
A Optimizing Over the Returned Counterfactuals

In this appendix, we discuss a technique to optimize over the counterfactuals found by counterfactual
explanation methods, such as [6]. We restate lemma 3.1 and provide a proof.

Lemma 3.1 Assuming the counterfactual algorithm A✓(x) follows the form of the objective in
equation 1, @

@xcf
G(x,A✓(x)) = 0, and m is the number of parameters in the model, we can write

the derivative of counterfactual algorithm A with respect to model parameters ✓ as the Jacobian,

@

@✓
A✓(x) = �

@2G (x,A✓(x))

@x2
cf

��1

·

@

@✓1

@

@xcf
G (x,A✓(x)) · · ·

@

@✓m

@

@xcf
G (x,A✓(x))

�

Proof. We want to compute the derivative,

@

@✓
A✓(x) =

@

@✓

arg min

xcf

G(x,xcf)

�
(7)

This problem is identical to a well-studied class of bi-level optimization problems in deep learning.
In these problems, we must compute the derivative of a function with respect to some parameter (here
✓) that includes an inner argmin, which itself depends on the parameter. We follow [44] to complete
the proof.

Note, we write G(x,A✓(x)) to describe the objective G evaluated at the counterfactual found using
the counterfactual explanation A✓(x). Also, we denote the zero vector as 0. For a single network
parameter ✓i, i 2 {1, ...,m} we have the following equivalence because A✓(x) converges to a
stationary point from the assumption,

@

@xcf
G(x,A✓(xcf)) = 0 (8)

We differentiate with respect to ✓i and apply the chain rule,

@

@✓i

@

@xcf
G(x,A✓(xcf)) +

@2

@x2
cf
G (x,A✓(xcf))

@

@✓i
A✓(xcf) = 0 (9)

@

@✓i
A✓(xcf) = �

@2

@x2
cf
G (x,A✓(xcf))

��1
@

@✓i

@

@xcf
G(x,A✓(xcf)) (10)

Rewriting in terms of A,

@

@✓i
A✓(x) = �

@2

@x2
cf
G (x,A✓(xcf))

��1
@

@✓i

@

@xcf
G(x,A✓(xcf)) (11)

Extending this result to multiple parameters, we write,

@

@✓
A✓(x) = �

@2G (x,A✓(xcf))

@x2
cf

��1
@

@✓1

@

@xcf
G (x,A✓(xcf)) · · ·

@

@✓m

@

@xcf
G (x,A✓(xcf))

�

(12)

⇤
This result depends on the assumption @

@xcf
G(x,A✓(x)) = 0. This assumption states the counterfac-

tual explanation A✓(xcf) converges to a stationary point. In the case the counterfactual explanation
terminates before converging to stationary point, this solution will be approximate.

15

B Counterfactual Explanation Details

In this appendix, we provide additional details related the counterfactual explanations used in the
paper. Recall, we use four counterfactual explanations in our paper. The counterfactual explana-
tions were Wachter et al.’s Algorithm [6], Wachter et al.’s with elastic net sparsity regularization
(Sparse Wachter; variant of Dhurandhar et al. [16]), DiCE [13], and Counterfactual’s Guided by
Prototypes [9].

B.1 Objectives & Distance Functions

We describe the objective of each counteractual explanation and detail hyperparameter choices within
the objectives. Note, all algorithms but DiCE include a hyperparameter � applied to squared loss
(i.e., in Eq. (1)). Since this parameter needs to be varied to find successful counterfactuals (i.e.,
f(xcf) > 0.5), we set this hyperparameter at � = 1 initially and increment it 2x until we find a
successful counterfactual.

Wachter et. al.’s Algorithm The distance function for Wachter et al.’s Algorithm is given as,

dW (x,xcf) =
X

q2[d]

|xq � xq
cf|

MADq
(13)

MADq =mediani2[N]

�
|xq

i � medianj2[N](x
q
j)|

�

The full objective is written as,

G(x,xcf) = � · f(xcf � 1)2 + dW (x,xcf) (14)

Sparse Wachter The distance function for Sparse Wachter is given as,

dSp(x,xcf) = ||x� xcf||1 + ||x� xcf||22 (15)

The full objective is written as,

G(x,xcf) = � · f(xcf � 1)2 + dSp(x,xcf) (16)

Prototypes The distance function for Prototypes is given as,

dPro(x,xcf) =� · ||x� xcf||1 + ||x� xcf||22 + ||xcf � protoj ||22 (17)

where protoj is the nearest positively classified neighbor of xcf according to euclidean distance. We
fix � = 1. The full objective is written as,

G(x,xcf) = � · f(xcf � 1)2 + dPro(x,xcf) (18)

DiCE The distance function used in the DiCE objective is defined over k counterfactuals,

dD(x,xcf) =
�1

k

kX

i=1

dW (x,xcfi)�
�2

k2

k�1X

i=1

kX

j=i+1

dW
�
xcfi ,xcfj

�
(19)

Note, the DiCE objective uses the hinge loss, instead of the squared loss, as in the earlier objectives.
The objective is written as,

G(x,xcf) = max(0, 1� logit(f(c))) + dD(x,xcf) (20)

When we evaluate distance, we take the closest counterfactual according to `1 distance because we
are interested in the single least cost counterfactual. Because we only have a single counterfactual,
the diversity term in equation 19 reduces to 0. Thus, the distance we use during evaluation is the
Wachter et al. distance, dW (x,xcf), on the closest counterfactual. We fix �2 = 1 as in [13]. Because
DiCE provides a hyperparameter on the distance instead of on the squared loss like in the other
counterfactual explanations, �1, we fix this value to 10 and decrement 10⇥ until we successfully
generate k counterfactuals.

16

Table 3: Recourse Costs of Unmodified Models for Communities and Crime and the German Credit
data set. For the unmodified models, counterfactual explanations result in highly levels of recourse
disparity. Further, � has minimal effect on the counterfactual search. These results help demonstrate
that the adversarial objective decreases the disparity in recourse costs and encourages the perturbation
� to lead to low cost recourse when added to the non-protected group.

Wach. S-Wach. Proto. DiCE
Communities and Crime
Protected 22.70 30.75 23.05 36.31
Non-Protected 19.11 27.33 19.21 11.90
Disparity 3.59 3.42 3.84 24.41

Non-Protected+� 21.39 30.72 22.11 11.50

German Credit
Protected 5.38 11.85 15.32 39.28
Non-Protected 3.89 11.10 17.25 54.26
Disparity 1.94 2.45 1.39 14.98

Non-Protected+� 3.54 10.66 11.77 54.28

B.2 Re-implementation Details

We re-implement Wachter et al.’s Algorithm [6], Wachter et al.’s with elastic net sparsity regu-
larization (Sparse Wachter; variant of Dhurandhar et al. [16]), and Counterfactual’s Guided by
Prototypes [9]. We optimize the objective in section B.1 for each explanation using the Adam
optimizer with learning rate 0.01. Sometimes, however, the counterfactual search using the Adam
optimizer gets stuck at the point of initializing the counterfactual search and fails to find a successful
counterfactual. In particular, this occurs with Wachter et al.’s Aglorithm. In these cases, we used
SGD+Momentum with the same learning rate and momentum 0.9, which is capable of escaping
getting stuck at initialization. We initialize the counterfactual search at the original instance unless
stated otherwise (e.g., experimentation with different search initialization strategies in section 5.3).
We fix � = 1 and run counterfactual search optimization for 1,000 steps. If we didn’t find a suc-
cessful counterfactual (i.e., f(xcf) < 0.5) we increase �, 2⇥. We repeat this process until we find a
counterfactual.

C Unmodified Models

In this appendix, we provide the recourse costs of counterfactual explanations applied to the unmodi-
fied models. We give the results in table 3. While the manipulated models showed minimal disparity
in recourse cost between subgroups (see table 2), the unmodified models often have large disparities
in recourse cost. Further, the counterfactuals found when we add � to the non-protected instances are
not much different than without using the key. These results demonstrate the objective in section 3
encourages the model to have equitable recourse cost between groups and much lower recourse for
the not-protected group when we add �.

D Scalability of the Adversarial Objective

In this appendix, we discuss the scalability of the adversarial model training objective. We also
demonstrate the scalability of the objective by training a successful manipulative model on the Adult
dataset (33k datapoints).

D.1 Scalability Considerations

Training complexity of the optimization procedure proposed in section 3 increases along three main
factors. First, complexity increases with the training set size because we compute the loss across all
the instances in the batch. This computation includes finding counterfactuals for each instance in
order to compute the hessian in Lemma 3.1. Second, complexity increases with number of features in

17

the data due to the computation of the hessian in Lemma 3.1, assuming no approximations are used.
Last, the number of features in the counterfactual search increases the complexity of training because
we must optimize more parameters in the perturbation � and additional features in the counterfactual
search.

D.2 Adult dataset

One potential question is whether the attack is scalable to large data sets because computing coun-
terfactuals (i.e., A(x)) for every instance in the training data is costly to compute. However, it is
possible for the optimization procedure to handle large data sets because computing A(x) is easily
parallelizable. We demonstrate the scalability the adversarial objective on the Adult dataset consisting
of 33k data points using DiCE with the pre-processing from [4], using numerical features for the
counterfactual search. The model had a cost ratio of 2.1⇥, indicating that the manipulation was
successful.

Table 4: Adversarial model trained on the Adult data set where the manipulation is successful.
This result demonstrates it is possible to scale attack to large data sets.

DiCE
Adult
Protected 21.65
Non-Protected 18.26
Disparity 3.39

Non-Protected+� 8.56
Cost Reduction 2.13⇥
Test Accuracy 80.4%.
||�||1 1.49

E Additional Results

In this appendix, we provide additional experimental results.

E.1 Outlier Factor of Counterfactuals

In the main text, we provided outlier factor results for the Communities and Crime data set with
Wachter et al. and DiCE. Here, we provide additional outlier factor results for Communities and
Crime using Sparse Wachter and counterfactuals guided by prototypes and for the German Credit
data set in figure 5. We see similiar results to those in the main paper, namely that the manipulated +
� counterfacutals are the most realistic (lowest % predicted outliers).

E.2 Different Initializations

In the main text, we provided results for different initialization strategies with the Communities and
Crime data set using DiCE and Wachter et al. We provide additional different initialization results
for German Credit in Table 7 and Communities and Crime for Sparse Wachter and counterfactuals
guided by prototypes in Table 6. Similar to the experiments presented in the main text, we see x+N
and is consistently the most effective mitigation strategy.

E.3 Categorical Features

In the main text, we used numerical features in the counterfactual search. In this appendix, we train
manipulated models using categorical features in the counterfactual search with German Credit for
both counterfactuals guided by prototypes and DiCE. We do not use categorical features with Wachter
et al. because it is very computationally expensive [9]. We perform this experiment with German
Credit only because there are no categorical features in Communities and Crime. We consider �
on only the numerical features and rounding � to 0 or 1 for the categorical features. We present

18

Figure 5: Additional outlier factor results for more data sets and counterfactual explanations
indicate a similiar trend as in the main paper: the manipulated + � counterfactuals are the most
realistic (lowest % predicted local outliers).

the results in tables 5. We found the manipulation to be successful in 3 out of 4 cases, with the
exception being rounded � for counterfactuals guided by prototypes. These results demonstrate the
manipulation is successful with categorical features.

Table 5: Manipulated Models with categorical features trained on the German Credit data set.
These results show it is possible to train manipulative models successfully with categorical features.

Only numerical � Rounding �

Proto. DiCE Proto. DiCE
German Credit
Protected 4.78 6.72 7.14 6.72
Non-Protected 4.19 5.87 7.17 5.87
Disparity 0.58 0.85 0.03 0.85

Non-Protected+� 1.83 3.77 7.82 3.77
Cost Reduction 2.3⇥ 1.5⇥ 0.92⇥ 1.5⇥
Test Accuracy 66.18%. 68.14% 70.0%. 68.14%
||�||1 0.79 0.38 1.92 0.38

19

Table 6: Additional different initialization results for Communities & Crime demonstrating the
efficacy of different mitigation strategies. These results help demonstrate that x+N is consistently an
effective mitigation strategy.

Model S-Wachter Proto.
Initialization Mean Rnd. x+N Mean Rnd. x+N
Protected 61.69 1.94 4.80 75.69 524.99 64.63
Non-Protected 44.62 1.71 2.75 83.98 503.56 72.08
Disparity 17.03 1.83 2.05 8.29 13.78 7.45

Non-Protected+� 38.74 0.23 2.64 113.83 449.60 88.00
Cost Reduction 1.15⇥ 7.43⇥ 1.04⇥ 0.74⇥ 1.12⇥ 0.82⇥
Test Accuracy 80.0%. 79.6% 79.9% 81.3% 80.7% 80.2%
||�||1 0.50 0.51 0.80 0.68 0.67 0.68

Table 7: Different initialization results for the German Credit data set demonstrating the efficacy
of various initialization strategies. These results indicate that x+N is consistently the most effective
mitigation strategy.

Model Wachter S-Wachter Proto. DiCE
Initialization Mean Rnd. x+N Mean Rnd. x+N Mean Rnd. x+N Rnd.

Protected 1.94 1.18 1.22 5.58 0.83 2.18 3.24 3.81 3.62 39.53
Not-Prot. 1.29 1.27 1.42 2.29 0.95 3.24 4.64 7.42 3.47 36.53
Disparity 0.65 0.18 0.19 3.29 0.12 1.06 1.39 3.61 0.14 21.43

Not-Prot.+� 0.96 3.79 1.03 1.30 1.36 1.26 3.52 5.74 2.54 3.00
Cost Reduction 1.34⇥ 1.07⇥ 1.38⇥ 1.31⇥ 0.70⇥ 1.26⇥ 1.32⇥ 1.29⇥ 1.36⇥ 1.70⇥
Accuracy 66.5 67.0 68.5 66.5 67.7 67.7 66.3 65.8 65.8 66.8
||�||1 0.81 0.80 0.36 0.81 0.80 0.54 0.98 0.43 0.83 2.9

F Compute Details

We run all experiments in this work on a machine with a single NVIDIA 2080Ti GPU.

20

	Introduction
	Background
	Adversarial Models for Manipulating Counterfactual Explanations
	Experiment Setup
	Experiments
	Effectiveness of the Manipulation
	Outlier Factor of Counterfactuals
	Potential Mitigation Strategies

	Related Work
	Potential Impacts
	Discussion & Conclusion
	Acknowledgments
	Optimizing Over the Returned Counterfactuals
	Counterfactual Explanation Details
	Objectives & Distance Functions
	Re-implementation Details

	Unmodified Models
	Scalability of the Adversarial Objective
	Scalability Considerations
	Adult dataset

	Additional Results
	Outlier Factor of Counterfactuals
	Different Initializations
	Categorical Features

	Compute Details

