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ABSTRACT

Causal discovery aims to learn causal relationships between variables from targeted
data, making it a fundamental task in machine learning. However, causal discovery
algorithms often rely on unverifiable causal assumptions, which are usually difficult
to satisfy in real-world data, thereby limiting the broad application of causal discov-
ery in practical scenarios. Inspired by these considerations, this work extensively
benchmarks the empirical performance of various mainstream causal discovery
algorithms, which assume i.i.d. data, under eight model assumption violations.
Our experimental results show that differentiable causal discovery methods exhibit
robustness under the metrics of Structural Hamming Distance and Structural Inter-
vention Distance of the inferred graphs in commonly used challenging scenarios,
except for scale variation. We also provide the theoretical explanations for the
performance of differentiable causal discovery methods. Finally, our work aims
to comprehensively benchmark the performance of recent differentiable causal
discovery methods under model assumption violations, and provide the standard
for reasonable evaluation of causal discovery, as well as to further promote its
application in real-world scenarios.

1 INTRODUCTION

In the realm of modern science, numerous endeavors hinge upon the elucidation of underlying causal
mechanisms. However, owing to practical constraints including costs, risks, and ethical implications,
the execution of randomized experiments frequently proves unviable. Consequently, mining causal
relationships from purely observational data, known as causal discovery, plays a crucial role in
addressing causal questions such as intervention and counterfactual (Peters et al., 2017} |Spirtes et al.
2001} [Pearll, 2009; [Pearl & Mackenzie, [2018)).

Causal discovery encompasses a comprehensive suite of methodologies, primarily categorized into
constraint-based, score-based, functional causal model-driven, and gradient-based approaches. These
methods often rely on unverifiable causal assumptions as their foundation (Peters et al., 2017} Vowels
et al., 2022)). Constraint-based methods, notably PC (Spirtes & Glymour, |{1991) and FCI (Spirtes
et al., [1995), meticulously reconstruct causal graphs to the Markov equivalence class (MEC) through
rigorous statistical independence tests, guided by the faithfulness assumption. Score-based techniques,
such as GES (Chickering}, |2002), employ a scoring function to quantify the congruence between
an equivalence class and observed data, optimally searching the vast landscape of directed acyclic
graphs (DAGsS) to identify the MEC.

To transcend the limitation of solely identifying MECs from observational data, functional causal
model-based methods, exemplified by LINGAM (Shimizu et al.| 2006), leverage precise assumptions
regarding the functional class and noise distribution within structural equation models (SEMs),
enabling the unambiguous identification of a unique DAG. Recently, Zheng et al.|(2018) introduced
gradient-based techniques (e.g. NOTEARS (Zheng et al., 2018))), which convert combinatorial acyclic
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constraints into smooth equality constraints and solve the optimization by transforming equality-
constrained optimization into unconstrained optimization through the augmented Lagrangian method
(ALM) (Nemirovsky, [1999). In some literature (Zhang et al., {2023} |Liu et al., [2023)), gradient-based
methods are also referred to as differentiable causal discovery.

Apart from the various assumptions of the methods above, traditional approaches typically rely on
causal sufficiency and no measurement error assumptions to simplify the problem (Peters et al.,[2017}
Zhang et al.}|2018). Real-world data often fail to meet all of these assumptions, and these are also
impossible to verify adequately (Peters et al.,|2017). Although some studies have considered the
complexity of real data and developed algorithms targeted at latent confounders (Spirtes et al., {1995}
Xie et al., [2020; [Salehkaleybar et al., 2020; (Cai et al.| |2019; [Kong et al., [2023}; [Cai et al., [2023)),
measurement error (Zhang et al.,[2018; Dai et al.l 2022)), heterogeneity (Huang et al., [2020; (Cai et al.,
2020; |Ghassami et al., 2017;2018)), scale variation (Shimizu et al} 2011} Reisach et al., 2023} |Deng
et al.,[2024), and missing data (Tu et al., 2019a};|Gao et al., 2022), the true mechanisms remain unclear
when the causal discovery algorithms applied to real data. These specifically designed algorithms
also cannot be effectively employed for real data. Therefore, the robustness of causal discovery
algorithms in scenarios where model hypotheses are violated is of great importance.

Previous research (Heinze-Deml et al.,|2018)) mainly evaluated various constraint-based and score-
based algorithms under different scenarios, only focusing on linear SEM. The work (Mooij et al.,
2016) benchmarked causal discovery for nonlinear additive noise models and information-geometric
approaches, limiting to bivariate scenarios. The previous study (Singh et al.|2017) primarily assessed
algorithms that use only observational data, a mix of observational and interventional data, and active
learning, but their algorithm outputs were restricted to MEC. Also, those works (Glymour et al.||2019;
Vowels et al.| [2022) reviewed the advancements in traditional causal discovery (constraint-based,
score-based, and functional causal model-based) and differentiable causal discovery, respectively, but
lacked experimental support. The recent work (Ng et al.,2024) conducted an experimental assessment
of the advancements in differentiable causal discovery, illuminating the shortcomings of current
methods. However, their evaluation overlooked the ubiquitous violation of model assumptions that
characterize real-world applications. Conversely, another work (Montagna et al.,|2023)) benchmarked
the efficacy of traditional causal discovery algorithms, encompassing score-matching techniques,
under scenarios where model assumptions were violated. Nevertheless, their analysis did not
encompass the recent strides made in differentiable causal discovery, and the misspecified conditions
they evaluated were constrained in scope. Given that the application of causal discovery methods to
real data inevitably entails the violation of one or more unidentified assumptions, and that algorithms
premised on specific assumptions may falter in practical use, the robustness of causal discovery in
such misspecified contexts assumes paramount importance.

Our study undertakes an exhaustive empirical evaluation of both established and cutting-edge causal
discovery methodologies, comprehensively examining their performance under diverse scenarios
with assumption violations. The misspecified scenarios encompassed in our analysis represent the
most extensive coverage in the current research landscape. We meticulously evaluate mainstream
causal discovery approaches, spanning constraint-based, score-based, functional causal model-based,
gradient-based methodologies, among others, ensuring a holistic view of the field. Notably, our
work fills a crucial gap in the literature by being the first to assess the performance of gradient-based
methods across a wide array of misspecified scenarios. Considering their practical implementation
potential, it is important to evaluate their performance. Our contributions can be summarized as
follows:

* We conduct extensive large-scale experimental evaluations of twelve prominent causal discovery
algorithms across eight pivotal model assumption violation scenarios. Our rigorous research
endeavor involves executing over 70,000 experiments on more than 2,400 synthetic datasets,
ensuring a comprehensive assessment of the algorithm capabilities.

* We delve into challenging scenarios such as heterogeneity, scale variation, missing data, and
mechanism violation, thereby enriching the benchmark data landscape for model assumption
violations. This also aims to foster more comprehensive benchmark testing and foster a more
rational evaluation framework for future causal discovery algorithms.

* Our analysis of the experimental outcomes offers theoretical insights into the performance of linear
differentiable causal discovery methods under certain misspecified scenarios. Recognizing the
robustness demonstrated by differentiable methods in these commonly used challenging settings,
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we underscore the significant value of further in-depth research into differentiable causal discovery,
as it holds the promise of advancing the field in novel and impactful directions.

2 BACKGROUND
In this section, we introduce the definition of causal discovery (Section [2.T)), functional causal

model-based (Section [2.2), score-based (Section [2.3)) and gradient-based (Section [2.3) methods. For
constraint-based methods, see Appendix [A.2]and [B.1]

2.1 TASK FORMULATION

A structural causal model M (Pearl, 2009) consists of the set of endogenous variables X =

(X1,...,Xq) € RY, exogenous variables U = (Uy,...,U;) € R? and functional mechanisms
F =(f1,---, fa). Each variable X is defined by a structural equation:

X :fi(Xpa(Xi)7Ui)7Vi: 1, ada ()
where X; is the i-th node variable, pa(X;) denote the parents of X; , f; : ]R|XPCL<XH|Jrl — Ris
the causal structure function, and U = (U, ..., Uy) are jointly independent noise variables with
covariance matrix 2 = cov(U) = diag(c?,...,07).

The task of causal discovery is to infer a DAG G that describes the causal relationships among
variables from n independent and identically distributed (i.i.d.) observational data X € R™*?, which
are drawn from the joint probability distribution P(X).

2.2 STRUCTURE IDENTIFIABILITY

To uniquely identify a DAG G from purely observational data X sampled from P(X ), we need to
make assumptions about the SEM in (I). Considering a set of assumptions .A on a structural causal
model (SCM) M 4 = (P(X), G), the graph G is identifiable from P(X) if there is no other SCM
M = (P(X),G) satisfying the same A such that G # G and P(X) = P(X). Existing identifiable
causal models include: linear non-Gaussian acyclic models (Shimizu et al.l|2006)), linear Gaussian
models with equal noise variances (Peters & Biithlmannl [2014), post-nonlinear models (Zhang &
Hyvarinen, 2012) and nonlinear additive noise models (Hoyer et al., 2008; [Peters et al.| 2014).

2.3 DIFFERENTIABLE SCORE-BASED CAUSAL DISCOVERY

Traditional score-based causal discovery defines a combinatorial optimization problem:
mgin F(G;X) = L1ec(G; X) + AMlgparse (G)  st. G € DAG, )

where F' is a score function, L. (G; X) represents the goodness-of-fit between the estimated DAG G
and the true DAG, Lgparse (G) denotes the sparsity regularization term and A is a hyperparameter that
controls the strength of regularization.

As the number of nodes rises, the total count of possible DAGs expands super-exponentially (Robin-
son, |[1973). Consequently, most conventional score-based approaches utilize local heuristic search
techniques, including greedy search (Chickering) 2002; Hauser & Bithlmann| 2012) and hill-
climbing (Gamez et al., 2011} Tsamardinos et al., 20006).

In addition to search strategies, the design of score functions is also crucial. Commonly, score
functions are classified into two categories: Bayesian-based scores and information-theoretic scores.
Bayesian-based scores emphasize goodness-of-fit and enable the integration of prior knowledge, such
as the Bayesian Dirichlet equivalent (Heckerman et al.| |1995) and the K2 score (Kayaalp & Cooper,
2012). Information-theoretic scores, on the other hand, account for both model goodness-of-fit and
complexity, including the Bayesian information criterion (Neath & Cavanaugh, |2012) and the Akaike
information criterion (Akaikel |1998).

To overcome the challenges of combinatorial optimization, NOTEARS (Zheng et al.| 2018) formulates
the DAG structure learning task as:

mginF(g;X) s.t.  h(W(G)) =0, 3)



Published as a conference paper at ICLR 2025

where W (G) € R?*4 is a weighted adjacency matrix, d is the number of nodes, h(W(G)) = 0 is a
differentiable equality DAG constraint.

h(W(G)) = 0if and only if W (G) is a DAG. Commonly used DAG constraints include h(W(G)) =
Tr(eVeW) — d (Zheng et al., 2018), L(W(G)) = Tr[(I + aW o W)4] — d (o > 0) (Yu et al., 2019)
and h*(W(G))= — logdet(sI — W o W) + dlog s (s > 0) (Bello et al.,|2022). Furthermore, we
can transform the equality-constrained optimization (3) into unconstrained optimization (@) using the
ALM (Nemirovsky}, [1999):

min F(G: X) + ah(W(G) + 5 [h(W(G) . @

where oy and u; are the Lagrange multiplier and penalty parameter at the ¢-th iteration, respectively.

3 EXPERIMENTAL DESIGN

In this section, we introduce the generation of synthetic datasets with violated model assumptions,
the tested causal discovery algorithms, the algorithm hyperparameters, and the evaluation metrics.

3.1 SYNTHETIC DATASETS

Many prevalent causal discovery approaches hinge upon unverifiable assumptions. Our study pri-
marily scrutinizes the efficacy of these methodologies in circumstances where their underlying
assumptions are breached. To achieve this, we commence by elucidating the baseline model under
both linear and nonlinear frameworks, subsequently delving into scenarios where these fundamental
assumptions fail to hold.

Table 1: Summary of the algorithm assumptions and their corresponding output graph types. The
content within the cells indicates whether an algorithm supports (v') or does not support (X) the
specific condition in the corresponding row. The table style is adjusted from [Montagna et al.|(2023).

S & & @3
Nad 2 0 >
& o s & /@V@ & & ol R
¢ & &IPS S S

Gaussian noise v v X v v v v v v v v v
Non-Gaussian noise v X v X v v v X v X v v
Linear mechanisms v v v X v v v v X X v v
Nonlinear mechanisms v v X v X X X X v v v v
Unfaithful distribution X X v v v v v v v v v v
Confounding effects X X X X X X X X X X X X
Measurement errors X X X X X X X X X X X X
Autoregressive effects X X X X X X X X X X X X
Heterogeneous effects X X X X X X X X X X X X
Scale-variant effects X X v X X v X X X X X X
Missing mechanisms X X X X X X X X X X X X
Output CPDAG CPDAG DAG DAG DAG DAG DAG DAG DAG DAG DAG DAG

Linear vanilla model. In linear SCM, following the settings of Zheng et al.| (2018), coefficients
are sampled from U(—2, —0.5) U U(0.5, 2) with additive standard Gaussian noise. We refer to this
model as the linear vanilla model, which satisfies both identifiability and the assumptions of most
linear benchmark methods (see Table ).

Nonlinear vanilla model. In nonlinear settings, following the settings of Zheng et al.| (2020), the
SEM in equation (I)) is generated under the Gaussian process with radial basis function kernel of
bandwidth one, where f; is additive noise models with U; as a standard Gaussian noise. We refer to
this model as the nonlinear vanilla model, which satisfies both identifiability and the assumptions of
nonlinear benchmark methods (see Table|[T).

To eliminate the impact of Gaussian noise in the vanilla model on experimental results, we also
consider cases where the vanilla model uses non-Gaussian noise (see Appendix [G).
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3.1.1 MODEL ASSUMPTION VIOLATION SCENARIOS

Four scenarios of model assumption violations are defined below. The other four cases, i.e., con-
founded, measurement error, unfaithful and autoregressive model, follow the same settings as|[Mon-
tagna et al.|(2023)). These eight misspecified scenarios can be applied to both the linear vanilla and
nonlinear vanilla model to generate datasets.

Heterogeneous model. Existing causal discovery algorithms typically rely on the assumption of i.i.d.
data. However, real data often exhibit distribution shifts (Huang et al.l|2020). The heterogeneous
multi-domain data considered in this paper primarily refers to scenarios where the underlying causal
generation process remains unchanged, but the distribution of noise terms varies (Huang et al., [2020;
Zhang et al.| 2023} Wang et al., 2022). Specifically, we consider data from two domains e; and
e2. The proportion of data from e; is P; € {0.1,0.3,0.5,0.7,0.9} , and the proportion from ez is
1 — P;. The noise variance in e; is set the same as the vanilla model, while variance in e, is set to
~ € {0.01,0.05,0.1,0.5}.

Scale-variant model. Reisach et al.| (2021) observed a significant performance decline in linear
gradient-based methods, such as NOTEARS (Zheng et al.| [2018) and GOLEM (Ng et al.| [2020),
when applied to data with scale variation. However, there has been a notable absence of research
investigating the performance of nonlinear methods in the context of scale variation. Therefore, we
also consider scale variation as a misspecified scenario. The structural equations considered are:

Y - X7 — U;
Y Var(X))

where u; and Var(X;) are the mean and variance of X;, respectively. The input data are standardized,
while the ground truth graph remains consistent with the causal graph that generates the original data.

Vi=1,...,d 5)

Missing model. Missing data is a prevalent challenge in real-world datasets, necessitating that
causal discovery algorithms effectively address this issue (Tu et all [2019b). In our study, we
adopt the Missing Completely At Random (MCAR) mechanism (Tu et al) |2019a)), where the
occurrence of missing values follows a Bernoulli distribution with a missingness probability of
B € {0.005,0.01,0.05,0.1}. Given that the algorithms under consideration are incapable of directly
processing datasets with missing values, we eliminate any records containing such gaps. To mitigate
the influence of data quantity on the experimental outcomes, we ensure the volume of data remains
consistent before and after the removal of incomplete records.

Mechanism violation. Most current causal discovery algorithms presuppose either linear or nonlinear
mechanism, especially methods based on functional causal models (Shimizu et al.| 2006} [Peters &
Biihlmann, 2014} |[Zhang & Hyvarinen, 2012; Hoyer et al., 2008 |[Peters et al., |2014). These methods
necessitate specific assumptions about the SEM mechanism to guarantee identifiability. Given that the
SEM in real-world data is typically unknown, the robustness of algorithms in the face of mechanism
violation becomes critically important. In mechanism violation, the input data for algorithms designed
for linear SEM will adhere to the nonlinear vanilla model, whereas the input data for algorithms
tailored to nonlinear SEM will conform to the linear vanilla model.

3.1.2 DATA GENERATION

Following the data generation of Zheng et al.|(2018;2020) and [L1u et al.| (2023), different datasets
are generated for both linear and nonlinear vanilla model. We simulate ER and SF graphs based on
the number of nodes d € {10, 20,50}, average degree of nodes k € {2,4}. In addition, we consider
scenarios with Gaussian Random Partitions (GRP) (Brandes et al.l 2003) graph and an average node
degree of 6. For each experimental configuration and scenario, 10 datasets of 2000 samples are
generated. The mean and standard deviations of the evaluation metrics (Section [3.4) is reported to
ensure a fair comparison.

3.2 METHODS

We select 12 mainstream causal discovery algorithms, including constraint-based, score-based,
functional causal model-based, gradient-based and other representative methods. For a more detailed
introduction to the various methods, see the Appendix
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3.3 HYPERPARAMETER SETTINGS

PC (Spirtes & Glymour,|1991), CAM (Biithlmann et al.| 2014), and GraN-DAG require adjustment
of the significance level « in the statistical independence tests. NOTEARS, GOLEM, NOTEARS-
MLP, and DAGMA need adjustment of the sparsity coefficient A; for the [;-norm regularization
term. Typically, the ground truth of real data is unknown, making it difficult to effectively select
hyperparameters for various algorithms. Thus, to ensure a fair comparison of various methods, we

tune A; in {0.005,0.01,0.05,0.5, 2,5} and tune o in {0.001,0.01,0.05,0.1}.

3.4 EVALUATION METRICS

We employ Structural Hamming Distance (SHD) and Structural Intervention Distance (SID) (Peters
& Biithlmannl 2015)) to evaluate performance. SHD counts the number of edge insertions, deletions,
and reversals necessary to transform the estimated graph into the true graph. SID is used to assess the
distinctions in intervention distribution between the estimated and the true graph. Intuitively, SHD
focuses on differences in graph structure, while SID focuses on differences in causal ordering. Lower
SHD and SID values indicate better estimation of the target causal graph by the algorithm. For cases
where the output is a MEC, we follow the same approach as Zheng et al.| (2018), evaluating them
favorably by assuming the undirected edges in the MEC are in the correct direction.

4 CRITICAL EXPERIMENTAL RESULTS AND INSIGHTS

In this section, we first present the experimental results of the misspecified datasets generated accord-
ing to Section[3.1.1} comparing them with the findings from the vanilla scenario to draw conclusions.
Finally, we provide a more in-depth discussion on the performance of CAM (Section [d.1.T) and
offer theoretical insights into the performance of differentiable causal discovery (Section
Due to space limitations, the main text focuses on the experimental results for ER-2 graphs of 10
nodes (Table 2.1 2.2] @ [3.2l @1l F.2), whereas similar conclusions apply to different nodes, graph
types and graph densities (see Appendix [E| and [J). To visually and concisely present the results,
the outcomes of the 10 nodes graph under linear, nonlinear, and MLP settings (Section are
summarized in Figure E} We also consider the real-world Sachs (Sachs et al.| [2005) dataset (see
Appendix [[), combined misspecified scenarios (see Appendix [F), vanilla model with non-Gaussian
noise (see Appendix[G), semi-synthetic data (see Appendix [ and runtime of the benchmark methods
(see Appendix D). For each scenario, we generate datasets with 10 different random seeds, each time
drawing 2000 samples. We report the mean and standard deviations of the metrics over 10 trials. To
guarantee a fair comparison of various methods, the hyperparameters for each method are determined
as the optimal values relative to the specific dataset.

4.1 CURRENT METHODS’ PERFORMANCE IN MISSPECIFIED SCENARIOS

Our experiments show that differentiable causal discovery algorithms almost always achieve optimal
or competitive performance in commonly used misspecified scenarios other than scale variation. In
this paper, robustness refers to the ability of the model to perform well in misspecified scenarios,
consistent with the understanding of Montagna et al.| (2023]).

Confounded, measurement error, autoregressive and heterogeneous model. Table[2.1]
and [3.2)indicate that under the commonly used confounded, measurement error, autoregressive and
heterogeneous (P, = 0.5, v = 0.1) scenarios, differentiable causal discovery achieves optimal or
competitive performance compared to other methods. For the nonlinear Gaussian process mechanism,
although CAM (Biihlmann et al., 2014) demonstrates better performance, the discussion in Section
M.1.T|reveals that CAM still has limitations compared to differentiable causal discovery.

Missing model. We generate missing data that are MCAR with the missingness probability = 0.01.
Table[2.1] and[3.2]indicate that under MCAR, the result of various algorithms is close to that
in the vanilla model. Our experiments show that the performance of differentiable causal discovery
under missing data is consistent with traditional methods considered by |Tu et al.|(2019bza)), including
PC and GES.
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Figure 1: Experimental results under the linear, nonlinear, and mlp settings for both the vanilla scenario and the
eight misspecified scenarios. SHD (the lower the better) and SID (the lower the better) are evaluated over 10
trials on the 10 nodes ER-2 graphs. For the differentiable causal discovery method, we present only the optimal
results. As the nonlinear settings in Figure[Tc|and Figure[Id]are more favorable to CAM, we conduct a more
reasonable evaluation of CAM and differentiable causal discovery under the MLP setting (Section@.

Mechanism violation. For mechanism violation in the linear setting of Table[2.1]and [2:2] despite
PC and GES’s ability to handle nonlinear mechanisms, we are surprised to observe that linear
differentiable causal discovery algorithms achieve competitive performance. In the nonlinear setting
of Table[3:T]and 3.2} we discover that nonlinear differentiable causal discovery algorithms, such as
NOTEARS-MLP (Zheng et al} 2020), GraN-DAG , and DAGMA
2022)), outperform other types of algorithms. From Table [3.1]and [3.2] we also see that CAM
does not perform well under mechanism violation, although it excels in other scenarios. We speculate
that this is because the Gaussian process mechanism used in the nonlinear vanilla model aligns well
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with CAM’s assumptions about SEM. For a more detailed discussion on CAM performance, see

Section 4111
Table 2.1: Linear Setting, for ER-2 graphs of 10 nodes (Part I).

Vanilla model Latent confounders Measurement error Autoregressive
10 nodes SHD| SID) SHD| SID) SHD| SID) SHD| SID)
Random 25.6+3.1 579495 | 27.9+23  67.84£7.8 | 259435 60.4+11.3 | 27.943.2  62.0£8.1
PC 12.443.1  409+134 | 18.1+4.7 58.1£15.6 | 19.4+4.1 48.0+13.1 | 145420 44.849.5
GES 13.847.8 32.0£13.6 | 25.9+7.7 42.6+14.0 | 20.2+4.8 46.2+16.7 | 20.8+5.5 49.7£11.5

DirectLiNGAM | 19.64+3.3 46.1+10.6 | 20.44+5.0 42.0+6.0 | 17.64+24 48.8+124 | 19.7+42 50.4+8.4
Var-SortnRegress | 11.24+3.5  8.4+85 17.6+5.8  12.649.9 | 19.6+2.8 11.4+8.7 | 18.8+24 16.5+£10.6
R%-SortnRegress | 20.2+4.8 3244140 | 25.744.1 37.6+£13.0 | 25.646.0 39.2+16.0 | 25.6+4.9 38.8+19.0

NOTEARS 1.5+1.6 1.8+4.2 8.5+3.9 9.548.1 12.542.0 19.6+8.6 | 12.2+3.6 27.5+14.2
GOLEM 1.4+1.4 0.4+1.2 6.7+2.8 142498 | 17.8+2.5 43.1+13.3 | 16.6+4.0 34.9+169
NoCurl 2.0+1.8 5.1+£5.8 9.1+4.2 5.4+3.9 11.8+1.8 179484 | 14.8+25 17.5+10.8
DAGMA 1.2+1.2 33453 8.4+3.9 8.8+7.7 12.64+25 18.54+8.6 | 12.2+3.6 28.4+15.3

Table 2.2: Linear Setting, for ER-2 graphs of 10 nodes (Part II).

Heterogeneous Unfaithful Scale-variant Missing Mechanism violation

10 nodes SHD| SID} SHD] SID} SHDJ SID} SHD| SID} SHDJ SID}
Random 263435 577476 | 26.1+3.7  60.7£129 | 26.7+£3.0  64.0+8.7 | 27.5£34  63.146.0 | 28.3+£3.0  63.6+7.8
PC 13.842.6 47.5+103 | 13.9+32 40.6+104 | 12.4+3.1 40.9+13.4 | 13.0+4.7 44.8+16.0 | 17.1£25 64.9+£10.0
GES 15.5+6.1  35.2+12.2 | 17.8464 39.0+15.7 | 13.8£7.8 32.0+13.6 | 10.1+52 25.4+12.6 | 16.24+2.2 57.8+10.7
DirectLINGAM 16.3+3.9 347499 | 19.7+43 4474139 | 21.8443 62.6+93 | 20.1+43 49.8+11.1 | 20.0+£0.0  63.5+7.7

Var-SortnRegress | 17.943.3 8.6+9.3 124431 13.548.0 | 30.7+5.1  54.5+£103 | 7.3+3.5 9.3+84 15.6+3.3  39.0+6.7
R?-SortnRegress | 26.0+54 37.0+14.4 | 29.8+48 51.0+11.3 | 20.2+4.8 3244140 | 20.546.7 32.0+88 | 20.3+3.7  66.1+9.7

NOTEARS 5.5+2.7 5.4+5.1 2.7+3.1 3.145.1 18.0+£1.2  60.5+£73 2.3+1.7 6.4+8.6 19.0+£0.9  58.3+8.0
GOLEM 6.5+4.5 9.8+8.1 2.1+22 0.6+1.8 | 17.5+1.2 64.4+6.8 1.7£1.7  6.2+108 | 18.6+1.6 52.7+4.3
NoCurl 6.6+2.9 5.5+5.7 22423 20444 | 272451  69.9+7.9 | 3.1+£32 47+58 19.1£1.0  58.9+95
DAGMA 5.542.3 12.0+£8.2 | 2.1+42.2 0.6+1.8 17.9+14  58.7+6.8 1.5+14 4.5+7.1 19.0+£0.9  58.3+8.0

Scale-variant model. In Table and we observe that the results of linear differentiable
causal discovery algorithms, such as NOTEARS (Zheng et al., |2018)), GOLEM (Ng et al., [2020)),
NoCurl (Yu et al.,|[2021), and DAGMA, significantly decline under scale-variant data, performing
worse than PC and GES, which is consistent with the observations of [Reisach et al.[ (2021)). For
nonlinear differentiable methods, performance under scale-variant data has not been explored in
previous research. Table [3.1] 3.2} {.T|and [4.2] indicate that nonlinear differentiable methods also show
performance degradation under scale variation scenarios, and their results almost always lower than
CAM. However, unlike the linear scenarios, the result of nonlinear differentiable algorithms is almost
always superior to PC and GES.

Unfaithful model. In the linear setting of Table 2.T]and [2.2] we see a significant performance drop for
Var-SortnRegress (Reisach et al.,2021)) and RQ-SortnRegress (Reisach et al.,[2023) under unfaithful
distributions. The explanation for this is that for each triplet X; — X; — X, <— X; in the graph,
after the causal direct effect of X; — X}, cancels out, the variance of node X} changes significantly.
This reduces the Var-Sortability, further leading to a performance decline in the two SortnRegress
algorithms and linear differentiable methods. In the nonlinear setting of Table[3.1and 3.2} the SHD
of various algorithms generally decline to some extent under unfaithful path cancellations. This is
consistent with the experimental results of Montagna et al.|(2023), which indicate that the cancellation
of causal effects in unfaithful nonlinear scenarios makes structural inference of sparse graphs easier.

4.1.1 DIScUSSION ON CAM PERFORMANCE

Motivations. The nonlinear vanilla model adopts a Gaussian process that is consistent with the
assumptions of the CAM. To provide a fair benchmark for CAM, we consider the nonlinear vanilla
model following different functional mechanism. We compare CAM with the representative differen-
tiable causal discovery method: NOTEARS-MLP.

Simulations. We simulate ER-2 graphs based on the number of nodes d € {10, 20, 50}. Following
the data generation mechanisms of [Zheng et al.|(2020), we consider f; in nonlinear vanilla model
(Section [3.1)) is modified to be parameterized by a neural network with one hidden layer of size 100.

Results. From Table f.T]and [4.2] we observe that NOTEARS-MLP achieves better performance
under almost all model assumption violations. Considering that the functional mechanisms of data
in real-world scenarios are usually unknown, we believe that differentiable causal discovery has
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a significant advantage over CAM in all types of assumption violation scenarios except for scale
variation.

Table 3.1: Nonlinear Setting, for ER-2 graphs of 10 nodes (Part I).

Vanilla model Latent confounders Measurement error Autoregressive

10 nodes SHD| SIDJ, SHD| SID| SHD| SIDJ SHD| SID|
Random 277432 63.6+112 | 27.4+25 593494 | 27.4+3.6 63.247.7 | 28.5+23  65.848.6
PC 17.1£25 64.94+10.0 | 18.5+£1.9 62.849.1 | 18.2+1.1 61.6+£122 | 18.4+13 61.249.7
GES 162422 57.8£10.7 | 17.1£2.1 55.2+155 | 17.0£1.0 52.849.1 | 17.242.0 54.9+7.8
CAM 4.7+19  16.3+9.5 | 10.4+2.8 28.2+53 | 13.9+1.9 48.2+74 | 12.5+£3.0 33.9+16.3
NOTEARS-MLP | 12.4+22 36.3+7.1 | 17.0£1.7 49.248.6 | 16.5+0.8 48.9+4.8 | 17.0+£3.7 47.7+11.0
GraN-DAG 12.7424  33.2+£10.6 | 15.6+2.1 42.4+8.8 | 20.0+1.1 63.8£11.3 | 16.2+2.3 44.2+10.0
DAGMA 13.5+£2.0 40.7+8.1 | 18.6+£2.0 62.0+13.3 | 17.3+1.3 54.9483 | 19.0£2.0 56.6+10.5

Table 3.2: Nonlinear Setting, for ER-2 graphs of 10 nodes (Part II).

Heterogeneous Unfaithful Scale-variant Missing Mechanism violation

10 nodes SHD| SID} SHD| SID} SHD| SID| SHD| SID| SHD, SID}
Random 249432 62.1£10.1 | 28.7+2.1  69.8+79 | 27.5+25 699459 | 27.0+42 68.1+8.0 | 28.3+3.4 64.5+10.7
PC 21.3+£32 56.5£104 | 154414 573495 | 17.14£25 64.9£100 | 17.843.1 63.5£10.5 | 12.4+3.1 40.9+134
GES 19.84+2.5  55.7+84 | 15.0+4.5 50.2+13.1 | 16.2+22 57.8+10.7 | 16.6+2.6  56.2+9.9 13.8+7.8  32.0£13.6
CAM 13.8+29 21.7+128 | 7.1+3.2 24.7+13.0 | 4.7+19 16.3+9.5 6.5+2.1 15.4+7.3 17.8+4.4 459+17.0

NOTEARS-MLP | 164437 42.6+106 | 11.4+2.1 438492 | 16.1+25 48349.7 | 12.3+2.1  33.6£7.0 | 5.9+25 19.748.7
GraN-DAG 14.8+2.1  40.5+10.8 | 11.2+3.1  37.7+10.0 | 10.0+£3.7 26.1+12.0 | 10.4+3.4 25.7+8.1 | 16.3+2.1 54.7+5.1
DAGMA 16.4+4.3  36.6+15.7 | 8.6+3.1 29.6+14.8 | 15.7+2.7 53.3+129 | 13.74+2.7 41.4+7.8 3.3+3.1 9.5+11.6

4.1.2 THEORY ON DIFFERENTIABLE CAUSAL DISCOVERY IN MISSPECIFIED SCENARIOS

We analyze the performance of linear differentiable causal discovery under measurement error,
unfaithful and missing scenarios by introducing the theories (Theorem 7 and Theorem 9) from|Loh &
Biihlmann| (2014). Theorem 7 in Loh & Biihlmann|(2014) states that for a linear model with equal
noise variance, minimizing the least squares score will return the true DAG in the large sample limit.
For a linear model with non-equal noise variances, we define the noise ratio

max(o?,...,03
max(or,. ., 0g) (©)

min(oy,...,03)
Theorem 9 in|Loh & Biihlmann| (2014) states that if » < 1 + g, where £ > 0 is the gap between the
score of the true DAG and the next best DAG, minimizing the least squares score will return the true
DAG in the large sample limit.

Measurement error. In measurement error model considered by Montagna et al.|(2023)), the observed
variables are:

Xi:Xi—FCi,\V/?;:l,...,d, (7)
where X; = fi(Xpa(x,)) + Ui, fi is a linear mechanism, U; ~ N(0,1), ¢; ~ N(0,6 * Var(X;))
with § € {0.2,0.4,0.6,0.8}. In the vanilla model, » = 1. However, in the measurement error model,
the noise ratio becomes

max(1+ § x Var(X;),...,1+d x Var(Xy))
min(1 + § * Var(X;),...,1 4+ * Var(Xy))

’F:

®)

Due to the increasing trend of marginal variances of nodes along the causal direction (Reisach et al.,

2021), we infer that 7 > r = 1. In this scenario, there is no guarantee that 7 < 1 + % and linear
differentiable causal discovery based on least squares cannot guarantee obtaining the true DAG,
which can explain their performance decline in Table 2.T)and 2.2]

Unfaithful model. In unfaithful model considered by Montagna et al.|(2023), for each triplet X; —
X; — X}, « X, in the graph, the causal mechanisms are adjusted such that the direct effect of X; on
X, cancels out. To illustrate the change in noise ratio after path cancellation, we consider a DAG G
with variable set V(G) = {X1, X5, X3} and edge set E(G) = {X1 — X2, Xo — X3, X7 — X3}.
The structural equations is defined as:

Xl = U17

Xo = f1(X1) + Ua, ©

X3 = f1(Xy) — Xo + Us,
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where f7 is a linear mechanism. After the direct causal effect of X; — X3 cancels out, the noise
term of X3 is Uz — Us with the distribution of N(0,2). Similarly, in the unfaithful datasets with
nodes d € {10,20,50} considered by our experiments, for each triplet X; — X; — X + X,
in the graph, once unfaithful path cancellation occurs, the noise term of X}, is Uy — U; with the
distribution of N (0, 2). In this case, the noise ratio becomes ' = 2 > r = 1(vanilla model). Due
to the increasing of the noise ratio, there is no guarantee that ' < 1 + % and linear differentiable

causal discovery based on least squares cannot guarantee obtaining the true DAG, which can also
explain their performance decline in Table 2.T]and 2.2]

Missing model. Under the MCAR case, we deleted the rows with missing values and regenerated the
data under the i.i.d. assumption to ensure the unchanged sample size. The noise ratio = 1 remains
constant before and after data imputation. This explains the superior performance of differentiable
causal discovery methods observed in Table[2.T|and [2.2]

Table 4.1: MLP Setting, for ER-2 graphs of 10 nodes (Part I).

Vanilla model Latent confounders Measurement error Autoregressive
10 nodes SHD| SID} SHD| SID) SHD, SIDJ) SHD| SID)

CAM 12.443.6 39.3+165 | 16.6+4.2 4244177 | 19.744.7 59.6£12.0 | 16.0£3.4 46.0+16.6
NOTEARS-MLP | 8.1+2.7 22.2410.6 | 11.7+5.5 33.3+17.0 | 18.5+3.7 47.1+11.9 | 15.7+43 39.849.6

Table 4.2: MLP Setting, for ER-2 graphs of 10 nodes (Part II).

Heterogeneous Unfaithful Scale-variant Missing Mechanism violation
10 nodes SHD| SID| SHD/| SID| SHD| SID) SHD| SID| SHD| SID|

CAM 199436 49.1+7.2 | 13.0+3.2 36.0+14.0 | 12.4+3.6 39.3+16.5 | 13.24+3.6 44.7+16.7 | 17.8+44 45.9+17.0
NOTEARS-MLP | 14.5+2.2 34.3+104 | 14.8+39 32.3+12.8 | 18.24+2.6 61.0£11.0 | 9.0+3.3  22.0+10.0 | 5.9+2.5  19.748.7

4.2 SUMMARY AND IMPLICATIONS FOR PRACTICE

In Appendix [H} we summarize the results of the most competitive methods under misspecified
scenarios. Differentiable causal discovery methods demonstrate optimal or competitive performance
in commonly used scenarios other than scale variation. Notably, the recent work by [Deng et al.
(2024)) shows that for linear differentiable methods, scale invariance can be achieved by appropriately
choosing the loss function. This further reinforces our conclusion regarding the robustness of
differentiable methods. In our benchmarks, the results in Table |11} Table[21]and Table|25|indicate
that the performance of nonlinear differentiable methods under scale variation remains challenging
and warrants further investigation. In practice, the misspecified scenarios are inevitably encountered,
making the robustness of algorithms critically important. Based on the summarized results on
eight misspecified synthetic datasets (see Appendix [H), runtime results of benchmark methods
(see Appendix [D), real-world (see Appendix [I) and semi-synthetic data (see Appendix [[J) results,
we observe that differentiable causal discovery methods have the potential to achieve optimal or
competitive performance on real-world data with an almost negligible time cost. The fast and robust
characteristics of differentiable methods enable them to better address the challenges of applying
causal discovery algorithms to real-world data, demonstrating their practical implementation potential.

5 CONCLUSION

This work assesses the efficacy of twelve preeminent causal discovery methods across eight scenarios
involving violations of model assumptions. These methods encompass approaches grounded in
independence constraints, scoring criteria, functional causal models, and differentiable causal discov-
ery. Our experimental results show that differentiable causal discovery methods exhibit remarkable
resilience in commonly used scenarios of model assumption violations, except for scale variation. It
is not our intention to assert that differentiable causal discovery will achieve optimal performance
across all circumstances, rather, we aim to underscore its substantial potential within the benchmarks
we have evaluated, thereby emphasizing the necessity for further exploration in this direction. In
future work, causal discovery methods for more semi-synthetic data and real-world scenarios will be
explored. Finally, our study confines itself to non-temporal causal discovery algorithms. Equally cru-
cial is the conduct of benchmark assessments for causal discovery in time series and event sequences
under model assumption violations.

10
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A CAUSAL ASSUMPTIONS
In this section, we introduce the assumptions frequently used in the causal discovery literature.

A.1 CAUSAL MARKOV PROPERTY

The joint probability distribution P(X) satisfies the global Markov property (Peters et al., [2017) with
respect to the DAG G if

Xall gXp| Xe= Xal px)Xp | Xo, (10)

where X 4, Xp and X are the disjoint subsets of X = (X1,...,Xy) € RY, I g denotes d-
separation in the causal graph G, and _l p(x) represents independence in the joint probability
distribution P(X).

In the causal graph G of SCM, each variable is independent of its non-descendant nodes when its
parents are known, which is referred to as the local Markov property (Peters et al.,[2017)). Causal
Markov property also implies that the joint probability distribution P(X ) can be factorized in the

following form:
d

P(X) =[] P Xi|pa(Xy)). (11)

i
A.2 FAITHFULNESS

The joint probability distribution P(X) is faithful (Peters et al.,2017) to the DAG G if
Xall pxyXp | Xo= Xal ¢Xp| Xc. (12)

Faithfulness assumption implies that the conditional independence in the P(X) can be used to infer
the graph structure. Constraint-based and traditional score-based causal discovery are typically
founded on the faithfulness assumption. In a causal graph, the cancellation of effects along multiple
causal paths can lead to a violation of faithfulness assumption.

A.3 CAUSAL SUFFICIENCY

Causal sufficiency assumption is also referred to as no latent confounder. A set of variables X is said
to satisfy the causal sufficiency if there is no unobserved common cause variable C' that influences
more than one variable in X (Spirtes, [2010). This assumption is also frequently considered in causal
discovery literature. However, since we cannot always observe all variables in the real world, causal
sufficiency assumption is inevitably violated.

A.4 INDEPENDENT AND IDENTICALLY DISTRIBUTED

Non-temporal causal discovery algorithms typically also require the i.i.d. assumption. In the main
text, heterogeneous multi-domain data and autoregressive scenarios are two special cases where the
i.i.d. assumption is violated. Heterogeneous multi-domain data is closely related to the non-stationary
time series data considered in the literature on temporal causal discovery (Huang et al.,2020). Below,
we introduce the connection between them. We consider the distribution of X; changing with domain
or time index, where the mechanism for the ¢-th data point is as follows:

Xi,t = fi,t (Pa(Xi,t% Q’,t) , (13)
where ¢; ; is the noise term of X; ;. In heterogeneous multi-domain data, ¢ represents the domain
index, whereas in non-stationary time series data, ¢ denotes the time index.

A.5 EQUAL NOISE VARIANCES

Ng et al| (2024) observe that the performance of linear differentiable causal discovery methods
significantly declines in data with non-equal noise variances. They hypothesize that this may be due
to the optimization problem becoming severely non-convex under non-equal noise variances, leading
to local optimal solutions. Although differentiable methods do not explicitly assume equal noise
variance, the performance decline suggests treating equal noise variance as a causal assumption.
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B BENCHMARK METHODS

B.1 PC

PC (Spirtes & Glymour,[1991) algorithm is a representative constraint-based causal discovery method.
In the first step, under the faithfulness assumption, the global causal skeleton is determined based
on conditional independence tests. In the second step, some edge directions in the skeleton are
determined by identifying collider structures. Finally, the remaining edge directions are determined
using orientation rules, resulting in the MEC. We use the implementation of the PC algorithm in
causal-learn (Zheng et al 2024) python package, available athttps://github.com/py-why/
causal-learn.

B.2 GES

GES (Chickering, 2002) algorithm is a classical score-based causal discovery method. GES mainly
includes two stages. In the first stage, starting from an empty graph, edges are added through
greedy equivalence search, and the structures in the equivalence class of the new graph are scored.
The graph with the highest score is selected, and the edge-adding process is repeated until the
score reaches a local maximum. In the second stage, starting from the graph obtained in the first
stage, edges are removed through greedy equivalence search, and the structures in the equivalence
class of the new graph are scored. The graph with the highest score is selected, and the edge-
removal process is repeated until the score reaches a local maximum. We use the implementation
of the GES algorithm in causal-learn (Zheng et al., [2024) python package, available at https:
//github.com/py—-why/causal-learn.

B.3 DIRECTLINGAM

DirectLiNGAM (Shimizu et al., |2011) is a classical linear method based on the functional
causal model. To address the issues of slow convergence and large errors in the ICA-based
LiNGAM (Shimizu et al.,[2006)) algorithm, Shimizu et al.|(2011)) proposed DirectLiNGAM based
on the principle of residual independence. Although the solving speed became slower, the accuracy
and convergence improved. We use the implementation of DirectLiNGAM algorithm in gCas-
tle (Zhang et al.|2021) python package, available at https://github.com/huawei-noah/
trustworthyAI/tree/master/gcastlel

B.4 CAM

CAM (Biithlmann et al., 2014) is a method used for high-dimensional additive structural equation
models. CAM separates the search for the order of variables from the selection of edges. It
performs the variable order search through nonregularized maximum likelihood estimation and uses
sparse regression techniques for edge selection. We use the implementation of CAM algorithm
in Causal Discovery Toolbox (Kalainathan & Goudet, [2019) python package, available at https :
//github.com/FenTechSolutions/CausalDiscoveryToolbox.

B.5 SORTNREGRESS

SortnRegress algorithm includes Var-SortnRegress (Reisach et al. [2021) and R2-
SortnRegress (Reisach et al., 2023).

Reisach et al.| (2021) emphasized that in the bivariate linear case, causal direction inferred by
minimizing mean squared error (MSE) loss is from the variable with smaller variance to the variable
with larger variance. They further hypothesized that, in the multivariate case, there is a consistency
between the underlying causal direction of the data and the increasing order of the marginal variances
of the variables. They provided a general definition of sortability:

d . 1 a<b
o s iner(7(X, s), 7(X, t
v (X,G) = 2zt Z(Sﬁ?lEA(g) (rX, 5).7( ))Where incr(a,b) =<1/2 a=0b, (14)
> e Z(sﬁt)eA(g)i 1 0 a>b
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7 represents a function with 7(X) € [0,1], A(G) is the adjacency matrix of G, A(G)" is the i-th
matrix power, (s — t) € A(G)" if and only if at least one directed path of length ¢ from X to X;.

In Var-Sortability, 7(X, s) denotes the variance of X,. Var-Sortability measures the consistency
between the causal structure order and the increasing order of marginal variances of nodes. Intuitively,
the greater Var-Sortability of the data, the better performance of methods based on MSE loss.
Subsequently, they proposed the Var-SortnRegress algorithm to discover causality using only variance.
In the first step, the nodes are ranked according to the increasing order of marginal variances. In
the second step, linear and Lasso regression are used for estimation. We use the implementation of
Var-SortnRegress algorithm in CausalDisco python package provided by the authors, available at
https://github.com/CausalDisco/CausalDisco.

Reisach et al.[(2021) demonstrated that the performance of linear differentiable causal discovery
algorithms is greatly affected by Var-Sortability. Building on previous work, Reisach et al.| (2023))
pointed out that the coefficient of determination R? remains unchanged after scaling the data, and
proposed the R2-SortnRegress algorithm, which achieves better performance on scale-variant data.

The definition of R2:
~ Var (X —E[Xi | X1, apgey]) (15)
Var (Xf) '

In R2-Sortability, 7(X, s) denotes the coefficient of determination R? of X. R?-Sortability measures
the consistency between the causal structure order and the increasing order of R2. If ve (X, G) = 1,
the causal order can be fully identified by the increasing order of R?. If vz (X,G) = 0, the
causal order can be fully identified by the decreasing order of R2. The only difference between
R2-SortnRegress and Var-SortnRegress lies in the definition of 7. We use the implementation of
R2-SortnRegress algorithm in CausalDisco python package provided by the authors, available at
https://github.com/CausalDisco/CausalDisco.

RZ=1

B.6 NOTEARS

Based on (E]) the NOTEARS score function is:
. 1
min F(GX)=o-|X - XWG)E+ AW (Gl st hW(G)) =0, (16)

where || - || ¢ is the Frobenius norm, || - ||1 is the sum of absolute values of all elements in the matrix.

The unconstrained objective function obtained through the ALM is:
. 1 ¢
min L, (W(9),0, @) = 5= [X = XW(@) [} + AW (G) s + ah(W(@) + 5 (W (@) . (17)

The update rule for the parameters is:

W(G)k, 0k = arg Wr?ér){aLu(W(Q), 6, )

a1 = o + ph (W(G)k) (18)

)

_ { N, i [R(W(G)i)| > v [h (W(G)k-1)]

Hht1 L, otherwise

where 6 represents the parameters of a neural network used to fit a nonlinear function, and 6 can be
ignored for a linear model. The hyperparameters are usually set as 7 = 10 and vy = i.

In practice, the optimization stopping criterion is i (W (G)x) < € € {1e75,1e78%,1e7 '}, which
does not guarantee the output to be a DAG. Finally, for values in W(G) with absolute values
smaller than a threshold 7, we set them to 0 in order to obtain a DAG as closely as possible. We
use the implementation of NOTEARS algorithm provided by the authors, available at https:
//github.com/xunzheng/notearsl

B.7 GOLEM

GOLEM (Ng et al., [2020) proposed an improved loss function to address the numerical and ill-
conditioned issues that often arise during the multiple iterations of optimization in NOTEARS. The
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unconstrained optimization problem formulated by GOLEM is:

in, S(V(@):X) = LOWG):X) + MW@l +Ah(W(@). 19

where A; and A\, are hyperparameters, i € {1,2}.

When assuming linear Gaussian with non-equal variances, that is, GOLEM-NV:

d n 2
Li(W(G); X) = %Zlog <Z (Xf’” - W(g)jx“ﬂ) ) —log|det(I —W(G)),  (20)

k=
where X i(k) denotes k-th data point of X;.

When assuming linear Gaussian with equal variances, that is, GOLEM-EV:

d n 2
Lo(W(6):X) = S log (Z > (X - i) x®) ) ~log|det(I - W(@)). 1)

i=1 k=1

The authors proved that in the case of linear Gaussian with equal variances, when the hard DAG
constraint is not satisfied, the least-squares optimal solution of NOTEARS returns a cyclic graph,
whereas the optimal solution of GOLEM-EV corresponds to the ground-truth. GOLEM combines
the maximum likelihood objective function with a soft DAG constraint, replacing the least-squares
objective function and hard DAG constraint, making the optimization easier to solve and the results
better. We use the implementation of GOLEM-EV algorithm provided by the authors, available at
https://github.com/ignavierng/golemn.

B.§ NOTEARS-MLP

NOTEARS-MLP (Zheng et al.| 2020) extends the differentiable causal discovery framework to the
nonlinear case. Each variable X; is defined as follows:

Xj = fj(Xpa(Xj)an)vvj = 17 ad~ (22)

The authors proved that f; is independent of X, if and only if |0y f;||, . = 0, where || - || .2 is the
L2-norm. Next, they define nonlinear causal effects through partial derivatives:

W(Hlks = 110 fill 2 » (23)
where [W(f)]x; is the causal effects from X, to X;, and W (f) = W (f1,..., fa) € R4
In practice, neural networks are used to fitting nonlinear functional relationships f;:

MLP, (X; AD A<h>) — g (AU% ( L AQg (A“)X))) : (24)

where A) € RmexXme-1 4 ig the activation function.

For the convenience of derivative computation, the authors proved that MLP; are independent of X,
if and only if the k-th column of the first-layer weight matrix A(!) is entirely zero. The parameters

of MLP; are §; = (Ag.l), . ,A§h)). The authors ultimately obtain a weighted adjacency matrix
representation that is independent of the depth of the neural network:

W(0)|k; = Hkth — column (A;l)) H2 . (25)

The objective function of NOTEARS-MLP is:
d
.1 1)
=S L(X;, MLP; (X6, )\HA(. H L h(W(0) =0.
memn; (X, MLP; (X;0;)) + A | A;7|| - st h(W(0)) (26)

NOTEARS-MLP trains d neural networks and represents the acyclicity constraint only through the
first-layer parameters of neural networks. We use the implementation of NOTEARS-MLP algorithm
provided by the authors, available at https://github.com/xunzheng/notears.
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B.9 GRAN-DAG

GraN-DAG also extends NOTEARS to the nonlinear case and considers the ANM data generation
mechanism:

X; :fj(Xpa(Xj))+Uj7vj:17"' ,d. (27)
The authors state that the parameters of j-th neural network (NN) are:
_ (1) (L+1)
i) = {W(j) W } (28)

where W((f)) is the ¢-th weight matrix of the j-th NN.

They define the j-th connection matrix:
— |+ (2) (1)
Oy = ‘W(j) ‘W(j) ’ ‘W(j) ] . (29)

Based on the above definition, the authors construct a weighted adjacency matrix related to the depth
of the NN:

(W¢)ij - {%k_l <C(j))ki’ i)fti]lezéwlise ’ (30)
where m is the output dimension of the NN.
The objective function of GraN-DAG is:
d
mfxEXNp(X) Z:llogpj (Xj | Xpa(x;); ¢(j)) s.t. h(¢) =Tre"e —d=0. (31)
=
The unconstrained objective function of GraN-DAG is:
d
mthE (¢, at, ) = Exopex) ZEIOng (X5 | Xpa(x,): 0)) — ath(®) — %h(¢)2- (32)
j=

When the data generation mechanism follows the nonlinear Gaussian additive noise model, it can
be proven that the optimal solution of GraN-DAG corresponds to the ground-truth. We use the
implementation of GraN-DAG algorithm provided by the authors, available atlhttps://githubl
com/kurowasan/GraN-DAG.

B.10  NOCURL

Since a DAG is related to curl-free functions on its edge set, NoCurl proposed a new representation
of a DAG:

A=~(W,p), (33)
where W is a skew-symmetric matrix with W = —W7, p € R? is the potential function on the
vertices of the graph.

The authors further proved that:
(W, p) = W o ReLU(grad(p)), (34)

where grad is the gradient operator.
The optimization problem established by NoCurl is:

(W, p*) = argmin  F(y(W, p), X), (35)
W.p
with the optimal DAG A* = W* o ReLU (grad (p*)). NoCurl implicitly ensures the acyclicity
constraint, overcoming the shortcomings of the ALM, avoiding multiple iterations, and improving
computational efficiency. We use the implementation of NoCurl algorithm provided by the authors,
available at https://github.com/fishmoonl1234/DAG—NoCurll
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B.11 DAGMA

DAGMA (Bello et al., |2022) proposed a log-determinant form of acyclicity representation
"y (W)= — logdet(sI — W o W) + dlogs (s > 0), which has three advantages compared
to the exponential acyclicity constraints hexpm (W) = Tr(e"V°W) — d (Zheng et al., 2018) and
polynomial acyclicity constraints hpoly (W) = Tr[(I + aW o W)?] — d (a > 0) (Yu et al., 2019).
The authors proved that:

(36)

where Tr ((W o W)k) represents the information of cycles of length k. The information of cycles of

d
length £ in hexpm (W) and hpory (W) is weakened by % and (d%) respectively. It can be theoretically
proven that A7, (W) is an upper bound of hexpm (W) and hpoly (W), retaining more information

about the cycles.

The authors also proved that:

Vhespm(W) = 2 (V") T o W

1 d—1\ |

Vi (W) =2 ((sT = WoW)~1) oW

Vhexpm (W) and Vhyer, (W) are prone to the vanishing gradient problem. It can be theoretically
proven that VA, . (W) is an upper bound of Vhexpm (W) and Vhper, (W), retaining more informa-
tion about the cycles.

The third advantage is that, in practice, h{; . (W) and VA, (W) are faster to compute. Because
the computation of h$,; (W) and VA, . (W) involves matrix log-determinant and matrix inverse,
both of which have been extensively studied and solved. In contrast, other acyclicity constraints
and their partial derivatives involve multiple matrix-to-matrix multiplications, which are slower.
We use the implementation of DAGMA algorithm provided by the authors, available at https |
//github.com/kevinsbello/dagma.

C RELATED WORK

Differentiable causal discovery methods. Building on traditional score-based causal discovery
algorithms, NOTEARS (Zheng et al.,|2018)) transformed discrete constrained optimization into smooth
equality-constrained optimization. This formulation has been extended to various settings, including
more efficient linear models (GOLEM (Ng et al.,|2020), NoCurl (Yu et al., 2021), NOFEARS (Wei
et al., [2020), LEAST (Zhu et al., 2021)), neural networks (NOTEARS-MLP (Zheng et al., [2020),
GraN-DAG (Lachapelle et al.| [2019), DAGMA (Bello et al., [2022), DARING (He et al., [2021]),
CASTLE (Kyono et al.,[2020)), generative adversarial networks (SAM (Kalainathan et al.| 2022)),
variational autoencoders (D-VAE (Zhang et al., |2019)), graph neural network (GAE (Ng et al.,
2019), DAG-GNN (Yu et al.;,[2019))) , federated learning (FedDAG (Gao et al.,[2021))), reinforcement
learning (RL-BIC (Zhu et al.| 2019)), interventional data (DCDI (Brouillard et al., [2020)), time
series data (DYNOTEARS (Pamfil et al.| [2020)), multi-domain data (DICD (Wang et al., [2022),
ReScore (Zhang et al.l 2023), CASPER (Liu et al.;|2023))), and domain adaptation (CAE (Yang et al.|
2021)). Although differentiable causal discovery has made significant progress, it is also affected by
Var-Sortability (Reisach et al., 2021} [2023)) and highly non-convex optimization problems (Ng et al.,
2024)). Recent research by Deng et al.| (2024) shows that differentiable causal discovery methods can
achieve scale invariance and global optimization when the correct loss function is used.
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D TABLE RESULTS FOR RUNTIME OF THE BENCHMARK METHODS

The results in Table[8] [0} [I0]and[IT|show that differentiable causal discovery, exemplified by DAGMA,
NOTEARS-MLP, and NoCurl, achieve superior performance with almost negligible runtime cost.

Table 8: Results for runtime (in seconds) on degree k& = 2 graphs of 10 and 20 nodes. The reported
results are the mean and standard deviation of the runtime over 10 repetitions across different graph
types, vanilla and model assumption violation scenarios.

Method d  Runtime (seconds)
PC 0 ioisoss
GES 0 8o
DirectLiNGAM ég ;;ééigfé
Var-SortnRegress ég }ééigég
R?-SortnRegress ég }éiigﬁg
NOTEARS ég 393.3557124.6731
GOLEM 50 (5
NoCurl 20 10294184
CAM 0 11397aks
NOTEARS-MLP ég ;‘jgﬁigﬁ%
GNDAG 30 VS
pacMA 30 TiSi0n

24



Published as a conference paper at ICLR 2025

E TABLE RESULTS ACROSS NODES, GRAPH TYPES, AND GRAPH DENSITIES

More experimental results for linear, nonlinear and MLP settings are reported in the Appendix as

Table O} [T0} [T}, [T2} T3} [T4], [T3] [T6} [T7] [18] [T9} 20} [21] shows.

Table 9: Linear Setting, for ER-2 graphs of 10, 20, 50 nodes.

10 nodes D 11 SHD} SID} SHD| SID} SHD} SID} SHD| SID| HD, SID} SHD| 11 SHD} SID} SHD| SID}
PC 58.1+156 19.4+4.1 14.5+2.0 448495 139432 40.6+10.4 409134 13.0£47 44.8+16.0 17.1£25
GES 12.6+14.0 202448 20.8+5.5 49.7£115 17.8+6.4 39.0+15.7 0: 101452 25.4+126 16.2+22
R?-SortnRegress 37.6+13.0 25,6460 39.2£16.0 25.6+4.9 38.8+19.0 29.84+48 51.0£11.3 324140 20.5+6.7 320488 203437
R2-SortnRegress | 8874208 11734386 8944151 15664423 | 10694154 140, 6 | 11074139 12304370 | 10775155 14884368 11734386 | 9564285 1323389 | 432471 24724360
50 nodes SHD| SID} SHD| SID} SHDJ SID} SHD} SID}. SHD} SID} SHD} SID} SHDJ SID} SHD} SID} SHD| SID}
[R?-SortnRegress | 38834724 946.6+22.1 34604383 903.4+1386 85332150 | 549.44689 1£1769 | 38834724  555.8+142.2 | 420. 8.4 8.1 108.1£7.9  1313.489.6
N 152462 46.5+15.4 81.0£10.2  619.0488.3 944.2+134.6 23. 18134515 16.745.2 66.6+54.9 90.8+38 972.0+82.0 156469 91.7+50.6 924219 959.7+97.0
DAGMA 124443 47.5+39.7 427£10.0 284.2: 81.2+94 635.0+£72.0 932.1£91.9 24, 6 170.762.0 14.6+4.4 5504333 90.6+4.0 969.3+88.7 133443 79.0+£54.9 924£19 959.74£97.0
Table 10: Nonlinear Setting, for ER-2 graphs of 10, 20, 50 nodes.
10 nodes D} SID} SHD} SID| SHD} SID| SHD} SID} SHD} SID} SHD. S SHD| SID} SHD| SID}
PC 18519 182+1.1 61,6122 18.4£13 61.2+9.7 213432 56.5+10.4 154414 57.3+9.5 17.1425 64.9410.0 17.843.1 63.5£10.5 124431 4094134
GES 17.1+2.1 17.0£1.0 52.8+9.1 17.2420 54.9+78 19.8425 557484 150445 50.2+13.1 16.2+22 57.8+10.7 16.6+26 56.2+9.9 138478 320+136
CAM 104528 139419 482:74 125430 33.9+163 13.8+29 2174128 .1+32 24.7+13.0 16.3+9.5 15.4+7.3 17.8444 45.9+17.0
20 nodes SHD| SID) SHD| SID| SHD/| SID| SHD| SID| SHD} SID| SHD} SID| SHD, SID} SHD| SID} SHD| SID}
S S S S S TS N
NOTEARS-MLP +99.1 89.249.3 936.4+97.2 87.2+3.0 91111089 | 101.7+48  1039.6+883 89.1+9 A=1123 69.5+4.1 829, 4.5 78.3+3.7 876.2:99.7 69.0+6.7 689.2:66.6 447459 543.8+72.1
Table 11: MLP Setting, for ER-2 graphs of 10, 20, 50 nodes.
‘Vanilla model Latent confounders Measurement error Autoregressive Heterogeneous Unfaithful Scale-variant Missing Mechanism violation
10 nodes HD| SID} SHD| SID| SHD| SID| SID| SHD| SID SHD| SID] SHD| SID| SHD| SID| SHD| S|
CAM 124536 393165 | 166542 4242177 | 197547 5962120 160534 460£166 | 19.9436 49.1:72 | 130432 360£140 | 124136 3931165 | 132136 4474167 | 178144 459170
20 nodes. SHD SID SHD, SID) SHD| SID|. SHD SID| SHD/. SID) SHD/ SID|. SHD| SID|. SHD, SID|. SHD SID
CAM 252483 ISL1£623 | 325476  189.04346 | 50.3£73 23084300 | 364493 16404555 | 483480 20554381 | 285459 1493477 | 252483  I5L1=623 | 263386  ISS.1L638 | 412481 21344470
NOTEARS-MLP | 15.6+3.6  74.3+17.2 258438 160.6439.6 37.342.1 197.4425.0 36.9+5.0 187.8423.3 294460 98.6426.8 284442 10584277 | 342435 20914212 159437 7494202 19.2449  87.2417.7
CAM 59.7+109 8375 8344121 942.5+1642 | 128.8+103  12202+1247 | 101.3£17.7  855.8+172.9 | 126.7+180 1008.1+£1359 | 65.2+9.1  717.1+103.0 | 59.7+£10.9 837.5+159.7 | 614114 849.0+1583 | 77.8+11.8 877.2:1656
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Table 12: Linear Setting, for ER-4 graphs of 10, 20, 50 nodes.

Vanilla model Latent confounders Measurement error Autoregressive Heterogencous Unfaithful Scale-variant M Mechanism violation
10 node: SHD| iDL SHDJ. siDL SHD,. siD| s siD| SHD.. siD| SHDL. siD| SHDL. SID] SHDL. SHDL. SID|
Random 35540 759568 | 319520 338533 3LgELs 3232 752270 | 3I8E40 725579 | 30737 EENEEY) 0L 751563

PC 650472 | 304221 27.9:53 312531 290221 WBi28  TAE84 | 286432 4427 367417
GES 6504106 | 263439 237548 204539 285435 251454 612807 | 279427 25041 37310

DirectLiNGAM 667584 | 24957 297220 235564 259536 263548 633106 | 369436 232553 40,0200

Var-SortnRegress 145272 | 9.1i32 10,6534 82420 72426 2595120 | 236536 61428 349516

R2-SortnRegres 21x132 | 14520 20049 183459 122450 5195142 | 88438 112529 3901512

15693 | 9684 141555 9.6:40 85531 1855117 | 359434 54433 36:07
GOLEM 1182106 | 10238 28224 174571 86429 90488 371430 22422 384508
NoCurl 198202 | 101544 142453 9.6+36 73417 2562169 | 37.9%41 69+41 258523 | 38708
DAGMA 24525 93094 | 7dsad 152651 305292 | 106565 79437 180580 | M7:34 31526 91565 | 386:07
20 nod SHDJ. SIDL SHDJ. SIDL SHD.. SIDL SHD.. SIDL SHD.. SIDL SID} SHDL. SIDL SHDL. SID}
Random 79571 320811 3L7EI17 | 1165552 3180498 | 1153239 1133564 30732188 20982232 30655155 | 109745 31364035 | 1182237 3131168
PC 766 30485198 31994234 | 877589 3041210 | SITES6 T8I 30665236 30184223 348198 | 767E49 28954276 | 76918
GES 1605150 22444417 2322628 | 1138458 3083202 | 1099103 12924137 24254396 2544316 044217 | 106496 24015501 | TABE22  3169+189

DireciLiNGAM | 8895106 26474344 BI1570 25844230 | 874470 12802 24724208 26644352 384131 | BO.6EI02 2485+ 97505 32934203

Var-SorinRegress 7274380 554 950:93 10554370 | 990445 95309 | 963454 6380 8241466 2374176 | 82477 632317 | 755k4l 28251277

R2-SortnRegress 13834317 1655154 | 1144279 21784276 | 1145502 18394372 | 1165408 15714301 19934338 13835317 | OLAEIS3  141SES | 837Es7 3422+162

4982203 13804160 | 708483 14884268 | 794479 2084245 | 48877 14414305 5962253 31904177 | 195597 4.1 30124218

GOLEM 3574198 13645159 | 79644 29994179 | 78423 3109172 | 59386 22974358 4935355 35346130 | 11352 30064106
NoCurl 550287 3365 | 71785 1480309 | 905558 11024565 | 605EI0S  79.2:454 7675438 9 M3drns | 214139 3040148
DAGMA 3442234 | 35472 1327028 | 710557 18361312 | 75566 24861375 | 475569 13463408 42105 015137 | 136573 TITE2  3000:158
50 nodes SHDJ SIDy SHDJ. SID| SHD, SID| SHD, SID| SHD, SID| SID} SID} SID} SID|

66155185 1968 63624148 196504548 | 64532216 193984672 | 65724167 196324302 | 6569<143 196584405 196724696 2 195015518 197474535 196762550

35654264 1630, 43404276 1600741362 1745241237 | 42345353 1367651195 | 36884239 1505541485 6 21319785 158591392

38414505 43091564 | 8647119 ISIBLBR 828451364 | 78565376 SILOL11 | T739:448  28TL1770 7 IST465914 | 38405605 382841350

00441010 978142515 | 89854190 41563 25 157026048 | 85931311 1080342057 | 91404451 1071241917 13 97824256 | 727151185 996641706

015308 528041633 1112262926 | 22044194 1843941008 | 28115302 1739441360 | 15742262 907341518 193644810 | 7424310 532.6+1504

5685149 216651016 1237622247 | 1990413 1965651039 | 199.6516 1966551039 | 170.02252 1494441318 2014121351 | 534199 205151709

15624815 61494006 §73441922 | 33425432 11997148 | 477951263 1153563961 | 39674548 876422466 215851541 | 16662670
DAGMA 4945166 411151685 1107341620 | 21182120 190004029 | 22455252 182124883 | 1550302 870.3:1242 191735773 | 5265191

Table 13: Nonlinear Setting, for ER-4 graphs of 10, 20, 50 nodes.

Vanilla model Latent confounders Measurement error Autoregressive, Helerogencous. Unfaithful Scale-variant Missing Mechanism violation
10 nodes HD | SID} SHDJ, SID} SHDJ SID} SHI SID} D, SID} SHD| SID} SHD| SID| SHD| si SHD|. SID|
Random 311534 T42:67 | 332424 332429 766537 | 310835 757454 37433 777540 | 319420 760+58 | 305+22 742441 | 320430 739454 | 320432 74862

PC 367517 816:52 | 364822 361514 777105 | 37642 787565 JELS  740:60 | 287420 679478 | 367+17 816452 T86£73 | W632 650472

GES 373510 7732118 | 369213 314 704280 | 36ELI 774%70 | 328217 TL166 608:72 | 373k10 773118 722400 | 27927 65.0+106
405293 | 288227 313423 20821 574:76 | 153338 33ing 745102 | 230234 405593 361472 | 300£24 753452

637581 | 37.6+16 359514 363127 667579 | 289440 S84+0.1 597485 | 375+08  75.1+01 6495107 | 270282 669+130

380:162 | 293:53 25113 | 29.55410 . 6395122 | 202475 4644153 5294110 | 242435 S124117 5434138 | 209+46  707+48

6982100 | 390513 798299 | 385:00 316 T38E00 | 275831 585+710 34506 | 374213 763+76 6745101 | 238282 56.0+130

20 nodes SHD| SHD| SID} SHD| SID| SHD| SID} SHD| S, SHD SID| SHD| SID| SHD|, SID|
Random 118,165 1122372 3007+164 | 116074 3220137 | 1164257 32395127 | 1162553 30872184 | 1151570 1176561 32062024 | 1148556 3201586 | 118045  317.1=145
PC 18 3336:187 | T85EL6  3112+172 | T81xls 790525 32124187 | 85.0+5.1 9150 | 63947 76918 765430 32365029 | 766422 3048198
GES 31695189 | 78019 3065:165 | 764+L6 32005164 | 835:82 30332227 | 652+59 748422 T58£30 30425 | 9785122 2437419
CAM S7.6:39  199.65288 | 742433 27561261 | 73733 27262395 | 632+39 245 | 364172 57.6+39 570443 19345311 71 30445220
NOTEARS-MLP | 7L123 2671422 78OS 3025+147 | T44E25 3193159 | 767440 27732206 | 525+42 745425 720423 2095:185 | §73:93  2528+524
GraN-DAG 27255270 | 84175 32054104 | 803+38 3081272 | 76.4:19 28292251 | 69.0+58 00 | 74928 T3] 2691234 | TA6i52  2983:233
DAGMA 740534 2924+269 | 753:22 28864153 | 773i23 30294198 31755166 | 782443 28815216 | 4204107 20545493 | 7dai24 732422 STILBS | 6391138 27194515
50 nodes SHD|, SIDy SHDJ, SIDy SHDJ, SIDy SID} SHD| SID} SHD, SID| SHD, SID| SHD| SID| SHD| SID|

Random 67205201 1957.05447 | 65774140 198325470 | 6656207 198955485 199325788 | 66495188 196544658 | 665.15160 194555557 | 6718180 19634483 | 63675115 19782461 | 65404240 197842420
CAM 148460 1345851700 | 1679438 1635741374 | 1850541 1766.6+129.1 1663.8:1493 137651314 | 1137260 149874981 | 148460 1345841701 | 150.6557 140L5:156.1 | 22254152 1971551556
NOTEARS-MLP | 1802442 16538:1351 | 1957453 1845351435 | 1933422 184835838 1966.5:98.6 177604580 | 1495581 1810561237 | 1830530 1770251100 | 1820546 169871247 | 15094180 1734551431
GraN-DAG | 1934428 IS3LI£1121 | 1978456 1035741459 | 2008506 196871081 | 1967513 1878.451073 | 1960520  ISSLI4850 | 1808575 1844741079 | 189.8551 1714241557 | 1954422  1860.0£1068 | 1903+74 1892551038
DAGMA 180.8438 1711241071 | 1867449 1826351037 | 1925426  1867.56977 | 2000500  1969.841037 | 199.6:20 192574919 | 1342:56 16786:1137 | 1866544  1879.641500 | 1833432 1776541269 | 15950327 1674312856

Table 14: Linear Setting, for SF-2 graphs of 10, 20, 50 nodes.

Vanilla model Latent confounders Measurement error Autoregressive Heterogeneous Unfaithful Scale-variant Missing Mechanism violation
10 nodes 1D} DL SHD, SID}. SHD| SID) SHD, SID} Dy SID; SHDL S} SHD| SID) SHD| SID, SHD,. SID
Random 24823 656492 | 265524 661489 672481 | 269526 618483 | 275833 666270 | 260449 278231 724454 66390 | 298514 712453

PC 150442 71960 | 19323 69.9489 SOTE48 | 195534 693121 | 18736 742496 15042 719460 698493 | 20130 808:8S
7746, 235184 | 251467 49493 5265188 | 18047 4484187 | I88+72 507132 77563 323184 4594109 | 165840 73366

DirectLiNGAM | 147541 6124132 | 217446 569:152 628+117 | 164530 S12%163 | 170436 603498 158238 728455 607122 | 169£03 81827
Var-SornRegress | 95538 I55+21 | 192557 208011 1645119 | 235534 167118 | 208850 1655119 23450 532461 102584 | 208851 4122120
R2SortmRegress | 284487 581488 | 33939 590:38 603469 | 364524 SO6E83 | 336+52 88466 W448T  SBI488 580455 | 274446 779445
ARS 13612 934105 9.4137 125592 2794146 | 145kl 1764132 | 32il6 80484 134538 6824128 144199 | 14415 7347
GOLEM 02504 0 107427 3914107 548117 | 170800 810200 | 2617 80472 11923 655485 36156 | IL1i22 679480
NoCurl Lls14 5 122435 148e127 2Wge1as | 150854 221k156 | 34222 82485 125439 643+170 102497 | 138£12  T23:45
DAGMA 08+10 49+64 100525 158:88 | 113:34 2074157 | 4846 1724122 | 25420 56465 105541 565154 | 09515 32544 | 1adsrs Tadwad

20 nodes SHD. SID. SHDJ, SID) SHDJ. SID, SHDJ. SIDJ] SHDL. SIDL] SHDJ, SID) SHDJ. SID, SHDJ. SID)] SHD.. SIDL
Random 27855344 | 1012492 27484282 | 1034549 1060487 28155159 | 1053253 2864117 1045541 27615220 | 1056567 26324284 | 1044290 2701167
PC 31474311 | 487:51 0 31874278 | 688=4s 534:61 32704219 | 45844 32274204 450449 1| 3167277 3465+162
GES 2355138 120857 | 1319593 18032272 | 974583 9294107 I8SEEISA | S43El6l 17924390 5213, 2482226 14555710 29294338

DireclLiNGAM | 412:74 25488515 | 604%74 21824536 | 371243 SISE86 27365383 | 41762 2687+d0s 427476 395563 27311300 36464110

VarSornRegress | 44597 5304248 | 12404117  S73:M0 | 1227101 11504104 7284323 | 9444155 5524206 10335170 352557 403271 2480236

R2-SortnRegress | 12932197 24504144 | 1534456 22204279 | 15134122 1530496 2208:325 | 14732102 24504121 12934107 12914283 24345200 33925132

NOTEARS 5628 31708 | 26773 17414497 48781 3320+134 | 1L6k68  SLIERT 327430 5346 435+387 381127
GOLEM 47450 374w361 | 293:84 2135514 352417 3610800 | 115k60  754+450 285521 23420 181188 | 303415 3317189
NoCurl 53433 38428 | SO081 700536 6654130 B64+4n6 | 160+59  445:259 | 50226 2312243 | 329494 40434 3056213 | 315617 3367+148
DAGMA 29416 1825189 | 275573 18174529 42538 3392:105 | 95+56  353ens | 34x20 177160 | 298470 20617 99220 | 320£10 334sis
50 nodes SHD. SID. SHDJ. SIDL SHDJ. SID, SHDJ. S} SID, SHD. SIDL SHDJ. SID, SHDJ. SID)] SHD.. SID.

63735144 168255984 | 6401489 71264839 | 64145212 1693851454 | 63695141 168171433 173412716 | 6376196 1691051110 | 64314230 170585606 | 63704145 172145644 | 63412168 1657.42157.2
10882152 1924051603 | 25494233 1710442353 | 1137489 228374465 | 17652236 1720222823 1835942206 | 10364173 1852642593 | 110.94118 214661231 | 10874146 1911241771 | 957413 239961220
2012:269 351641216 | 93894196 468641280 | 67574793  4B40L930 | 8931499  dB0.0:954 344641131 | 23974733 588042459 | 47194776 1263142596 | 20654397  44TOL1I86 | 20945458 1742452177
68932594 16683333 | 100974119 142894610 | 77794652 160041338 | 85822385 1462021035 T33BLI66  1670.0502 | 68934504 166834333 | 68052458 170024711 | 267.62636 589
250442 519261346 | 63089 1632141077 | 940575 223554608 | 15182268 224804403 2014109 4SLIL2415 | 744336 1987541230 | 28, 636941500 | 853437 232702554
176663 461502023 | 742496 197361862 12 239534148 | 974EL1 23998209 1072222000 | 115440 220141078 | 655478  2079.642061 | 167557 466842015 | 83726 23196639

150471 13064781 | 31834253 395441674 | 12324256 1735241365 | J0L6=415 597741856 71504 | 153499 9925620 | 12674205 1660551916 | I8 1152:6035 | 866136 23
DAGMA 123:43 162452012 | 62080 I8276+1746 | 95948 237564233 | 12615127 229394745 S6LOE17.6 | 9044 1027425 | 73480 19624k1664 | 12959 1450148 | 8S0£31 232655575

Table 15: Nonlinear Setting, for SF-2 graphs of 10, 20, 50 nodes.

Vanilla model Latent confounders. Measurement error Autoregressive, Heterogeneous Unfaithful Scale-variant Missi Mechanism violation
10 nodes SHD. SIDy SHD/, SID| si SID| SHD| SID| SHD, SIDy SHD, SID| SHD| SIDy SHD, SID| SHD| SID)
Random 263439 666576 | 278+30 667563 | 26128 6645108 | 273126 270530 710+44 | 277%23  615+106

PC 201430 857441 | 165524 783:03 | 229423 TalE61 | 20130 192223 77378 | 15042 719460
GES 165440 7245110 | 151429 706489 | 22.4+41 508+166 | 165440 73366 | 162437 6025100 | 7763 323+184
CAM 21516 9.6:6.1 95125 1395106 | 153523 223171 21416 07521 27424 10530 147438 5925105

NOTEARS-MLP | §9:42 6214105 | 114127 5274154 274118 | 164431 S8SEIL0 | 108439 4958122 | 89419 4004130 | 53423 27.047.9
GraN-DAG 30539 1125134 4884113 | 135620 6455179 4581223 | 5120 3194151 4774023 | 19519 894123 14517 73102 93427 Silxlad
DAGMA 102445 452:182 762104 | 13218 680290 6905100 | 166+50 4255105 4624157 5425 66883 89136 3274034 | 25531 146:21
20 nodes, SHDJ SID| SHD SID| SHD, SID| SID| SHD, SID| SHD SID| SHD| SID} SHD|. SID| SHD SID)
Random 1066261 28014109 | 1026561 2738321 | 104671 26685287 26825160 | 1001552 2702:338 | 1016562 2789 1016570 26714386 | 1042580 25915305 | 1045556 26514316

PC 433556 3465162 | 347 360.6160 360.114.7 36165100 | 63248 3273+12 382243 433556 3465162 | 446256 450549 3147+311

378+62  2929+338 3540163 3311300 31535354 | 675+64 28642261 25232437 | 378%62 29294338 | 39676 08 | 235£138 13204537

6723 1852121 2 2799476 7125405 | 415372 dd1=48 | 872 887+272 | 6723 185-121 | 48:17 97108 | 333:89 2194430

226433 2148437 33642214 29102282 3609503 | 37.0+00 361000 | 20522 2567208 | 266+18  2645i4i4 | 188531 18455406 | 133:28 12384236

1914139 9175787 3U5.0+144 34634208 7 3007:552 | 265:42  2903:370 | 228525 28995319 | 1641160 11291926 | 167464 2107670 | 261471 28694515

DAGMA 230438 19824429 | M1442  MT24182 32884262 | 370508 3600412 | 370400 3610400 | 200455 21745366 | 261430 24064470 | 208452  1895:411 | 82432 8814472
50 nodes SHDJ, SID} SHD SID| SHD| SID} SHD SID| SHD| SID} SHD SID| SHDJ SID} SHD| SID} SHD] SID|

Random 64005121 172774574 | 63274160 17078623 | 6326599 1674741048 | 62924131 173404624 | 6349106 17162718 | 63774215 172434974 | 6498128 1690141365 | 63854183 170054789 | 63995171 1683921481

CAM 152542 189741025 | 782212 1523.6+1259 | 688470 1807742173 | 542:222 579411675 | 13122130 3 .8 | 207 527.0:1492 | 152342 18971025 | 134349 12545556 | 1017199 1494751395

NOTEARS-MLP | 53457  1399.84201.1 1957341352 | 821437  2227.7:964 | 976508 24004208 | 864165 2019251202 | 54077 1410151597 | 622439 182071519 | S3L9.6  12983:2060 | 390570 9828+79.4
GrN-DAG | 689392 157273106 1753541273 | 980400 23998506 | 8975197 216741943 | 903£30 235642385 | T70%56 22675713 | 572493 163503164 | 6212204 14093:3305 | T8BE86 216771852
DAGMA 537560 134402321 1649351217 | 77.6540 224701109 | 969503 24009+03 | 95217 237975247 | 580254 1562142047 | 64.6£63 175601564 | 5562100 14074:1737 | 292552 865041329
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Table 16: Linear Setting, for SF-4 graphs of 10, 20, 50 nodes.

Vanilla model Latent confounders Measurement error Autoregressive Heterogeneous Unfaithful Scale-variant Missing Mechanism violation
10 nodes SHDJ SID) SHDJ. SID| SHDJ. SID| SHDJ. SID| SHDJ. SID| SHD|. S SHD! SID, SHDL. SID, HD. SID|
Random W7:28 772444 | 300: 714598 741476 W9:31 764436 | 311437 308130 73061 | 30046 75255 | 270438 706487

PC 27328 Tldsel | 26125 76626 70,8450 75752 | 265423 273528 71461 | 26637 TLIx62 | 263:27 71769
GES 230551 627498 | 27, 6435113 60.0+145 647138 | 246245 230 627498 | 261+46  670:67 | 261422 826450

DireclLiNGAM | 21650 638%116 | 24 65,1465 678543 58680 | 198247 209555 T4lio4 | 22349 650585 | 30000 819+27

VarSortnRegress | 107427 225869 | 13 2144105 276460 20170 | 132452 262444 61864 206+45  57.0:97

R2-SornRepress | 25350 602485 | 24 L1 602472 5744116 | 265459 253450 602485 299415 839456

TEARS 32432 165+124 1854113 3535102 sy | 24x16 247439 792:63 291407 777442
GOLEM 22421 9.0:88 2135145 69462 215586 16519 257445 799351 82012 731477
NoCurl 20832 1745131 2494134 376480 102 2134153 | 25414 1705106 | 26828 759492 90411 T17456
DAGMA 20422 109+119 20,6485 319476 2574120 | 96+35 2056109 | 13415 734106 | 257420 793441 2107 717542
20 nodes SHDJ. SHDJ. sSID| sSID| SHDJ. SID| SHDJ SID|. SHD| SID, SHD| SIDL SHD.. SIDL
Random 1134565 1099454 30365179 | 1109470 3087170 | 1099484 3032130 | 1145547 3100148 | 1133569 30905100 | 1131547 3019489 | 1115 30304159 | 1153585 3118486

PC 77528 3495478 | 926251 825+ 3419473 | 78944 3473461 | 76247 34764109 | 775428 MSIEI06 | 81442 30508 | 676427  3TLIET9

Gl 96.6+144 1160468 U524119 24132270 | 12755134 25074187 | 966+144 25756235 | BLOEI62 2673279 | 623420 3689426

iINGAM | 588£130 671480 2481275 | 7295168 29634264 | 6831109  3MIEILI | 6024121 28766220 | 699403 3685192

rinRegress | 5474104 112471 1063469 118243 10854207 23531208 | 579499 10855322 | 61348 310.9+151
SortnRegress | 1285410.1 1357474 1437453 12856100 25144167 | 12756199 25474157 | 777442 3717451

TEAR: 125588 557488 360497 682455 3551495 | 10568 8784410 | 68806 3490492
GOLEM 85454 9. 40,181 661562 35184103 | 79240 679509 3463:88
NoCurl 10,7266 7204107 33654206 688507 3508496
DAGMA 83462 814305 X 13702431 561043 34524200 688406 349092
50 nodes SHDJ. SID) SHDJ. SID, SHDL, SID, SHDJ, SID, SHDJ, SIDL SHD SIDL SHDL sIDy SHDJ, SHD, SIDy
Random 63994204 190124496 | 67054238 189944208 | 6585187 190424401 | 66764195 190804477 | 6683£149 191404289 | 65924288 191874229 | 66444181 191442315 | 66914131 191122284 | 64845214 19112277

DirectLiNGAM | 207.14258  21262:£120.4 | 33874221 1979341038 | 261 84114 232381191 | 31756377 1807541225 | 23844202 20058845 | 21064235 215624931 | 2264+185 £179 | 2065:230 210171307 | 1900500  24059:147

2 MTIER9 62212806 | B0TI63 69401069 | 6956:397 1128902 | 7107426  TATAZ8RA | TH3E368 61121027 | 44134704 B00.0£1495 | 660.6:1139 1| 35295376 617341086 73 9

TIT64555 163574564 | 96864117 148934581 | 78834394 172134532 | 91414372 141074817 | 93794246 153024234 | 90724598 163924495 | 77764555 £564 | 79144765 165862412 | 2062565 24370438
626£120  9845:2024 | 12274193 1782411770 | 20564267 21438533 | 32404471 20495530 | 13514193 1585.142507 952642610 | 1813:7.1 374 | 615£166 1113821864 | 1887209 237572247
4635100 106293165 | 11934172 1579341603 | 18635234 223162671 | 1913509 23991411 | 13444234 1814142342 171723691 | 1740261 469130 113482676 0
2465105 25245702 | 34484346 SILIIS09 | 21384311 204514455 | 45474635 1289.747010 | 17504382 52231, 34951265 | 24415412 3145142 291941153
2794146 484952780 | 1134599 1951321161 | 19705647 23878469 | 23754344 232604477 | 12374205 1326742066 596942375 | 181679 241494 421551231

Table 17: Nonlinear Setting, for SF-4 graphs of 10,

20, 50 nodes.

Vo T T T B e e ey S s e
10 nodes SHD| SID| SHD| SID, SHI SID) SHD| SID) SHD| SID, SHD| SID) SHD| S| SHD| SID) SHD| SID|
o[ By T [ momo et | By T S Temy [ BT e 7T T

A N B el | M snn Tk e
&Ml mEe | mml R Em s Dy mem | By omm ] L e
Normawe | Bioh  Bbes | BUN OGRS | ARR S el Itom i prsieill I
GraN-DAG 107444 124157 20.3+49 5174126 273421 7594104 44.0+13.1 159443 48.9+14.9 18.8+21.1 122568 17.9+£5.0
DAGMA 68.5+10.9 24.5+36 732475 28.0+09 77.5454 222435 56.4+11.0 11.5434 4044147 81.6+7.0 221228 119453 48.3+199
20 nodes SHD| SID) SHD} SID) SHD, SID) SHD| SID} SHD| SID} SHD| SID} SHD| SID} SHD| SID) SHD| SID}
67.6+2.7 3711479 68.2:+1.1 55.7+6.9 68.5+1.9 373.2+82 369.4+133 852435 684150 348.1+£126 7. 3711479 370.346.5 77.5+2.8 34514106
&gt W | M e | pan e | S okt Bmna i Tl e
CAM 18.8+3.1 159.3:31.6 63.1+46 331.0=141 63.6+3.4 354.8+150 .7-£38.3 46.1+6.1 274456 209.0+36.9 2 59.3-31.6 035 189.4:38.9 74.6+9.7 321.1£102
RSl [ TR el [ e vl e S ot i | gl B ol e G o R o el
DAGMA 58.5+3.3 349.3£183 65.2+2.7 358.3£19.6 67318 3516198 360.7+0.5 67.6+7.5 35.8+3.3 258.7+42.5 0.0+2.7 352.9+183 57.4x41 341.5+194 37.3+48 29134204
50 nodes SHD/| SID} SHDL SID} SHDL SID} SHD| SID} SHD/| SID} SHD}. SID} SHD| SID} SHD} SID} SHD| SID|
L o el Bl [ s ] e R e el | S v
GraN-DAG 187.8+14  2360.8+366 | 205.4: 243164523 | 190.7+156 239414552 | 189.5+9.7  2394.1+£652 | 187. .7 241094410 | 1657118 237594299 9.3 | 188426 3 170.6+6.6 3
DAGMA 1705443 233244430 179.5:62 23784462 | 187.6£17 2374.6+39.1 | 178.3+56 2369.7+468 | 189, 7 2394.5£165 | 106.9+9.6  2108.3:832 2.2 1700455 23d6.8£57.7 | 129.9+304 2219.4+1343
Table 18: Linear Setting, for ER-6 graphs of 20 nodes
: , .
Vanilla model Latent confounders error Unfaithful Scale-variant Missing Mechanism violation
20 nodes SHD| SID| SHDJ SID} SHDJ SID} SHDJ SID| SID) SHDJ SID) ) SID} SHDJ SID| SHDJ SID}
Random 107.8+50  260.2+189 | 1052462 236.64200 | 1025456 26744246 | 101.7£72  253.9+29.2 25474290 | 1011453 24774229 | 1062456  275.5+83 103.949.9  265.1+188 | 105.0+56
113.3£39  327.6+265 | 1163+3.0 3359+139 | 117.7+56 333.8+248 | 1152450 323.6+308 | 113. 3 1134256 33414258 | 113.3+£39  327.6+265 | 112.5+43  337.7£216 | 115.1+36
GES 12184134 267.1:£279 | 1221478 267.0£150 | 1253+102 32124182 | 10554185 250.3+345 | 124.3+10.9 1157496 26474198 | 123.1+126 270.7429.5 | 11534123  263.3+192 | 1221478
DirectLINGAM 99.0+£50  277.24313 | 1048486 27834259 | 1008472  277.0+139 269.04233 | 102.7+99 1033118 27894350 | 127.9469 346.2+188 | 1043494 27824272 | 107.947.5
Var-SortnRegress | 45.7+10.1  118.0£397 90.6+373 | 80.0£56  161.7+326 12054441 | T1.5+46 648£123 13964455 | 1257484  289.64163 | 4154139  105.6433.1 | 38.1+13.4
R?-SortnRegress 6 161.4+219 139.54268 | 106.1462  265.8+232 19204365 | 90.0£9.6 9014146 20414413 | 74189 16274207 | 64.6£178 16454345 | 59.6+£138
RO | B dente | S iese wen B e A R R e
GOLEM 290465 11604350 13744392 | 80.6+38  179.8+19.2 20484462 | 596458 37.84123 12204302 | 131.5442  349.74108 | 28.6+£104  87.1 18.8+9.1
S| o Hiisiad Booius | et Braing| WESE M| ons A R Pl )
DAGMA 20.2:86 61.7:248 516599  122.5:27.1 | 1026122 289.5+498 | 93.0+11.1 23524606 | 59.3:+4.6 29.6+13.2  92.4£36.6 1187435 358.5%12.1 22.8:82 6 11570 40.9+15.6
Table 19: MLP Setting, for ER-6 graphs of 20 nodes.
Vanilla model Latent confounders error Unfaithful Scale-variant Missing. Mechanism violation
20 nodes D) ) SHD. L SHD/| SID) SHD, SID} SHD/| SID| SHD, SID| ) SID SHDJ SID) SHD| 1D,
Random 985473 23144154 | 1174483 2731+ 1123491 264.3+ 1183471 27844261 | 108.7469 254.64£17.1 | 1252481  286.34284 | 1047492 27114193 | 1132469 256.1420.7 | 1164459 28344231
RO TR Beniii | leade Tonine | 1Eeh Sl et BETA| NI S| Wi Bk | i B[ edsd B[ e
GES 115.9+104  296.1+284 | 106.7+12.1  290.7+238 | 107.5+87 299, 103.6+9.6  299.8+21.1 | 120.7496 2853+157 | 122.4£120 285.6+17.6 | 11594104 29614284 | 1147497 29744324 | 12184134 26714279
CAM 80.6+11.4  248.9+435 85180  307.0=184 | 109.1£95 323.6=178 | 84.7+92 28844368 | 950290 296.3+225 912447 2713304 | 80.6+11.4 2489435 | 76.8510.7 248.2+379 | 110.0£60 3228+144
NOTEARS-MLP | 35.1:£103 1558:538 | 59.7:7.0 2159384 | 101.24£102  216.6:28.0 | 8594162 211.3+493 | 559+ 19204402 | 90.6+11.3  226.3+27.7 | 1022461  340.9£158 | 428474 17412505 | 103.9+143 30334274
GraN-DAG 102.6+80  289.8. 5. 1 31142345 | 1145432 312, 1114448 31864168 | 1114453 323.8+120 | 1099460 311.3+17.0 | 108.8+56 332.0+17.6 | 104.7+9.7 298.9+31.7 | 106.4+10.6 307.1+353
DAGMA 49.655.1 162.55394 | 77.5£9.1 299.7+20.5 | 114.5£26 34122106 | 77.3:82  194.31421 | 656570  1554+36.1 | 107.2£130 31004357 89.0+65  280.1£208 | 40.315.6 158.3:37.2 | 9424117 24021273
Table 20: Linear Setting, for GRP-2 graphs of 20 nodes.
Vanilla model Latent confounders error Unfaithful Scale-variant Missing Mechanism violation
20 nodes S Si SID|. SHD/ SID| SHD| SID). SHD| SID| SHD| SIDJ SHD| SID|. SHD| SID). SHDJ SID).
Random 107.6£9.2  277.5488 | 101.6+74  239.9+222 | 100.5£8.7 255.9+229 | 103.3£82 24144247 | 102.5+99 259.2+18.0 | 104.8+£78 24852227 | 1028452 259.2434.1 | 102.7+55  265.0+243 | 103.1£69 262.8+30.4
PC 27435 73499 338438 3934232 13.0457 15.1+20.7 114442 2494213 10.5+10. 54442 1244126 2. 5 7.3 3.5430 4.3 122445 4274272
GES 44433 8.249.1 12074176 179493 189485 17.8+12.1 19.74£7.0 1994143 85432 1844121 44433 8.249.1 5.544.3 113452 37.24280
DirectLINGAM 156433 321483 | 453+125 3244138 144438 253+117 148454 30.5+14.1 147456 3424196 16.7+3.1 437£153 13.0+38 178435 5144217
Var-SortnRegress 1.9+22 27441 130.0+12.0 T7.0£5.1 15.8+7.6 3.8+42 19.7£5.6 10.1:85 6.2£33 9.1+82 20.6+8.2 43.6+19.2 3.0424 9.7+£4.7 24.9+16.0
R®-SortnRegress | 152479  269+124 | 1383£134 2904116 | 2462102  29.0£129 | 26.1463 3164152 187457 3424162 152479 26.9+124 143471 26. 3.3 156449  51.6424.8
NOTEARS L1£13 37449 85439 202+153 9.4+49 39428 183+163  15.1+103 04409 2.0+4.1 157435 4734218 0.1403 0.742.1 139427 3924172
GOLEM 04405 1.74£29 8.6:+4.2 20.0£169 9.745.2 3.8+25 17.6£159  15.7+10.1 0.6+1.5 1 3 17.4+4.1 4984223 04408 0.5+2.7 142429 39.8+189
NoCurl 1.5+14 5.7+4.3 54.8+6.2 6.4:+3.9 10.1£5.2 5.2+3.1 22.0+10.1 11.3£11.7 4 0.5£1.2 19.4+59 57.2+£226 0.8£14 32453 14.6+3.7 39.0+20.1
DAGMA 0.0+0.0 0.0+0.0 7.8+38 19.3£16.6 9.6+4.9 44£25 14.146.5 11.3+104 L1+12 1.7+33 0.3:0.9 154428 45.7+178 0.0+0.0 0.0+0.0 13.8+28 38.9:+17.6
Table 21: MLP Setting, for GRP-2 graphs of 20 nodes.
Vanilla model Latent de error Unfaithful Scale-variant Missing Mechanism violation
20 nodes SHD/ SID| SHD/| SID) SHDJ SID} SHD/| SID) SHDJ SHD| SID} SHD/| SID} SHI 1D.
Random 1053469 2603+24.1 | 108.1574  243.0+23.1 | 108.0£80 269.7+23.6 | 107.3+8.6 257.2+18.4 | 100.3+£7.9 106.2+7.7  272.8+156 | 1034486 255.7+20.8 | 1047495 257.4+213 | 1052488 266.94+20.3
PC 12.1£5.0 27.5+£258 314243 4231210 13.9+5.0 20.6+18.3 13.9£35 29. 4.1 23.5+48 13, 12,1450 27.5+258 25. 19 27435 .9
GES 182475 2604220 | 723+109  264+17.2 2594152 | 200452  32.8+219 | 51.5+16.1 17.045.5 182475 26.24220 24, 6.7 44433 +9.1
CAM 37422 8.647.4 446434 3394131 48.7430.1 12. 13.0484 247454 7.844.6 3.7+22 8.6+74 10. 0.5 108446  39.94237
NOTEARS-MLP | 3.4:21 5.5+4.4 139427 41.3+164 349+188 | 2 95  388+18.1 11.943.4 6.6+4.5 145438 4344188 42443 41431 149:+14.9
GraN-DAG 9.1+44 23.6+168 11.3+37 35.0+23.0 31.9+19.7 12.8+38 30.5+16.4 10.2+3.5 9.1+3.1 12,1435 34.6+208 3055164 12.2+4.6 28.4+179
DAGMA 2.6+12 34422 11.8+2.1 33.7+142 28.5+16.3 13.1+39 245489 8.3:£27 15.5:9.6 4.8+23 6.8+3.7 12.2+35 38.5+79 29+11 3.8£18 3.8+23 11L6=7.1
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F TABLE RESULTS FOR COMBINED MISSPECIFIED SCENARIOS

We consider two (confounding and heterogeneity), three (confounding, measurement error, and het-
erogeneity) and four (confounding, measurement error, heterogeneity, and autoregression) combined
misspecified scenarios. The results in Table[22) and Table 23]show that under combined misspecified
scenarios, the performance of various methods is worse compared to single misspecified scenario.
However, differentiable causal discovery still achieves optimal or competitive performance.

Table 22: Linear Setting with two (confounding and heterogeneity), three (confounding, measurement
error, and heterogeneity) and four (confounding, measurement error, heterogeneity, and autoregres-
sion) combined misspecified scenarios, for ER-2 graphs of 10 nodes.

Vanilla model Latent error i Two combined scenarios | Three combined scenarios | Four combined scenarios

10 nodes SHD| SID| SHD| SID} SHD, SID} SHD, SID| SHD| SID| SHD| SID| SHD|, SID} SHD| SI
Random 68427 | 25.1%47 65.2+57 | 243%39  65.6566 | 26243 704323 | 275536 65.8+42 | 27.0+13 634345 | 257442 612+72 | 28123 692435
PC 4094134 | 18,1447 5814156 | 194441 48.0+13.1 | 138426 47.54£103 | 145420 448495 195432 61.0483 21.8+44 5534135 21.64+4.0 59.3+10.0
GES 3204136 | 25.947.7 426140 | 20248 46.2+167 | 155561 3525122 | 208355 497115 | 28.0434 4122128 | 27417 620489 | 247350  502+1L1
DirectLINGAM 4614106 | 204450 420460 17.6424 48.8+124 | 163439 347499 19.7442 504484 | 224424 46.7412.7 18.0+3.1 43.746.3 18.9+43.2 38.9+4.8
Var-SortnRegress 8485 | 17.6558 126499 | 19.6528 11487 | 179433  8.6+£93 | 188324 1654106 | 215439 1152108 | 20.7+33  13.0£99 | 203333  23.7+93
R"’—Sorml{egress 32.4:£140 | 257441 37.6£13.0 | 256460 39.2£16.0 | 26.0£54 37.0£14.4 | 25.6449 38.8+19.0 | 255436 31.9417.6 26.8+3.8 4834104 268452 48.1+12.1
NOTEARS 18342 | 85539  O.5+81 | 125420 19.6+86 | 5.5+27 5451 | 122436 27.5+142 | 123234 331257 | 141435 25268 | 18.6+39  31.8+101
GOLEM 0.4:1.2 6.7+28 14.249.8 178425 4314133 | 6.54+45 9.848.1 16.6+4.0 3494169 | 10.3£1.7 243450 18.6+3.7 46.249.1 19.740.5 72.746.3
NoCurl 51458 | 9.0+42 54339 | 1L8+18  17.9:84 | 66429 5557 | 148325 1754108 | 134434  74+69 | 15443 19870 | 202435  21.3+82
DAGMA 3.3+53 8.4+39 8.847.7 12,6425 18.548.6 55423 120482 | 12.24£3.6 28.4+153 | 12.0+£38 12.3+8.9 14.9+4.4 20.4+6.6 17.9+3.1 50.2+14.2

Table 23: MLP Setting with two (confounding and heterogeneity), three (confounding, measurement
error, and heterogeneity) and four (confounding, measurement error, heterogeneity, and autoregres-
sion) combined misspecified scenarios, for ER-2 graphs of 10 nodes.

Vanilla model Latent Two combined scenarios

error [ i Three combined scenarios | Four combined scenarios
10 nodes SHD| SID| SHD| SID|. SHD|. SID| SHD/| SID} SHD. SID). SHD|. SID|. SHD| SID| SHD| SID|

Random 275426 62.6473 | 29.4+1.1 628494 | 293412  69.4+3.1 289418 704428 | 27.9423 67.2445 24.2+44.1 66.246.3 29.6423 68.545.6
PC 167432 520495 | 18335 54.1293 | 17.9+50 207435 53.9+13.1 | 162447 637496 | 24742 6441115 | 226332 65.1+143
GES 219444 469486 | 282475 53.1+186 | 202454 272449 486109 | 18.9452 53.0+£84 285435 629463 24.6423 61.646.7
CAM 124436 393+165 | 166242 424177 | 19747 199436 49.1472 | 16.0+34 60.9+6.1 | 25433 5384134 | 244119 634488
NOTEARS-MLP | 8.1+27 2224106 | 117455 333170 | 18.5+37 145422 343+104 | 15743  39.8+96 STA£ILT | 196407  634+102 | 225433 61092
GraN-DAG | 133436 3294123 | 129432 40.2+127 | 166520 4504105 | 143325 385477 | 155423  46.0+9.5 5294112 | 204416 638472 | 20328  62.2£100
DAGMA 62417 182487 | 93:43 278108 | 141526 392287 | 127429 31672 | 13.6:21 4123 482104 | 184409  5L6:104 | 19.625  60.8+7.3

G TABLE RESULTS FOR NON-GAUSSIAN NOISE

We consider the vanilla model with exponential noise. The results in Table [24] and Table 23] show
that differentiable causal discovery still achieve optimal or competitive performance when model
assumptions are violated.

Table 24: Linear Setting with exponential noise, for ER-2 graphs of 10 nodes.

Vanilla model Latent error i Unfaithful Scale-variant Missing Mechanism violation

10 nodes HD| SID| SHD| SID| SHD| SID| SHD| SID| SHD| SID| SHD| SID| SHD| SID| SHD| SID| SHD| SID|
Random 292414 640482 | 275419 69.243.0 | 257426 653448 | 25.1428 657485 | 26.5430 642476 | 247431  71.0424 | 28.14£1.6 657454 | 26.6434 66.1454 | 27.9430 67.2472
PC 1 3 387473 0. 58.6+8.7 | 20.5+33 46.8+150 | 179422 502488 | 20.74+43 5844145 | 14.043.1 4464135 | 11.7423 387473 | 144448 4224153 | 17.9436 5444122
GES 19. 1 411197 41.6£160 | 244444 5674145 | 223438 37.0+119 | 264450 4534173 | 183458 3824145 | 189483 37.9420.1 | 173465 3434197 | 19.644.9 42.5+129
DirectLINGAM 0.0+0.0 0.0+0.0 20.1£154 | 150437 27.1495 | 120434 18.14122 | 9.1443 10.3 14422 39449 49425 18.349.0 | 0.0£0.0 0.0£0.0 16.5£43  45.9+10.1
Var-SortnRegress | 6.8+4.5 9.7+7.8 10.0+£6.6 | 184440 122491 | 162427 10, 9 | 221421 10 87461 1504120 | 269455 582483 | 57438 10.6+11.3 | 194450 28.8+79
R?-SortnRegress | 15.7£6.7  30. 2 359+16.1 | 264459  44.5+149 | 231450 37.3+139 | 26.6+34 32.6+14. 209483  34.3+150 | 157467 30.4+122 | 158+7.1 27.0+10.0 | 29.0+42 558+11.0
NOTEARS 1.5£1.7 6.7+7.7 140472 | 134435 158467 | 144452 18.5+121 | 6.6+2.7 13. 0.1+0.3 0.742.1 189415 653487 | 09+14 5.1£7.0 141446 29.0462
GOLEM 23427 6.648.4 13.947.1 143441 18.0473 | 13.6455 20.1+133 | 6.7+27 02404 0.8+2. 18.6422  67.74106 | 0.641.7 45466 145444 289457
NoCurl 54436  11.5485 144487 | 167446 143486 | 18.1462 16.8+13.7 | 11.9+47 8.6+43 924121 | 24.646.1 65.6+139 | 8.0+27 TA£77 | 222444 27.9485
DAGMA 0.0£0.0 0.0:£0.0 138469 | 132424 246493 129447 3104108 | 68429 47453 0.1+0.3 0.742.1 182443 6754104 | 03409 0.6+1.8 14.6447 28.8+73

Table 25: MLP Setting with exponential noise, for ER-2 graphs of 10 nodes.
Vanilla model Latent error Unfaithful Scale-variant Missing Mechanism violation
10 nodes D] SIDJ. SHD| SID) SHD| SID| SHD/ SID| SHD/| SID) SHD| SHD| SID. SHD| SID| SHD/| SID.

Random 62.6+6.6 | 263425 62.6+59 | 28.0+13 669469 | 250432 68.1432 | 29.8+1.1  67.6+43 | 261540 60.3+57 | 30.0+£1.0 699426 | 254450 632484 | 26.7+48 64.749.2
PC 172447  57.3%14.1 | 184451 49.249.7 17.0+£3.9 5554115 | 23.2425  62.5£11.7 | 17.9424 482+137 | 179436 544122 | 17.0+£39 5324102 | 11.7423  38.7473
GES 228470 4284180 | 19.6447 46.6+124 | 17.1+48 47.0+162 | 30.0423 585484 | 23.626.0 44.14123 | 19.6449 4224125 | 20.7443 4424145 | 194481 4114197
CAM 141449 355+14.1 | 21.2438  61.6+11.2 | 13.743.5 42.3+164 | 23.3£53  63.5£12.6 | 12.5 357+21.4 | 112426 40.3+17.3 | 123421 41.64206 | 21.247.6  62.8+13.1
NOTEARS-MLP 13.6+53  38.7+125 | 16.245.1 31.8+11.2 | 15.0+£57 3434177 | 12.6+32 25.6+105 | 11.2+24  21.6485 | 172417  61.7+9.6 65425  16.5+11.9 | 104442 43.9+175
GraN-DAG 15.1+29 16.4+1.7 473472 | 149428 48.1+128 | 13.6439 338+151 | 141420 420496 | 173419 5464124 | 12.643.1 40.5+13.1 | 147437 4744123
DAGMA 121452 143450 282493 | 122456 28.5+12.5 | 10.8+3.0 218486 | 92417  19.5+7.6 | 155+1.6 52.0+9.7 | 53+24 1524118 | 8.9+31 383+14.6
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H SUMMARY OF THE MOST COMPETITIVE METHODS

Table 26: Summary of performances of the most competitive methods under linear setting. The
reported results are the mean and standard deviation of the metrics over 10 repetitions across different
graph types, vanilla and model assumption violation scenarios.

Method d SHD SID
10 8.51+5.92 23.884+23.32
NOTEARS 20 22.66+14.27 129.96+109.48
50  61.07+£39.27 945.01+£774.12
10 9.02£6.90 30.67£27.39
GOLEM 20 21.794+14.19 155.60+126.41
50  55.57£35.00  1000.95+842.80
10 9.39+£7.06 23.59423.92
NoCurl 20 32.22+£23.51 99.43+99.13
50 128.97+£113.22  914.22+699.51
10 8.17+6.12 224242272
DAGMA 20  20.98+14.10 127.31£112.55
50  55.19+37.87 882.76+853.40

Table 27: Summary of performances of the most competitive methods under nonlinear setting. The
reported results are the mean and standard deviation of the metrics over 10 repetitions across different
graph types, vanilla and model assumption violation scenarios.

Method d SHD SID
10 8.21+5.17 22.66+16.98
CAM 20 22.23+12.36 117.37+£79.80
50 61.92+35.50 696.47+463.94
10 12.234+3.63 44.68+10.27
NOTEARS-MLP 20 28.86+7.74 217.09+78.45
50 73.40+18.41 1271.24+560.81
10 10.44+5.11 38.19+16.78
GraN-DAG 20 30.46+8.23 214.86+75.62
50 85.34+11.81 1453.35+£575.73
10 12.64+4.66 46.991+17.88
DAGMA 20  28.28+8.83 211.26+85.84
50 72.07+20.15 1254.57+583.11

Table 28: Summary of performances of the most competitive methods under MLP setting. The
reported results are the mean and standard deviation of the metrics over 10 repetitions across different
graph types, vanilla and model assumption violation scenarios.

Method d SHD SID
10 15.6742.87 44.7046.53
CAM 20 34.8849.23 179.144+29.38
50 84.89+26.26 904.99+134.22
10 12.93+4.24 34.63+12.57
NOTEARS-MLP 20 26.97+8.02  132.86+52.22
50 70.08+23.80 740.91+239.08
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I TABLE RESULTS ON REAL-WORLD DATA

We test the performance of 12 benchmark methods on the real-world Sachs (Sachs et al., 2005
dataset. Sachs is a bioinformatics dataset used to study the expression levels of various proteins and
phospholipids in human cells, and it is a commonly used benchmark in the causal discovery field. We
conduct experiments based on 7466 samples. The true graph structure of the Sachs dataset contains
11 nodes and 17 edges, and it is widely accepted by the biological research community.

Table 29: Results on Sachs dataset.

Method SHD SID
Random 33 56
PC 22 49
GES 30 47

DirectLINGAM 14 50
Var-SortnRegress 19 49
R2-SortnRegress 22 51

NOTEARS 17 48
GOLEM 15 58
NoCurl 16 50
CAM 15 51
NOTEARS-MLP 14 46
GraN-DAG 15 45
DAGMA 12 42

The results in Table 29]show that, represented by DAGMA, differentiable causal discovery achieves
optimal performance on the real-world Sachs dataset. Considering that Sachs is also regarded as
a real-world heterogeneous dataset (Mooij et al., | 2020), the results on both Sachs and synthetic
datasets further indicate that differentiable causal discovery performs better under model assumption
violations.
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J  FIGURE RESULTS ACROSS NODES, GRAPH TYPES, AND GRAPH DENSITIES

This section presents a comprehensive analysis of the figure results across varying numbers of nodes,
graph types, and graph densities, in Figure 2] 3| 4 Bl [6} [7] and [8]
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Figure 2: Experimental results under the linear and nonlinear ER-2 graphs of 20 nodes. SHD (the lower the
better) and SID (the lower the better) are evaluated over 10 trials. For the differentiable causal discovery method,
we present only the optimal results. As the nonlinear settings in Figure[2c|and Figure 2d]are more favorable to
CAM, we conduct a more reasonable evaluation of CAM and differentiable causal discovery under the MLP

setting (Section[d-T.T).
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Figure 3: Experimental results under the linear and nonlinear ER-4 graphs of 10 nodes. SHD (the lower the
better) and SID (the lower the better) are evaluated over 10 trials. For the differentiable causal discovery method,
we present only the optimal results. As the nonlinear settings in Figure [3c|and Figure [3d]are more favorable to
CAM, we conduct a more reasonable evaluation of CAM and differentiable causal discovery under the MLP

setting (Section[d-T.T).
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Figure 4: Experimental results under the linear and nonlinear ER-4 graphs of 20 nodes. SHD (the lower the
better) and SID (the lower the better) are evaluated over 10 trials. For the differentiable causal discovery method,
we present only the optimal results. As the nonlinear settings in Figure[dc]and Figure [fd]are more favorable to
CAM, we conduct a more reasonable evaluation of CAM and differentiable causal discovery under the MLP

setting (Section[d-T.T).
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Figure 5: Experimental results under the linear and nonlinear SF-2 graphs of 10 nodes. SHD (the lower the
better) and SID (the lower the better) are evaluated over 10 trials. For the differentiable causal discovery method,
we present only the optimal results. As the nonlinear settings in Figure[5¢|and Figure[5d]are more favorable to
CAM, we conduct a more reasonable evaluation of CAM and differentiable causal discovery under the MLP

setting (Section[d-T.T).
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Figure 6: Experimental results under the linear and nonlinear SF-2 graphs of 20 nodes. SHD (the lower the
better) and SID (the lower the better) are evaluated over 10 trials. For the differentiable causal discovery method,
we present only the optimal results. As the nonlinear settings in Figure[6c]and Figure [6d]are more favorable to
CAM, we conduct a more reasonable evaluation of CAM and differentiable causal discovery under the MLP

setting (Section[d-T.T).
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Figure 7: Experimental results under the linear and nonlinear SF-4 graphs of 10 nodes. SHD (the lower the
better) and SID (the lower the better) are evaluated over 10 trials. For the differentiable causal discovery method,
we present only the optimal results. As the nonlinear settings in Figure[7c|and Figure[7d]are more favorable to
CAM, we conduct a more reasonable evaluation of CAM and differentiable causal discovery under the MLP

setting (Section[d-T.T).
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Figure 8: Experimental results under the linear and nonlinear SF-4 graphs of 20 nodes. SHD (the lower the
better) and SID (the lower the better) are evaluated over 10 trials. For the differentiable causal discovery method,
we present only the optimal results. As the nonlinear settings in Figure[8c|and Figure[8d]are more favorable to
CAM, we conduct a more reasonable evaluation of CAM and differentiable causal discovery under the MLP

setting (Section[d-T.T).
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K TABLE RESULTS FOR EXTREME MEASUREMENT ERROR

Table[30| presents the results in the linear setting under measurement error with 6 = 10. The results
in Table [30]indicate that when § takes larger values, differentiable causal discovery methods fail to
demonstrate robust performance. J is used to control the variance of ¢; in . As ¢ increases, the
noise ratio correspondingly increases, which leads to the loss of robustness in differentiable methods.
Tables and [9] present the results in the linear setting under measurement error with 6 = 0.8.
The results in Tables and [9]indicate that when § = 0.8 takes a smaller value, the noise ratio is
correspondingly lower, allowing differentiable methods to demonstrate robust performance.

Table 30: Linear Setting under measurement error with § = 10, for ER-2 graphs of 10, 20 nodes.

Vanilla model Measurement error (0 = 10)
10 nodes SHDJ SID| SHDJ SID|
Random 25.643.1 57.949.5 23.14+1.9 61.2+7.5
PC 12.443.1 40.9+134 | 19.242.1 56.9+9.3
GES 13.847.8 32.0£13.6 | 20.24+4.5 54.14+-11.6
DirectLINGAM | 19.643.3  46.14+10.6 | 20.0£1.1 61.248.2
DAGMA 1.2+1.2 3.3+5.3 20.7+1.2 58.2+7.6
20 nodes | SHD] SID| | SHDJ SID|
Random 107.947.0 253.2426.3 | 92.7+6.7 243.6+£19.4
PC 31.6+6.5 168.5+27.6 | 44.54+4.6 213.8424.5
GES 3434246 104.5451.1 | 51.247.1 220.94+27.6
DirectLINGAM 55.749.1 166.44+31.0 | 41.8+1.8 210.3+24.3
DAGMA 5.443.9 14.2+10.3 | 49.4+4.6 227.5424.9
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L TABLE RESULTS ON SEMI-SYNTHETIC DATA

The semi-synthetic data is generated based on the network structure of the real-world Sachs dataset,
using linear and nonlinear vanilla models to create eight datasets with model assumption violations.
The results in Table [3T] and [32] indicate that differentiable causal discovery methods still achieve
optimal or competitive performance in scenarios other than scale variation.

Table 31: Linear Setting, for semi-synthetic data of 11 nodes.

Vanilla model Latent error i Unfaithful Scale-variant Missing Mechanism violation
11 nodes SHD.. SID| SHD. SID| SHD,, SID| SHD. SID| SHD,  SID| | SHD|  SID| | SHD| SID| SHD,  SID| | SHD| SID|
Random 340£20 441469 | 327514 429453 | 362431 472458 | 337442 468+57 | 38437 51.6+43 335518 432465 | 391428 573482
PC 107438 38.6£11.0 | 162425  44.9+4.1 156422 388+11.2 | 147£1.7 422455 131424 434478 10.7+£38  38.6£11.0 | 9.6:22 34.1485

9.3+27 287462 | 79429 26.5+87
143£40 436485 | 123441 371475
131446 38.5+6.9 920 77468

GES 94427  289+63 | 28.7+74 33.8+120 | 17.0435 2924145 | 145439 22.5+145 | 155439 27.4+9.2
DirectLiNGAM | 128442 3454115 | 189443  39.6£69 | 148432 410460 | 122425 3564112 | 145444 425497
Var-SortnRegress | 3.8434  7.8483 | 22.6£7.0 127472 | 139417 11383 | 12.6£37 85492 | 113446 82482

©

R2-SortnRegress | 171456 ~ 37.147.1 | 36.3£7.0 388450 | 203426 363496 | 19.6444 383450 | 216431 37.847.1 17.1456  37.147.1 | 18.1465 404476
NOTEARS 05+£07 51463 | 93+16  29.0£62 | 8.9+24 18375 | 115444 113488 9 105+7.1 121436 443492 | L1£16  52%75
GOLEM 0.7403 6.8+5.4 9.3+26 267431 | 113449 257459 | 15.0+28 37.7+54 2 2 8 13.0+£14 463434 1.5:08 72443
NoCurl 03406 28459 | 120439 98472 | 94423 183480 | 117443 92475 3 1 . 122424 43.0484 | 05207 41454
DAGMA 0.2+0.4 2.845.6 8.9+28 259+103 | 89424  19.1+83 | 10.9+39 12.9+10.7 .9 0 | 0.1+03  1.4+42 | 11.5£28 437100 | 0.6£1.0  2.4+3.7

Table 32: MLP Setting, for semi-synthetic data of 11 nodes.

Vanilla model Latent confc error i Unfaithful Scale-variant Missing Mechanism violation
11 nodes SHD. SID| SHD.. SID| SHD.. SID| SHD.. SID| SHD.. SID. SHD,  SID| | SHD| SID| SHD/, SID| SHD/, SID|
Random 329532 440£79 | 30.8£27 375:64 589482 | 352+29 47 316429 468+47 | 339415 547+56 | 362+28 573+46 | 387463 517454 | 314223 459451
PC 17,5523 18.8+3.9 184519 3T0£107 | 17121 444548 | 209429 44,

46. 8 1| 182426 457454 | 175423 463+4.1 | 168+15 44.6448 | 10738  38.6+110
5 19.6£32 452103 | 17.6+45 340£118 | 275540 1

GES 19.2£33 23.1£5.6 35 21.1£32 409495 3.1 3554117 | 19.6£20 37.0+£104 | 94£27 289463
CAM 94+34 15.7+4.1 219455 423+114 | 13.0+38 357+126 | 18.1435 28.6+124 | 123427 20.1483 | 9. 4 1354107 126498 | 13.4+17 433464
NOTEARS-MLP | 6.8+2.9 10.4£1.6 1544612 465439 | 159441 399452 | 139429  20.749.1 | 100429 17.3483 | 165423 46,5498 72458 | 52+17 222457
GraN-DAG 9.142.6 10.0+2.6 40, 13.0+2.1 10.5+25 333475 | 9.1+18 3 100415 28.1+43 | 13,1415 47.1467 3574101 | 10.6+25  40.0+73
DAGMA 87427  1LI£50 | 119417 410456 | 158426 347438 | 160415  40. 162427 132424 215485 | 167422  43.5448 12,1459 | 50414 22.6442
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