luiz Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained rein-
forcement learning has zero duality gap. In Advances in Neural Information Processing Systems,
pp. 7555–7565, 2019b.

Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine. Learn-
ing agile robotic locomotion skills by imitating animals. arXiv preprint arXiv:2004.00784, 2020.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by
pid lagrangian methods. arXiv preprint arXiv:2007.03964, 2020.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. arXiv
preprint arXiv:1805.11074, 2018.

Brijen Thananjeyan, Ashwin Balakrishna, Ugo Rosolia, Felix Li, Rowan McAllister, Joseph E Gon-
zalez, Sergey Levine, Francesco Borrelli, and Ken Goldberg. Safety augmented value estima-
tion from demonstrations (saved): Safe deep model-based rl for sparse cost robotic tasks. IEEE
Robotics and Automation Letters, 5(2):3612–3619, 2020.

Yuke Zhu, Josiah Wong, Ajay Mandlekar, and Roberto Martı́n-Martı́n. robosuite: A modular simu-
lation framework and benchmark for robot learning. In arXiv preprint arXiv:2009.12293, 2020.

10

http://rail.eecs.berkeley.edu/deeprlcourse-fa18/static/slides/
http://rail.eecs.berkeley.edu/deeprlcourse-fa18/static/slides/


Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 PROOFS OF ALL THEOREMS AND LEMMAS

Note. During policy updates via Equation 4, the DKL constraint is satisfied with high probability
if we follow Algorithm 1. This follows from the update equation 7 as we incorporate backtracking
line search to ensure that the DKL constraint is satisfied exactly. Let us revisit the update equation 7

φ← φold + βF−1∇φold J̃(φold) β = βj

√
2δ

∇φold J̃(φold)TF∇φold J̃(φold)
(11)

After every update, we check if D̄KL(φ||φold) ≤ δ, and if not we decay βj = βj(1 − βj)j , set
j ← j + 1 and repeat for L steps until D̄KL ≤ δ is satisfied. If this is not satisfied after L steps, we
backtrack, and do not update φ i.e. set φ← φold.

Lemma 1. If we follow Algorithm 1, during policy updates via equation 4, the following is satisfied
with high probability ≥ 1− ω

V
πφold
C (µ) +

1

1− γ
Es∼ρφold ,a∼πφ [AC(s, a)] ≤ χ+ ζ − ∆

1− γ

Here, ζ captures sampling error in the estimation of V
πφold
C (µ) and we have ζ ≤ C

√
log(1/ω)

|N | , where
C is a constant and N is the number of samples used in the estimation of VC .

Proof. Based on line 6 of Algorithm 1, for every rollout {(s, a)}, the following holds:
QC(s, a) ≤ (1− γ)(χ− V̂ πφoldC (µ))) ∀(s, a)

=⇒ ÂC(s, a) ≤ (1− γ)(χ− V̂ πφoldC (µ))) ∀(s, a)

=⇒ V̂
πφold
C (µ) +

1

1− γ
ÂC(s, a) ≤ χ ∀(s, a)

=⇒ V̂
πφold
C (µ) +

1

1− γ
Es∼ρφold ,a∼πφ

[
ÂC(s, a)

]
≤ χ

(12)

We note that we can only compute a sample estimate V̂
πφold
C (µ) instead of the true quantity VC

which can introduce sampling error in practice. In order to ensure that V̂
πφold
C (µ) is not much lesser

than V
πφold
C (µ), we can obtain a bound on their difference. Note that if V̂

πφold
C (µ) ≥ V πφoldC (µ), the

Lemma holds directly, so we only need to consider the less than case.

Let V̂
πφold
C (µ) = V

πφold
C (µ) − ζ. With high probability ≥ 1 − ω, we can ensure ζ ≤ C′

√
log(1/ω)

|N | ,
where C ′ is a constant independent of ω (obtained from union bounds and concentration inequal-
ities) and N is the number of samples used in the estimation of VC . In addition, our estimate of
Es∼ρφold ,a∼πφ

[
ÂC(s, a)

]
is an overestimate of the true Es∼ρφold ,a∼πφ [AC(s, a)], and we denote

their difference by ∆.

So, with high probability ≥ 1− ω, we have

V̂
πφold
C (µ) +

1

1− γ
Es∼ρφold ,a∼πφ

[
ÂC(s, a)

]
≤ χ

=⇒ V
πφold
C (µ) +

1

1− γ
Es∼ρφold ,a∼πφ [AC(s, a)] ≤ χ+ ζ − ∆

1− γ

(13)

Theorem 1. Consider policy updates that solve the constrained optimization problem defined in
equation 4. With high probability ≥ 1− ω, we have the following upper bound on expected proba-
bility of failure V πφnewC (µ) for πφnew during every policy update iteration

V
πφnew
C (µ) ≤ χ+ ζ − ∆

1− γ
+

√
2δγεC

(1− γ)2
where ζ ≤

C
√

log(1/ω)

|N |
(14)

Here, εC = maxs |Ea∼πφnewAC(s, a)| and ∆ is the overestimation in Es∼ρφ
old′

,a∼πφold [AC(s, a)]

due to CQL.

11



Under review as a conference paper at ICLR 2021

Proof. C(s) denotes the value of the constraint function from the environment in state s. This is
analogous to the task reward function R(s, a). In our case C(s) is a binary indicator of whether a
catastrophic failure has occurred, however the analysis we present holds even when C(s) is a shaped
continuous cost function.

C(s) =

{
1, 1{failure} = 1

0, otherwise
Let V πφR (µ) denotes the discounted task rewards obtained in expectation by executing policy πφ for
one episode, and let V πφC (µ) denote the corresponding constraint values.

max
πφ

V
πφ
R (µ) s.t. V

πφ
C (µ) ≤ χ (15)

From the TRPO (Schulman et al., 2015a) and CPO (Achiam et al., 2017) papers, following similar
derivations, we obtain the following bounds

V
πφ
R (µ)− V πφoldR (µ) ≥ 1

1− γ
Es∼ρφold ,a∼πφ

[
A
πφold
R (s, a)− 2γεR

1− γ
DTV (πφ||πφold)[s]

]
(16)

Here, A
πφ
R is the advantage function corresponding to the task rewards and εR =

maxs |Ea∼πφA
πφ
R (s, a)|. DTV is the total variation distance. We also have,

V
πφ
C (µ)− V πφoldC (µ) ≤ 1

1− γ
Es∼ρφold ,a∼πφ

[
A
πφold
C (s, a) +

2γεC
1− γ

DTV (πφ||πφold)[s]

]
(17)

Here, A
πφold
C is the advantage function corresponding to the costs and εC =

maxs |Ea∼πφA
πφold
C (s, a)|. In our case, AC is defined in terms of the safety Q function

QC(s, a), and CQL can bound its expectation directly. To see this, note that, by defini-
tion Es∼ρφold ,a∼πφ

[
A
πφold
C (s, a)

]
= Es∼ρφold ,a∼πφ [Qζ(s, a)] − Es∼ρφold ,a∼πφold [Qζ(s, a)].

Here, the RHS is precisely the term in equation 2 of (Kumar et al., 2020) that is bounded
by CQL. We get an overstimated advantage ÂC(s, a) from training the safety critic QC
through updates in equation 2. . Let ∆ denote the expected magnitude of over-estimate
Es∼ρφold ,a∼πφ

[
ÂC(s, a)

]
= Es∼ρφold ,a∼πφ [AC(s, a)] + ∆, where ∆ is positive. Note that

replacing AC , by its over-estimate ÂC , the inequality in 17 above still holds.

Using Pinsker’s inequality, we can convert the bounds in terms of DKL instead of DTV ,
DTV (p||q) ≤

√
DKL(p||q)/2 (18)

By Jensen’s inequality,
E[
√

DKL(p||q)/2] ≤
√
E[DKL(p||q)]/2 (19)

So, we can replace the E[DTV (p||q)] terms in the bounds by
√

E[DKL(p||q)]. Then, inequation 17
becomes,

V
πφ
C (µ)− V πφoldC (µ) ≤ 1

1− γ

[
Es∼ρφold ,a∼πφ

[
A
πφold
C (s, a)

]
+

2γεC
1− γ

√
Es∼ρφold ,a∼πφ [DKL(πφ||πφold)[s]]

]
(20)

Re-visiting our objective in equation 4,

max
πφ

Es∼ρφold ,a∼πφ
[
A
πφold
R (s, a)

]
s.t. Es∼ρφold [DKL(πφold(·|s)||πφ(·|s))] ≤ δ
s.t. V

πφ
C (µ) ≤ χ

(21)

12



Under review as a conference paper at ICLR 2021

From inequation 20 we note that instead of of constraining V πφC (µ) we can constrain an upper bound
on this. Writing the constraint in terms of the current policy iterate πφold using equation 20,

πφnew = max
πφ

Es∼ρφold ,a∼πφ
[
A
πφold
R (s, a)

]
s.t. Es∼ρφold [DKL(πφold(·|s)||πφ(·|s))] ≤ δ

s.t. V
πφold
C (µ) +

1

1− γ
Es∼ρφold ,a∼πφ

[
A
πφold
C (s, a)

]
+ β

√
Es∼ρφold [DKL(πφold(·|s)||πφ(·|s))] ≤ χ

(22)

As there is already a bound on DKL(πφold(·|s)||πφ(·|s))], getting rid of the redundant term, we
define the following optimization problem, which we actually optimize for

πφnew = max
πφ

Es∼ρφold ,a∼πφ
[
A
πφold
R (s, a)

]
s.t. Es∼ρφold [DKL(πφold(·|s)||πφ(·|s))] ≤ δ

s.t. V
πφold
C (µ) +

1

1− γ
Es∼ρφold ,a∼πφ

[
A
πφold
C (s, a)

]
≤ χ

(23)

Upper bound on expected probability of failures. If πφnew is updated using equation 4, then we
have the following upper bound on V πφnewC (µ)

V
πφnew
C (µ) ≤ V πφoldC (µ) +

1

1− γ
Es∼ρφold ,a∼πφ

[
A
πφold
C

]
+

2γεC
(1− γ)2

√
Es∼ρφold ,a∼πφ [DKL(πφ||πφold)[s]]

(24)

If we ensure V
πφold
C (µ) + 1

1−γEs∼ρφold ,a∼πφ
[
A
πφold
C (s, a)

]
≤ χ holds by following Algorithm

1,we have the following upper bound on V πφnewC (µ)

V
πφnew
C (µ) ≤ χ+

√
2δγεC

(1− γ)2
(25)

Here, εC = maxs |Ea∼πφnewA
πφold
C (s, a)|.

Now, instead of AC(s, a), we have an over-estimated advantage estimate ÂC(s, a) obtained by
training the safety critic QC through CQL as in equation 2. Let ∆ denote the expected magnitude
of over-estimate Es∼ρφold ,a∼πφ

[
ÂC(s, a)

]
= Es∼ρφold ,a∼πφ [AC(s, a)] + ∆, where ∆ is positive.

From Lemma 1, we are able to ensure the following with high probability ≥ 1− ω

V
πφold
C (µ) +

1

1− γ
Es∼ρφold ,a∼πφ [AC(s, a)] ≤ χ+ ζ − ∆

1− γ
By combining this with the upper bound on V πφnewC (µ) from inequality 24, we obtain with proba-
bility ≥ 1− ω

V
πφnew
C (µ) ≤ χ+ ζ − ∆

1− γ
+

√
2δγεC

(1− γ)2
where ζ ≤

C ′
√

log(1/ω)

|N |
(26)

Since εC depends on the optimized policy πφnew , it can’t be calculated exactly prior to the update.
As we cap QC(s, a) to be ≤ 1, therefore, the best bound we can construct for εC is the trivial bound
εC ≤ 2. Now, in order to have V πφnewC (µ) < χ, we require ∆ > 2

√
2δγ

1−γ + (1 − γ)ζ. To guarantee
this, replacing ∆ by the exact overestimation term from CQL, we have the following condition on
α:

α >
Gc,T
1− γ

· max
s∼ρφ

old′

(
1

|
√
Dφold′ |

+
2
√

2δγ + (1− γ)2ζ

Gc,T

)[
Ea∼πφold

(
πφold
πφold′

− 1

)]−1

(27)

Here, Gc,T is a constant depending on the concentration properties of the safety constraint function
C(s, a) and the state transition operator T (s′|s, a) (Kumar et al., 2020). φold′ denotes the parameters

of the policy π in the iteration before φold. Now, with probability≥ 1−ω, we have ζ ≤ C′
√

log(1/ω)

|N | .

13



Under review as a conference paper at ICLR 2021

So, if α is chosen as follows

α >
Gc,T
1− γ

· max
s∼ρφ

old′

 1

|
√
Dφold′ |

+
2
√

2δγ + (1− γ)2C
′
√

log(1/ω)

|N |

Gc,T

[Ea∼πφold ( πφoldπφold′
− 1

)]−1

(28)
Then with probability ≥ 1− ω, we will have,

V
πφnew
C (µ) ≤ χ (29)

In the next theorem, we show that the convergence rate to the optimal solution is not severely affected
due to the safety constraint satisfaction guarantee, and gets modified by addition of an extra bounded
term.

Theorem 2. If we run the policy gradient updates through equation 4, for policy πφ, with µ as
the starting state distribution, with φ(0) = 0, and learning rate η > 0, then for all policy update
iterations T > 0 we have, with probability ≥ 1− ω,

V ∗R(µ)− V (T )
R (µ) ≤ log |A|

ηT
+

1

(1− γ)2T
+

(
(1− χ) +

(
1− 2∆

(1− γ)

)
+ 2ζ

) ∑T−1
t=0 λ(t)

ηT

Since the value of the dual variables λ strictly decreases during gradient descent updates (Algorithm
1),
∑T−1
t=0 λ(t) is upper-bounded. In addition, if we choose α as mentioned in the discussion of

Theorem 1, we have ∆ > 2
√

2δγ
1−γ + ζ. Hence, with probability ≥ 1− ω, we can ensure that

V ∗R(µ)− V (T )
R (µ) ≤ log |A|

ηT
+

1

(1− γ)2T
+K

∑T−1
t=0 λ(t)

ηT
where K ≤ (1− χ) +

4
√

2δγ

(1− γ)2

Proof. Let superscript (t) denote the tth policy update iteration. We follow the derivation in Lemma
5.2 of (Agarwal et al., 2019) but replaceA(s, a) with our modified advantage estimator Â(t)(s, a) =

A
(t)
R (s, a)− λ(t)AC(s, a). The quantity logZt(s) is defined in terms of A(t)

R as

logZt(s) = log
∑
a

π(t)(a|s) exp (ηA(t)/(1− γ))

≥
∑
a

π(t)(a|s) log exp ηA(t)(s, a)/(1− γ))

=
η

1− γ
∑
a

π(t)(a|s)A(t)(s, a)

= 0

(30)

We define an equivalent alternate quantity based on Â(t)

log Ẑt(s) = log
∑
a

π(t)(a|s) exp (ηÂ(t)(s, a)/(1− γ))

= log
∑
a

π(t)(a|s) exp (η(A
(t)
R (s, a)− λ(t)AC(s, a))/(1− γ))

≥
∑
a

π(t)(a|s) log exp (ηA
(t)
R (s, a)/(1− γ))− λ(t)

∑
a

π(t)(a|s) log exp (ηA
(t)
C (s, a)/(1− γ))

= 0− λ(t)η

1− γ
∑
a

π(t)(a|s)A(t)
C (s, a)

(31)
For simplicity, consider softmax policy parameterization (equivalent results hold under the function
approximation regime as shown in (Agarwal et al., 2019)), where we define the policy updates with
the modified advantage function Â(t) to take the form:

φ(t+1) = φ(t) +
η

1− γ
Â(t) and π(t+1)(a|s) = π(t)(a|s)exp(ηÂ(t)(s, a)/(1− γ))

Ẑt(s)
,

Here, Ẑt(s) =
∑
a∈A π

(t)(a|s) exp(ηÂ(t)(s, a)/(1− γ)). Note that our actual policy updates (with
backtracking line search) are almost equivalent to this when η is small. For the sake of notational

14



Under review as a conference paper at ICLR 2021

convenience, we will denote log Ẑt(s)+ λ(t)η
1−γ

∑
a π

(t)(a|s)A(t)
C (s, a) asGt(s). We haveGt(s) ≥ 0

from equation 31.

We consider the performance improvement lemma (Kakade & Langford, 2002) with respect to
the task advantage function A(t)

R (s, a) and express it in terms of the modified advantage function
Â(t)(s, a) = A

(t)
R (s, a)− λ(t)AC(s, a). Let µ be the starting state distribution of the MDP, and d(t)

denote the stationary distribution of states induced by policy π in the tth iteration.

V
(t+1)
R (µ)− V (t)

R (µ) =
1

1− γ
Es∼d(t+1)

∑
a

π(t+1)(a|s)A(t)
R (s, a)

=
1

1− γ
Es∼d(t+1)

∑
a

π(t+1)(a|s)(Â(t)(s, a) + λ(t)A
(t)
C (s, a))

=
1

η
Es∼d(t+1)

∑
a

π(t+1)(a|s) log
π(t+1)(a|s)Ẑt(s)

π(t)(a|s)

+
1

1− γ
Es∼d(t+1)

∑
a

π(t+1)(a|s)(λ(t)A
(t)
C (s, a))

=
1

η
Es∼d(t+1)DKL(π(t+1)

s ||π(t)
s ) +

1

η
Es∼d(t+1) log Ẑt(s)

+
1

1− γ
Es∼d(t+1)

∑
a

π(t+1)(a|s)(λ(t)A
(t)
C (s, a))

≥ 1

η
Es∼d(t+1) log Ẑt(s) +

λ(t)

1− γ
Es∼d(t+1)

∑
a

π(t)(a|s)A(t)
C (s, a)

≥ 1

η
Es∼d(t+1)Gt(s)

≥ 1− γ
η

Es∼µGt(s)

(32)

We note that Gt(s) ≥ 0 from equation 31. We now prove a result upper bounding the difference
between the optimal task value for any state distribution ρ and the task value at the tth iteration for
the same state distribution.

Sub-optimality gap. The difference between the optimal value function and the current value func-
tion estimate is upper bounded.

15



Under review as a conference paper at ICLR 2021

V π
?

R (ρ)− V (t)
R (ρ) =

1

1− γ
Es∼d?

∑
a

π?(a|s)(Â(t)(s, a) + λ(t)A
(t)
C (s, a))

=
1

η
Es∼d?

∑
a

π?(a|s) log
π(t+1)(a|s)Ẑt(s)

π(t)(a|s)
+

1

1− γ
Es∼d?

∑
a

π?(a|s)λ(t)A
(t)
C (s, a)

=
1

η
Es∼d?

(
DKL(π?s ||π(t)

s )−DKL(π?s ||π(t+1)
s ) +

∑
a

π∗(a|s) log Ẑt(s)

)

+
1

1− γ
Es∼d?

∑
a

π?(a|s)λ(t)A
(t)
C (s, a)

=
1

η
Es∼d?

(
DKL(π?s ||π(t)

s )−DKL(π?s ||π(t+1)
s ) + log Ẑt(s)

)
+

1

1− γ
Es∼d?

∑
a

π?(a|s)λ(t)A
(t)
C (s, a)

=
1

η
Es∼d?

(
DKL(π?s ||π(t)

s )−DKL(π?s ||π(t+1)
s )

)
+

1

η
Es∼d?

(
log Ẑt(s) +

λ(t)

1− γ
∑
a

π?(a|s)A(t)
C (s, a)

)

=
1

η
Es∼d?

(
DKL(π?s ||π(t)

s )−DKL(π?s ||π(t+1)
s )

)
+

1

η
Es∼d?

(
Gt(s) +

λ(t)

1− γ
∑
a

π?(a|s)A(t)
C (s, a)− λ(t)

1− γ
∑
a

π(t)(a|s)A(t)
C (s, a)

)
(33)

Using equation 32 with d? as the starting state distribution µ, we have:
1

η
Es∼d? logGt(s) ≤

1

1− γ

(
V (t+1)(d?)− V (t)(d?)

)
which gives us a bound on Es∼d? logGt(s).

Using the above equation and that V (t+1)(ρ) ≥ V (t)(ρ) (as V (t+1)(s) ≥ V (t)(s) for all states s),
we have:

V π
?

R (ρ)− V (T−1)
R (ρ) ≤ 1

T

T−1∑
t=0

(V π
?

R (ρ)− V (t)
R (ρ))

≤ 1

ηT

T−1∑
t=0

Es∼d?(DKL(π?s ||π(t)
s )−DKL(π?s ||π(t+1)

s )) +
1

ηT

T−1∑
t=0

Es∼d? logGt(s)

+
1

ηT

T−1∑
t=0

Es∼d?
(
λ(t)

1− γ
∑
a

π?(a|s)A(t)
C (s, a)− λ(t)

1− γ
∑
a

π(t)(a|s)A(t)
C (s, a)

)

≤ Es∼d?DKL(π?s ||π(0))

ηT
+

1

(1− γ)T

T−1∑
t=0

(
V

(t+1)
R (d?)− V (t)

R (d?)
)

+
1

ηT

T−1∑
t=0

λ(t)

(
1

1− γ
Es∼d?

∑
a

π?(a|s)A(t)
C (s, a)− 1

1− γ
Es∼d?

∑
a

π(t)(a|s)A(t)
C (s, a)

)

≤ Es∼d?DKL(π?s ||π(0))

ηT
+
V

(T )
R (d?)− V (0)

R (d?)

(1− γ)T
+ 2((1− γ)(χ+ ζ)−∆)

∑T−1
t=0 λ(t)

(1− γ)ηT

≤ log |A|
ηT

+
1

(1− γ)2T
+ 2((1− γ)(χ+ ζ)−∆)

∑T−1
t=0 λ(t)

(1− γ)ηT
.

Here, ∆ denotes the CQL overestimation penalty, and we have used the fact that each term of(
1

1−γ
∑
a π

?(a|s)A(t)
C (s, a)− 1

1−γ
∑
a π

(t)(a|s)A(t)
C (s, a)

)
is upper bounded by (χ + ζ − ∆

(1−γ) )

from Lemma 1, so the difference is upper-bounded by 2(χ+ ζ − ∆
(1−γ) ).

16



Under review as a conference paper at ICLR 2021

By choosing α as in equation 27, we have ∆ > 2
√

2δγ
1−γ + (1− γ)ζ. So, −∆ < − 2

√
2δγ

1−γ − (1− γ)ζ.
Hence, we obtain the relation

We also observe that 2(χ− ∆
(1−γ) ) + 2ζ = χ+ χ− 2 ∆

(1−γ) + 2ζ ≤ 2− χ− 2 ∆
(1−γ) = (1− χ) +

2ζ + (1− 2 ∆
(1−γ) ) + 2ζ

So, we have the following result for convergence rate

V ∗R(µ)− V (T )
R (µ) ≤ log |A|

ηT
+

1

(1− γ)2T
+ ((1− χ) + (1− 2∆

(1− γ)
) + 2ζ)

∑T−1
t=0 λ(t)

ηT

Again, with probability ≥ 1− ω, we can ensure ζ ≤ C′
√

log(1/ω)

|N | . Overall, choosing the value of α

from equation 28, we have ∆ > 2
√

2δγ
1−γ + (1 − γ)ζ. So, −∆ < − 2

√
2δγ

1−γ − (1 − γ)ζ. Hence, with
probability ≥ 1− ω, we can ensure that

V ∗R(µ)− V (T )
R (µ) ≤ log |A|

ηT
+

1

(1− γ)2T
+K

∑T−1
t=0 λ(t)

ηT

where,

K ≤ (1− χ) +
4
√

2δγ

(1− γ)2

A.2 DERIVATION OF THE POLICY UPDATE EQUATIONS

Let a ∈ A denote an action, s ∈ S denote a state, πφ(a|s) denote a parameterized policy, r(s, a)
denote a reward function for the task being solved, and τ denote a trajectory of actions by following
policy πφ at each state. To solve the following constrained optimization problem:

max
πφ

Eτ∼πφ [
∑
τ

r(·)] s.t. Eτ∼πφ [
∑
τ

1{failure}] = 0 (34)

Here, τ is the trajectory corresponding to an episode. The objective is to maximize the cumulative
returns while satisfying the constraint. The constraint says that the agent must never fail during
every episode. 1{failure} = 1 if there is a failure and 1{failure} = 0 if the agent does not
fail. The only way expectation can be 0 for this quantity is if every element is 0, so the constraint
essentially is to never fail in any episode. Let’s rewrite the objective, more generally as

max
πφ

V
πφ
R (µ) s.t. V

πφ
C (µ) = 0 (35)

We can relax the constraint slightly, by introducing a tolerance parameter χ ≈ 0. The objective
below tolerates atmost χ failures in expectation. Since the agent can fail only once in an episode,
V
πφ
C (µ) can also be interpreted as the probability of failure, and the constraint V πφC (µ) ≤ χ says

that the probability of failure in expectation must be bounded by χ. So, our objective has a very
intuitive and practical interpretation.

max
πφ

V
πφ
R (µ) s.t. V

πφ
C (µ) ≤ χ (36)

We learn one state value function, VR (corresponding to the task reward), parameterized by θ and
one state-action value function QC (corresponding to the sparse failure indicator), parameterized by
ζ. We have a task reward function r(s, a) from the environment which is used to learn VR. For
learning QC , we get a signal from the environment indicating whether the agent is dead (1) or alive
(0) i.e. 1{failure}.
The safety critic QC is used to get an estimate of how safe a particular state is, by providing an
estimate of probability of failure, that will be used to guide exploration. We desire the estimates to
be conservative, in the sense that the probability of failure should be an over-estimate of the actual
probability so that the agent can err in the side of caution while exploring. To train such a critic
QC , we incorporate theoretical insights from CQL, and estimate QC through updates similar to

17



Under review as a conference paper at ICLR 2021

those obtained by flipping the sign of α in equation 2 of the CQL paper (Kumar et al., 2020). The
motivation for this is to get an upper bound on QC instead of a lower bound, as guaranteed by CQL.

We also note that the CQL penalty term (the first two terms of equation 2 of the
CQL paper) can be expressed as an estimate for the advantage function of the policy
Es∼dπφold ,a∼πφ(a|s)[A(s, a)],where, A(s, a) is the advantage function.

Es∼dπφold ,a∼πφ(a|s)[Q(s, a)]− Es∼dπφold ,a∼πφold (a|s)[Q(s, a)]

= Es∼dπφold ,a∼πφ(a|s)[Q(s, a)− Ea∼πφold (a|s)Q(s, a)]

= Es∼dπφold ,a∼πφ(a|s)[Q(s, a)− V (s)] = Es∼dπφold ,a∼πφ(a|s)[A(s, a)]

(37)

Hence, CQL can help provide an upper bound on the advantage function directly. Although the CQL
class of algorithms have been proposed for batch RL, the basic bounds on the value function hold
even for online training.

We denote the objective inside arg min as CQL(ζ), where ζ parameterizes QC , and k denotes the
kth update iteration.

Q̂k+1
C ← arg min

QC

α
(
−Es∼Denv,a∼πφ(a|s)[QC(s, a)] + E(s,a)∼Denv [QC(s, a)]

)
+

1

2
E(s,a,s′,c)∼Denv

[(
QC(s, a)− B̂πφQ̂kC(s, a)

)2
] (38)

For states sampled from the replay buffer Denv , the first term seeks to maximize the expectation
of QC over actions sampled from the current policy, while the second term seeks to minimize the
expectation of QC over actions sampled from the replay buffer. Denv can include off-policy data,
and also offline-data (if available). Let the over-estimated advantage, corresponding to the over-
estimated critic QC , so obtained from CQL, be denoted as ÂC(s, a), where the true advantage is
AC(s, a).

Now, let ρφ(s) denote the stationary distribution of states induced by policy πφ. For policy opti-
mization, we have to solve a constrained optimization problem as described below:

max
πφ

Es∼ρφold ,a∼πφ
[
A
πφold
R (s, a)

]
s.t. Es∼ρφold [DKL(πφold(·|s)||πφ(·|s))] ≤ δ
s.t. V

πφ
C (µ) ≤ χ

(39)

This, as per equation 23 can be rewritten as

πφnew = max
πφ

Es∼ρφold ,a∼πφ
[
A
πφold
R (s, a)

]
s.t. Es∼ρφold [DKL(πφold(·|s)||πφ(·|s))] ≤ δ

s.t. V
πφold
C (µ) +

1

1− γ
Es∼ρφold ,a∼πφ

[
A
πφold
C (s, a)

]
≤ χ

(40)

Since we are learning an over-estimate of AC through the updates in equation 2, we replace AC
by the learned ÂC in the constraint above. There are multiple ways to solve this constrained op-
timization problem, through duality. If we consider the Lagrangian dual of this, then we have the
following optimization problem, which we can solve approximately by alternating gradient descent.
For now, we keep the KL constraint as is, and later use its second order Taylor expansion in terms
of the Fisher Information Matrix.

max
πφ

min
λ≥0

Es∼ρφold ,a∼πφ
[
A
πφold
R (s, a)

]
− λ

(
V
πφold
C (µ) +

1

1− γ
Es∼ρφold ,a∼πφ

[
ÂC(s, a)

]
− χ

)
s.t. Es∼ρφold [DKL(πφold(·|s)||πφ(·|s))] ≤ δ

(41)

We replace V
πφold
C (µ) by its sample estimate V̂

πφold
C (µ) and denote χ− V̂ πφoldC (µ) as χ′. Note that

χ′ is independent of parameter φ that is being optimized over. So, the objective becomes

18



Under review as a conference paper at ICLR 2021

max
πφ

min
λ≥0

Es∼ρφold ,a∼πφ
[
Âπφold (s, a)− λ

1− γ
ÂC(s, a)

]
+ λχ′

s.t. Es∼ρφold [DKL(πφold(·|s)||πφ(·|s))] ≤ δ
(42)

For notational convenience let λ′ denote the fraction λ
1−γ . Also, in the expectation, we replace

a ∼ πφ by a ∼ πφold and account for it by importance weighting of the objective.

Let us consider maxπφ operation and the following gradient necessary for gradient ascent of φ

φ←arg max
φ

Es∼ρφold

[
Ea∼πφold

[
πφ(a|s)
πφold(a|s)

(A
πφold
R (s, a)− λ′ÂC(s, a))

]]
s.t. Es∼ρφold [DKL(πφold(·|s)||πφ(·|s))] ≤ δ

(43)

φ←arg max
φ
∇φoldĀ(φold)

T (φ− φold)

s.t. Es∼ρφold [DKL(πφold(·|s)||πφ(·|s))] ≤ δ
(44)

Here, using slide 20 of Lecture 9 in (Levine, 2018), and the identity∇φπφ = πφ∇φ log πφ we have

∇φĀ(φ) = Es∼ρφold

[
Ea∼πφold

[
πφ(a|s)
πφold(a|s)

∇φ log πφ(a|s)(AπφoldR (s, a)− λ′ÂC(s, a))

]]
(45)

Using slide 24 of Lecture 5 in (Levine, 2018) and estimating locally at φ = φold,

∇φoldĀ(φold) = Es∼ρφold
[
Ea∼πφold

[
∇φold log πφold(a|s)(AπφoldR (s, a)− λ′ÂC(s, a))

]]
(46)

We note that, Es∼ρφold
[
Ea∼πφold

[
∇φold log πφold(a|s)Âπφold (s, a)

]]
= ∇φoldJ(φold), the origi-

nal policy gradient corresponding to task rewards. So, we can write equation 46 as

∇φoldarA(φold) = ∇φoldJ(φold) + Es∼ρφold
[
Ea∼πφold

[
−λ′ÂC(s, a)

]]
(47)

In practice, we estimate A
πφold
R through GAE (Schulman et al., 2015b;a; Levine, 2018)

Âπφold =

∞∑
t′=t

(γ)t
′−t∆t′ ∆t′ = r(st′ , at′) + γVR(st′+1)− VR(st′) (48)

Let Âπφold (s, a) = A
πφold
R (s, a)−λ′AC(s, a) denote the modified advantage function corresponding

to equation 46

Âπφold =

∞∑
t′=t

(γ)t
′−t∆t′ ∆t′ = r(st′ , at′) + γVR(st′+1)− VR(st′)− λ′ÂC(st′ , at′) (49)

So, rewriting equations 46 and 51 in terms of Ãπφold , we have

∇φoldĀ(φold) = Es∼ρφold
[
Ea∼πφold

[
∇φold log πφold(a|s)Âπφold

]]
(50)

∇φoldĀ(φold) = ∇φold J̃(φold) (51)
Substituting in equation 44, we have

φ←arg max
φ
∇φold J̃(φold)

T (φ− φold)

s.t. Es∼ρφold [DKL(πφold(·|s)||πφ(·|s))] ≤ δ
(52)

As shown in slide 20 of Lecture 9 (Levine, 2018) and (Schulman et al., 2015a), we can approxi-
mate DKL in terms of the Fisher Information Matrix F (this is the second order term in the Taylor
expansion of KL; note that around φ = φold, both the KL term and its gradient are 0),

DKL(πφold(·|s)||πφ(·|s)) =
1

2
(φ− φold)TF(φ− φold) (53)

Where, F can be estimated with samples as

F = Es∼ρφold
[
Ea∼πφold

[
∇φold log πφold(∇φold log πφold)T

]]
(54)

19



Under review as a conference paper at ICLR 2021

So, finally, we can write the gradient ascent step for φ as (natural gradient conversion)

φ← φold + βF−1∇φold J̃(φold) β =

√
2δ

∇φold J̃(φold)TF∇φold J̃(φold)
(55)

In practice, we perform backtracking line search to ensure the DKL constraint satisfaction. So, we
have the following update rule

φ← φold + βF−1∇φold J̃(φold) β = βj

√
2δ

∇φold J̃(φold)TF∇φold J̃(φold)
(56)

After every update, we check if D̄KL(φ||φold) ≤ δ, and if not we decay βj = βj(1 − βj)j , set
j ← j + 1 and repeat for L steps until D̄KL ≤ δ is satisfied. If this is not satisfied after L steps, we
backtrack, and do not update φ i.e. set φ← φold. For gradient descent with respect to the Lagrange
multiplier λ we have (from equation 5),

λ← λ−
(

1

1− γ
Es∼ρφold ,a∼πφold [ÂC(s, a)]− χ′

)
(57)

Note that in the derivations we have ommitted
∑
t in the outermost loop of all expectations, and

subscripts (e.g. at, st) in order to avoid clutter in notations.

A.3 RELATION TO CPO

The CPO paper (Achiam et al., 2017) considers a very similar overall objective for policy gradient
updates, with one major difference. CPO approximates the V πφC (µ) ≤ χ constraint by replacing
V
πφ
C (µ) with its first order Taylor expansion and enforces the resulting simplified constraint exactly

in the dual space. On the other hand, we do not make this simplification, and use primal-dual
optimization to optimize an upper bound on VC through the CQL inspired objective in equation 2.
Doing this and not not making the linearity modification allows us to handle sparse (binary) failure
indicators from the environment without assuming a continuous safety cost function as done in
CPO (Achiam et al., 2017).

A.4 PRACTICAL CONSIDERATIONS

Depending on the value of KL-constraint on successive policies δ, the RHS in Theorem 2 can either
be a lower or higher rate than the corresponding problem without safety constraint. In particular, let
the sampling error ζ = 0, then if δ ≥ (1−γ)4(2−χ)2

8γ2 , the third term is negative.

If we set γ = 0.99 and χ = 0.05, then for any δ > 1e-8, the third term in Theorem 3 will be
negative. Also, if α is chosen to be much greater than that in equation 27, the value of ∆ can be
arbitrarily increased in principle, and we would be overestimating the value of QC significantly.
While increasing ∆ significantly will lead to a decrease in the upper bound of V ∗R(µ) − V (T )

R (µ),
but in practice, we would no longer have a practical algorithm. This is because, when QC is over-
estimated significantly, it would be difficult to guarantee that line 9 of Algorithm 1 is satisfied, and
policy execution will stop, resulting in infinite wall clock time for the algorithm.

In order to ensure that the above does not happen, in practice we loop over line 6 of Algorithm 1 for
a maximum of 100 iterations. So, in practice the anytime safety guarantee of Theorem 2 is violated
during the early stages of training when the function approximation of QC is incorrect. However,
as we demonstrate empirically, we are able to ensure the guarantee holds during the majority of the
training process.

20



Under review as a conference paper at ICLR 2021

A.5 DETAILS ABOUT THE ENVIRONMENTS

In each environment, shown in Figure 2, we define a task objective that the agent must achieve and a
criteria for catastrophic failure. The goal is to solve the task without dying. In all the environments,
in addition to the task reward, the agent only receives a binary signal indicatin whether it is dead i.e.
a catastrophic failure has occurred (1) or alive (0).

• Point agent navigation avoiding traps. Here, a point agent with two independent actuators
for turning and moving forward/backward must be controlled in a 2D plane to reach a goal
(shown in green in Figure 2) while avoiding traps shown in violet circular regions. The
agent has a health counter set to 25 for the episode and it decreases by 1 for every time-
step that it resides in a trap. The agent is alive when the health counter is positive, and a
catastrophic failure occurs when the counter strikes 0 and the agent dies.

• Car agent navigation avoiding traps. Similar environment as the above but the agent is a
Car with more complex dynamics. It has two independently controllable front wheels and
free-rolling rear wheel. We adapt this environment from (Ray et al., 2019).

• Panda push without toppling. A Franka Emika Panda arm must push a vertically placed
block across the table to a goal location without the block toppling over. The workspace di-
mensions of the table are 20cmx40cm and the dimensions of the block are 5cmx5cmx10cm.
The environment is based on Robosuite Zhu et al. (2020) and we use Operational Space
Control (OSC) to control the end-effevctor velocities of the robot arm. A catastrophic
failure is said to occur is the block topples.

• Panda push within boundary. A Franka Emika Panda arm must be controlled to push a
block across the table to a goal location without the block going outside a rectangular con-
straint region. Catastrophic failure occurs when the block center of mass ((x, y) position)
move outside the constraint region on the table with dimensions 15cmx35cm. The dimen-
sions of the block are 5cmx5cmx10cm. The environment is based on Robosuite Zhu et al.
(2020) and we use Operational Space Control (OSC) to control the end-effector velocities
of the robot arm.

• Laikago walk without falling, a Laikago quadruped robot must walk without falling. The
agent is rewarded for walking as fast as possible (or trotting) and failure occurs when the
robot falls. Since this is an extremely challenging task, for all the baselines, we initialize
the agent’s policy with a controller that has been trained to keep the agent standing, while
not in motion. The environment is implemented in PyBullet and is based on (Peng et al.,
2020).

A.6 HYPER-PARAMETER DETAILS

We chose the learning rate ηQ for the safety-critic QC to be 2e− 4 after experimenting with 1e− 4
and 2e − 4 and observing slightly better results with the latter. The value of discount factor γ is
set to the usual default value 0.99, the learning rate ηλ of the dual variable λ is set to 4e − 2, the
value of δ for the DKL constraint on policy updates is set to 0.01, and the value of α to be 0.5. We
experimented with three different α values 0.05, 0.5, 5 and found nearly same performance across
these three values. For policy updates, the backtracking co-efficient β(0) is set to 0.7 and the max.
number of line search iterations L = 20. For the Q-ensembles baseline, the ensemble size is chosen
to be 20 (as mentioned in the LNT paper), with the rest of the common hyper-parameter values
consistent with CSC, for a fair comparison.

21



Under review as a conference paper at ICLR 2021

A.7 COMPLETE RESULTS FOR TRADEOFF BETWEEN SAFETY AND TASK PERFORMANCE

(a) Point 2D Nav. Rewards (b) Point 2D Nav. Avg. failures (c) Point 2D Nav. Cum. failures

(d) Panda Topple Rewards (e) Panda Topple Avg. failures (f) Panda Topple Cum. failures

(g) Car Rewards (h) Car Avg. failures (i) Car Cum. failures

(j) Panda Boundary Rewards (k) Panda Boundary Avg. failures (l) Panda Boundary Cum. failures

(m) Laikago Rewards (n) Laikago Avg. failures (o) Laikago Cum. failures

Figure 5: Results on the five environments we consider for our experiments. For each environment we plot
the average task reward, the average episodic failures, and the cumulative episodic failures. All the plots are
for our method with different safety thresholds χ. From the plots it is evident that our method can naturally
trade-off safety for task performance depending on how strict the safety threshold χ is set to. In particular, for a
stricter χ (i.e. lesser value), the avg. failures decreases, and the task reward plot also has a slower convergence
compared to a less strict threshold.

22



Under review as a conference paper at ICLR 2021

A.8 COMPLETE RESULTS FOR COMPARISON WITH BASELINES

(a) Point 2D Nav. Rewards (b) Point 2D Nav. Avg. failures (c) Point 2D Nav. Cum. failures

(d) Panda Topple Rewards (e) Panda Topple Avg. failures (f) Panda Topple Cum. failures

(g) Car Rewards (h) Car Avg. failures (i) Car Cum. failures

(j) Panda Boundary Rewards (k) Panda Boundary Avg. failures (l) Panda Boundary Cum. failures

(m) Laikago Rewards (n) Laikago Avg. failures (o) Laikago Cum. failures

Figure 6: Results on the five environments we consider for our experiments. For each environment we plot the
average task reward, the average episodic failures, and the cumulative episodic failures. Since Laikago is an
extremely challenging task, for all the baselines, we initialize the agent’s policy with a controller that has been
trained to keep the agent standing, while not in motion. The task then is to bootstrap learning so that the agent
is able to remain standing while walking as well. The safety threshold χ = 0.05 for all the baselines in all the
environments.

A.9 COMPARISON BETWEEN TWO UNCONSTRAINED RL ALGORITHMS

(a) Point 2D Nav. Rewards (b) Point 2D Nav. Avg. failures (c) Point 2D Nav. Cum. failures

Figure 7: Comparison between two RL algorithms TRPO (Schulman et al., 2015a), and SAC (Haarnoja et al.,
2018) in the Point agent 2D Navigation environment. We see that TRPO has slightly faster convergence in
terms of task rewards and also slightly lower average and cumulative failures, and so consider TRPO as the
Base RL baseline in Figures 3 and 4.

23



Under review as a conference paper at ICLR 2021

A.10 SEEDING THE REPLAY BUFFER WITH VERY FEW SAMPLES

In order to investigate if we can leverage some offline user-specified data to lower the number of
failures during training even further, we seed the replay buffer of CSC and the baselines with 1000
tuples in the Car navigation environment. The 1000 tuples are marked as safe or unsafe depending
on whether the car is inside a trap location or not in those states. If our method can leverage such
manually marked offline data (in small quantity as this marking procedure is not cheap), then we
have a more practical method that can be deployed in situations where the cost of visiting an unsafe
state is significantly prohibitive. Note that this is different from the setting of offline/batch RL,
where the entire training data is assumed to be available offline - in this experimental setting we
consider very few tuples (only 1000). Figure 8 shows that our method can successfully leverage this
small offline data to bootstrap the learning of the safety critic and significantly lower the average
failures. We attribute this to training the safety critic conservatively through CQL, which is an
effective method for handling offline data.

(a) Car Nav. Rewards (b) Car Nav. Avg. failures (c) Car Nav. Cum. failures

Figure 8: Results on the Car navigation environment after seeding the replay buffer with 1000 tuples.
Although all the baselines improve by seeding, in terms of lower failure rates compared to Figure 3, we ob-
serve that CSC is able to particularly leverage the offline seeding data and significantly lower the average and
cumulative failures during training.

A.11 SUPPLEMENTARY VIDEOS

We have attached four videos with the supplementary zip showing trained CSC policies on Car nav-
igation, Panda Push without toppling (Panda Topple), Panda Push within Boundary (Panda bound-
ary), and Laikago walkng/running. In addition, we have also attached a video showing the standing
controller used to bootstrap learning for the Laikago environment (for all the baselines and CSC).
The standing controller is also trained purely from RL by using CSC, specifying a standing reference
motion for task reward.

We also link the videos in the anonymous website in the abstract, just in case the attached videos in
the zip file cannot be played due to system setting mismatch.

24


	Introduction
	Preliminaries
	The Conservative Safe-Exploration Framework
	Theoretical Analysis
	Experiments
	Experimental Setup
	Empirical Results

	Related Work
	Discussion, Limitations, and Conclusion
	Appendix
	Proofs of all theorems and lemmas
	Derivation of the policy update equations
	Relation to CPO
	Practical considerations
	Details about the environments
	Hyper-parameter details
	Complete results for tradeoff between safety and task performance
	Complete results for comparison with baselines
	Comparison between two unconstrained RL algorithms
	Seeding the replay buffer with very few samples
	Supplementary videos


