

APPENDIX CONTENTS

756	A THE USE OF LARGE LANGUAGE MODELS IN MMEVOKE	16
757		
758		
759		
760	B MORE DETAILS ABOUT MMEVOKE	16
761		
762		
763	B.1 PRESENTATION OF MMEVOKE BENCHMARK	16
764	B.2 WORD CLOUD DISTRIBUTION	17
765	B.3 COMPLETE SUBFIELDS DISTRIBUTION	17
766	B.4 DENSITY DISTRIBUTION	18
767	B.5 HUMAN STUDY TOWARDS BENCHMARK QUALITY TEST	18
768	B.6 FINE-GRAINED DIFFICULTY LEVEL OF MMEVOKE	18
769		
770		
771		
772	C MORE RESULTS ABOUT MMEVOKE	19
773		
774	C.1 MORE QUANTITATIVE EXPERIMENTAL RESULTS ABOUT RQ1	19
775	C.2 SEQUENTIAL FINE-TUNING	20
776	C.3 ABLATION EXPERIMENTS IN MM-RAG	22
777	C.4 MORE QUALITATIVE RESULTS ABOUT MMEVOKE	23
778	C.5 ERROR ANALYSIS	23
779		
780		
781		
782	D MORE DETAILS ON CAPABILITY DEGRADATION	25
783		
784	D.1 CAPABILITY DEGRADATION RANKING	25
785	D.2 FINE-GRAINED DIMENSIONAL RESULTS ON GENERAL CAPABILITY TESTS	25
786	D.3 MORE EXAMPLES OF VIOLATING INSTRUCTION	29
787		
788		
789		
790	E MORE DETAILS ABOUT KNOWLEDGE AUGMENTATION ON MMEVOKE	30
791		
792	E.1 TRAINING LOSS PERSPECTIVES ON EFFECTIVENESS OF KNOWLEDGE AUGMENTATION	30
793	E.2 THE PERFORMANCE OF KNOWLEDGE AUGMENTATION IN GENERAL CAPABILITY TESTS	30
794		
795		
796		
797	F MORE EXPERIMENTAL RESULTS ABOUT KNOWLEDGE RETENTION METHODS ON MMEVOKE	32
798		
799	F.1 THE KNOWLEDGE INJECTION PERFORMANCE OF KNOWLEDGE RETENTION METHODS ON MMEVOKE	32
800	F.2 IS IT BETTER TO HAVE MORE DATA FOR REPLAY?	32
801		
802		
803		
804	G PROMPT FOR GENERATION	33
805		
806		
807		
808		
809		

810 A THE USE OF LARGE LANGUAGE MODELS IN MMEVOKE
811812 In this section, we elaborate on the precise role of large language models within MMEVOKE, as
813 detailed below.
814815

- 816 **Usage 1: MMEVOKE’s construction.** In Section 3.2, we specify that GPT-4o is employed for
817 content summarization and QA generation, which aligns with current research practices.
- 818 **Usage 2: MMEVOKE’s evaluation.** In Section 4.2, we evaluate MMEVOKE using Gemini-2.0-
819 Flash, Gemini-2.5-Pro, Perplexity AI, and GPT-4.1, following standard benchmarking practices.
- 820 **Usage 3: General capability tests.** In Section 4.3, we employ MIA-Bench, MMDU, MathVista,
821 and MathVision, whose evaluation requires large language models as judges—a practice consistent
822 with current research standards.
- 823 **Usage 4: Paper grammar polishing.** The paper is initially drafted by humans and subsequently
824 polished for grammar using LMMs, a practice consistent with current research norms.

824 B MORE DETAILS ABOUT MMEVOKE
825826 In this section, we further demonstrate the details of MMEVOKE, including benchmark presentation,
827 complete subfields distribution, word cloud distribution, human study, fine-grained difficulty level
828 results and release plan.
829830 B.1 PRESENTATION OF MMEVOKE BENCHMARK
831832 Figure 8 presents additional examples of MMEVOKE, encompassing four distinct subfields: Politics,
833 Science, Video Game, and Songs. Each subfield showcases relevant Type, Knowledge Summary,
834 Knowledge Image, Query, Query Image. Specifically, four examples are as follows:
835836 Figure 8: Examples of News/Entity Evolving Knowledge in MMEVOKE, including Type, Knowledge Summary, Knowledge Image, Query, Query Image. Examples are taken from different clusters:
837 **Politics** for News, **Science** for News, **Video Game** for Entity, and **Songs** for Entity.
838839

- 840 **Politics:** Describes the unsuccessful assassination attempt targeting former U.S. President Donald
841 Trump at a campaign rally in Butler, Pennsylvania, on July 13, 2024. The query question asks for
842 the identity of the individual depicted in the image.
- 843 **Science:** Details the awarding of the 2024 Nobel Prize in Physics to John Hopfield and Geoffrey
844 Hinton for their contributions. The query question inquires about the person who shared the Nobel
845 Prize with the individual shown in the image.
- 846 **Video Game:** Lists the video game Black Myth: Wukong, released on August 20, 2024. The query
847 question focuses on the game’s sales figures during its first month.
- 848 **Songs:** Describes the song 'Apt.' (abbreviation for 'Apartment') by New Zealand and South Korean singer Rosé and American singer-songwriter Bruno
849 Mars. It was released through The Black Label and Atlantic Records on 18 October 2024.
850

- **Songs:** Introduces the song Apt, performed by Russ and Bruno Mars. The query question concerns the drinking game that served as inspiration for the song.

These examples illustrate the diverse subfields of evolving knowledge captured within MMEVOKE, providing a more detailed demonstration.

B.2 WORD CLOUD DISTRIBUTION

(a) News Evolving Knowledge.

(b) Entity Evolving Knowledge.

Figure 9: Word Cloud Distributions of MMEVOKE.

In Figure 9a, we show the word cloud distribution of News evolving knowledge. It can be found that Trump appears more often, which may be because MMEVOKE contains a large number of US political News data. Meanwhile, in Figure 9b, we present the word cloud distribution of entity names in the Entity evolving knowledge.

We have demonstrated the diversity of MMEVOKE benchmark through fine-grained subfields distribution, key statistics, word cloud distribution, and multiple perspectives. At the same time, our automated pipeline can continuously collect evolving knowledge and provide injection data for the knowledge injection field.

B.3 COMPLETE SUBFIELDS DISTRIBUTION

Figure 10: Fine-grained subfields distribution of News evolving knowledge.

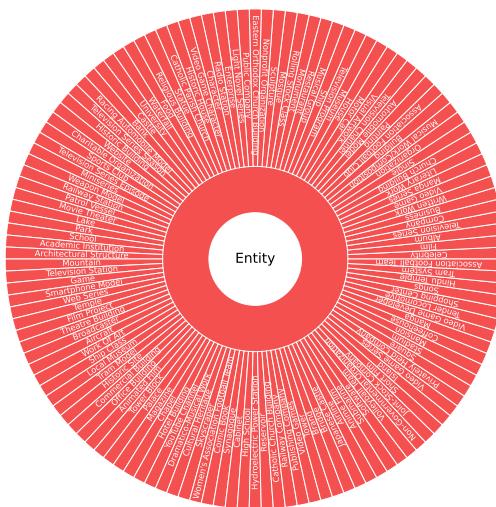
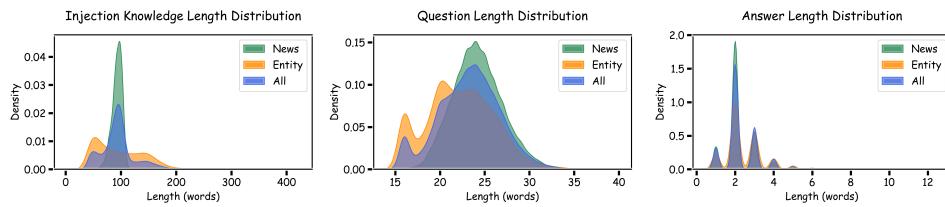
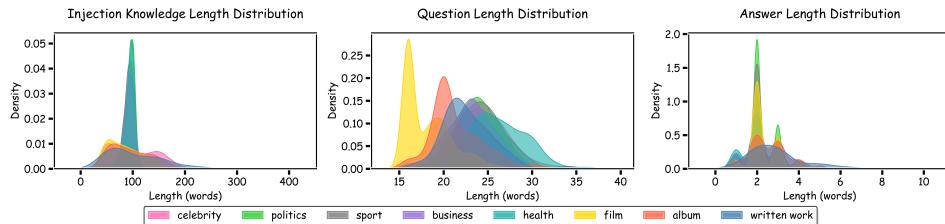


Figure 11: Fine-grained subfields distribution of Entity evolving knowledge.

In Figures 10 and 11, we comprehensively illustrate the fine-grained subfields distribution of the MMEVOKE benchmark, which includes 29 distinct subfields for News evolving knowledge and 130 subfields for Entity evolving knowledge, underscoring its exceptional diversity. This benchmark serves as a critical resource for the evolving knowledge injection domain, providing a robust foundation for advancing research and development in the field.

918 B.4 DENSITY DISTRIBUTION
919920
921
922
923
924
925
926
927
Figure 12: Density distribution based on evolving knowledge sources.928
929
930
931
932
933
934
935
Figure 13: Density distribution of fine-grained subfields based on evolving knowledge.936 B.5 HUMAN STUDY TOWARDS BENCHMARK QUALITY TEST
937

938 To verify the hallucination level of GPT-4o in data generation, We randomly selected 100 pieces
939 of data from MMEVOKE during manual selection for human study. Specifically, four annotators
940 scored the samples (1-5 scales, higher scores indicate greater purity) from the perspectives of content
941 summarization, QA generation, and whether the summary contained information necessary to answer
942 the question. According to the results in Table 4, MMEVOKE exhibits high quality, demonstrating
943 minimal hallucination during the data construction process.

944
945 Table 4: Human Study Towards Benchmark Quality Test.

946 Dimension	947 ALL	948 News	949 Entity
947 Q&A	948 4.86 (± 0.01)	949 4.87 (± 0.01)	947 4.85 (± 0.02)
948 Summary	949 4.98 (± 0.01)	947 4.97 (± 0.01)	948 4.98 (± 0.02)

950 B.6 FINE-GRAINED DIFFICULTY LEVEL OF MMEVOKE
951952
953 Table 5: The performance of different difficulty levels on MMEVOKE.

954 Task	955 Method	956 ALL		957 News		958 Entity	
955 Task	956 Method	956 CEM	957 F1-Score	957 CEM	958 F1-Score	958 CEM	959 F1-Score
		16.55	14.82	17.43	14.12	15.53	15.61
957 SimpleVQA	Full-FT	55.63	76.00	55.59	72.05	55.68	80.54
	Sufficient Context	40.49	52.58	38.16	51.49	43.18	53.82
958 3-Hop	Full-FT	70.42	70.42	74.01	74.01	66.29	66.29
	Sufficient Context	76.58	76.58	65.46	65.46	89.39	89.39

963 To further diversify MMEVOKE, we constructed 568 Counterfactual Reasoning and 3-Hop QA pairs
964 using GPT-4o, and extracted their corresponding SimpleVQA data, yielding experimental results
965 comparing fine-grained difficulty levels. *The SimpleVQA here refers to the QA data of MMEVOKE
966 itself.* Table 5 shows the difficulty ranking: Counterfactual Reasoning < SimpleVQA < 3-Hop, and
967 48.24% (avg) of cases have SimpleVQA failing while Counterfactual Reasoning succeeding, and
968 40.06% (avg) have SimpleVQA succeeding but 3-Hop failing.

969
970
971

972 C MORE RESULTS ABOUT MMEVOKE

973 974 C.1 MORE QUANTITATIVE EXPERIMENTAL RESULTS ABOUT RQ1

975 **Table 6: Performance of knowledge injection methods on MMEVOKE.** ALL, News.Avg, and
 976 Entity.Avg respectively show the performance of knowledge injection methods on entire MMEVOKE,
 977 News subset, and Entity subset. Orange value marks the best performance of methods on LLaVA-
 978 v1.5 and Qwen-VL-Chat, as well as the best performance of models in Web Search Engine and
 979 Sufficient Context (**vertical perspective**). Red value indicates knowledge subfield with the best
 980 performance of the same method and model on different fine-grained subfields, while blue value
 981 indicates knowledge subfield with the worst performance (**horizontal perspective**). PO: Politics;
 982 Sports; BU: Business; HE: Health; CE: Celebrity; FI: Film; AL: Album; WR: Written Work.

983 Method	984 ALL		985 News								986 Entity											
	987 Avg		988 PO		989 SP		985 BU		986 HE		987 Avg		988 CE		989 FI		985 AL		986 WR			
	985 CEM ↑	986 FI ↑	985 CEM ↑	986 FI ↑	985 CEM ↑	986 FI ↑	985 CEM ↑	986 FI ↑	985 CEM ↑	986 FI ↑	985 CEM ↑	986 FI ↑										
LLaVA-v1.5																						
Vanilla	4.89	9.34	7.37	11.96	1.92	5.86	4.59	9.74	10.70	15.99	10.12	17.54	2.18	6.47	1.37	6.48	2.39	5.71	3.77	6.02	6.78	11.24
Full-FT	18.02	15.17	21.35	16.34	12.92	10.99	22.49	20.88	27.31	20.95	19.84	16.47	14.37	13.88	13.11	16.93	12.39	13.16	12.17	7.66	20.34	8.43
LoRA	15.23	18.31	17.72	19.42	10.54	12.96	19.11	21.50	20.66	24.03	17.81	23.76	12.51	17.09	12.20	21.19	12.39	15.82	10.72	8.72	20.34	12.94
MM-RAG ^{Text-Only}	24.05	34.86	37.32	49.39	22.18	36.25	47.88	54.77	34.87	51.07	36.44	50.95	9.50	17.80	15.14	25.39	1.93	4.04	2.90	13.86	3.39	13.07
MM-RAG ^{Image-Only}	25.25	37.11	19.28	26.76	9.35	16.96	33.37	39.19	19.56	29.46	18.22	28.60	31.80	48.45	43.01	39.09	47.58	40.29	58.14	28.81	53.68	
MM-RAG ^{UniIR}	40.68	57.51	40.12	53.21	21.81	35.08	56.23	65.94	39.85	57.08	35.22	50.93	41.30	62.23	41.01	63.94	48.86	58.99	41.45	63.02	35.59	60.09
Qwen-VL-Chat																						
Vanilla	5.84	10.99	7.75	12.72	3.21	7.69	4.47	10.37	10.52	14.92	10.93	19.32	3.74	9.10	1.78	8.06	8.18	13.10	4.35	6.93	8.47	16.81
Full-FT	10.16	16.61	13.35	18.22	6.42	11.80	12.70	17.11	16.42	22.27	17.00	25.42	6.65	14.83	5.39	14.68	11.59	17.95	5.22	10.83	15.25	21.69
LoRA	9.65	12.64	9.27	14.55	4.31	9.24	5.68	11.82	12.55	17.79	12.96	21.64	4.41	10.54	2.34	9.54	9.32	14.96	5.22	8.04	10.17	18.07
MM-RAG ^{Text-Only}	21.79	31.28	31.51	41.14	20.71	29.81	30.71	40.75	32.29	43.38	33.20	47.56	11.13	20.47	13.36	24.27	8.41	14.02	6.67	15.27	11.86	19.60
MM-RAG ^{Image-Only}	22.31	33.09	17.82	25.15	9.26	15.97	20.80	29.82	18.45	28.33	18.62	29.38	27.24	41.79	20.27	33.52	33.98	45.81	39.42	53.80	33.90	54.43
MM-RAG ^{UniIR}	32.75	46.18	33.26	43.36	18.15	27.56	32.77	44.90	37.00	49.25	31.98	44.96	32.20	49.28	28.20	45.05	37.16	50.60	41.45	56.57	42.37	65.29
Commercial AI Web Search Engines																						
Gemini-2.0-Flash	18.21	26.52	21.23	27.75	10.91	16.87	21.64	27.45	22.88	30.03	17.41	28.32	14.91	25.16	10.11	20.35	28.64	37.47	14.49	23.87	16.95	28.77
Gemini-2.5-Pro	44.19	52.58	48.86	52.84	39.07	52.28	31.90	37.00	51.11	57.22	58.04	59.97	39.27	46.27	24.29	35.81	63.98	73.14	53.62	68.36	42.37	57.40
Perplexity AI	48.27	62.44	47.58	56.51	34.78	43.14	56.13	66.19	41.82	54.33	35.29	47.88	48.96	68.78	47.03	70.95	62.22	73.65	54.41	68.54	43.75	59.17
GPT-4.1	39.61	42.69	41.81	43.08	25.23	26.07	52.60	52.43	34.82	42.45	47.60	50.81	37.19	42.26	24.29	26.53	57.50	62.41	58.26	62.94	30.51	47.61
Sufficient Context																						
LLaVA-v1.5	56.13	75.77	17.78	72.37	38.77	58.44	75.09	84.69	54.61	74.33	48.58	67.01	55.43	79.50	52.08	78.83	75.91	89.71	57.39	78.80	49.15	69.96
Qwen-VL-Chat	48.96	66.02	49.98	63.42	35.20	50.29	52.00	68.90	50.55	67.25	48.18	62.02	47.84	68.87	43.29	66.15	62.05	75.92	58.55	75.41	47.46	67.79
Gemini-2.5-Pro	72.15	80.46	72.61	78.77	57.01	65.75	86.34	89.63	71.77	81.65	62.35	74.65	71.65	82.32	73.53	80.89	81.14	88.09	75.07	85.59	52.54	72.05
GPT-4.1	75.02	83.74	79.22	88.20	53.62	65.21	84.04	90.23	69.37	80.75	68.83	79.56	71.21	79.68	80.74	88.02	88.18	91.97	86.38	91.58	59.32	74.86

1000 **Table 6** presents the quantitative experimental results of RQ1, revealing that no method achieves robust
 1001 injection performance, with significant performance variance observed across different fine-grained
 1002 subfields knowledge. Specifically, We have obtained further observations:

- 1003 **Obs 1:** In Table 6, across nearly all evaluated methods, News knowledge injection performance
 1004 consistently outperforms Entity knowledge. We attribute this gap to their fundamental differences
 1005 in learning difficulty. Entity knowledge introduces entirely novel concepts to model, posing a
 1006 substantial learning challenge. In contrast, News knowledge primarily establishes new and complex
 1007 relationships among existing entities, which represents a comparatively lower learning barrier.
- 1008 **Obs 2:** The performance of knowledge in the same subfield varies depending on the method used.
 1009 For example, in Full FT, LoRA, and MM-RAG^{Text-Only}, the performance of film knowledge is poor.
 1010 In sharp contrast, it performs better when using MM-RAG^{Image-Only}, MM-RAG^{UniIR}, Sufficient
 1011 Context, and Web Search.
- 1012 **Obs 3:** A significant performance variance among different strategies within same method. Notably,
 1013 MM-RAG^{Text-Only} is more effective for injecting News knowledge, while MM-RAG^{Image-Only} is
 1014 better suited for Entity knowledge. This discrepancy indicates that knowledge injection is optimized
 1015 when the modality of the feature aligns with the nature of the knowledge source (textual features
 1016 for News and visual features for Entity).
- 1017 **Obs 4:** The performance of the same subfield knowledge differs across models. For instance,
 1018 Health and Written work perform better on Qwen-VL-Chat; Sport and Business perform better on
 1019 LLaVA-v1.5. This is likely due to significant distributional differences in types of knowledge data
 1020 encountered during pre-training of different models.
- 1021 **Obs 5:** Politics knowledge contains a wide range of professional terms and complex concepts that
 1022 are difficult to learn, ranking lowest among almost all methods.

1022 Observations

1023 **Observation 1:** Current knowledge injection methods have significant domain specificity for
 1024 different fine-grained subfield knowledge.

1026
1027 **Table 7: The performance of knowledge injection methods on Entity subset of MMEVOKE.**
1028 TEL: Television Series; COM: Company; VID: Video Game; CHU: Church Building; SIN: Single;
1029 OGR: Organization; PAI: Painting; MOT: Motor Car.

Method	TEL		COM		VID		CHU		SIN		ORG		PAI		MOT	
	CEM ↑	F1 ↑														
<i>LLaVA-v1.5</i>																
Vanilla	6.15	9.77	1.12	5.69	0.00	3.16	0.00	6.39	4.55	9.51	2.70	6.31	0.00	11.90	0.00	4.76
Full-FT	13.97	10.29	29.21	14.15	10.34	7.32	26.53	22.67	15.91	8.55	27.03	15.52	17.86	13.83	7.14	6.21
LoRA	15.64	16.20	10.11	11.42	12.07	15.24	14.29	24.54	20.45	20.39	16.22	17.45	14.29	14.42	0.00	1.41
MM-RAG ^{Text-Only}	3.35	6.15	4.49	14.31	5.17	21.81	8.16	18.10	2.27	20.72	2.70	13.69	14.29	21.31	7.14	27.55
MM-RAG ^{Image-Only}	36.87	54.26	30.34	57.23	29.31	59.73	40.82	66.33	34.09	56.78	24.32	49.88	53.57	70.95	21.43	57.93
MM-RAG ^{UniIR}	41.34	62.91	30.34	63.49	32.76	65.77	34.69	64.30	31.82	61.50	29.73	59.19	64.29	85.12	21.43	68.30
<i>Qwen-VL-Chat</i>																
Vanilla	7.82	11.33	1.12	7.32	1.72	2.59	0.00	10.20	6.82	11.33	0.00	2.88	7.14	13.10	0.00	10.37
Full-FT	8.94	16.49	1.12	11.05	3.45	15.54	2.04	16.91	6.82	15.75	5.41	8.61	10.71	12.93	7.14	15.48
LoRA	7.26	11.55	1.12	8.64	1.72	3.85	2.04	9.90	6.82	13.61	2.70	5.59	10.71	15.95	0.00	8.33
MM-RAG ^{Text-Only}	7.26	13.22	7.87	23.37	8.62	25.35	4.08	12.90	13.64	31.20	13.51	19.91	14.29	23.45	14.29	30.36
MM-RAG ^{Image-Only}	22.91	38.39	30.34	55.94	18.97	56.23	38.78	52.91	31.82	56.92	29.73	45.95	39.29	48.45	14.29	46.90
MM-RAG ^{UniIR}	19.67	23.81	30.34	63.84	18.97	59.04	28.57	50.26	34.09	59.51	43.24	63.13	42.86	52.62	14.29	46.90
<i>Commercial AI Web Search Engines</i>																
Gemini-2.0-Flash	19.55	31.14	8.99	20.82	10.34	25.01	10.20	21.56	9.09	22.58	18.92	25.02	14.29	16.43	0.00	26.11
Gemini-2.5-Pro	58.10	74.71	41.57	66.09	46.55	65.25	20.41	33.07	43.18	66.37	43.24	59.98	46.43	38.27	7.14	35.48
Perplexity AI	43.90	54.59	30.00	52.08	33.33	48.41	62.50	75.83	50.00	70.00	33.33	54.07	85.71	83.67	33.33	13.33
GPT-4.1	50.28	62.08	52.81	57.02	53.45	65.23	22.45	29.31	38.64	47.03	45.95	52.43	17.86	20.53	0.00	15.99
<i>Sufficient Context</i>																
LLaVA-v1.5	56.42	81.18	41.57	78.05	34.48	68.72	44.90	72.48	45.45	68.79	45.95	79.70	75.00	90.12	35.71	73.15
Qwen-VL-Chat	51.96	72.08	39.33	73.62	25.86	63.28	34.69	62.88	36.36	62.62	43.24	65.69	42.86	55.60	42.86	73.47
Gemini-2.5-Pro	69.27	85.95	64.04	81.32	58.62	78.70	55.10	75.18	68.18	82.72	56.76	78.37	89.29	85.62	50.00	78.25
GPT-4.1	77.09	90.22	70.79	86.21	67.24	83.84	59.18	77.77	79.55	91.44	64.86	83.24	89.29	91.90	64.29	84.97

1048
1049 **Table 8: The performance of knowledge injection methods on News subset of MMEVOKE.** ENT:
1050 Entertainment; TEC: Tech; SCI: Science; TRA: Travel; FOO: Food; CLI: Climate; INV: Investing;
1051 STY: Style.

Method	ENT		TEC		SCI		TRA		FOO		CLI		INV		STY	
	CEM ↑	F1 ↑														
<i>LLaVA-v1.5</i>																
Vanilla	6.79	9.35	6.79	9.35	6.79	9.35	11.90	18.57	10.26	17.83	8.11	13.87	18.28	23.71	13.93	16.20
Full-FT	18.67	11.47	28.29	17.02	15.79	12.56	28.57	24.16	35.90	24.54	27.03	13.02	44.09	25.06	31.15	19.17
LoRA	16.98	15.70	27.63	25.96	8.77	18.73	23.81	29.91	20.51	18.83	16.22	18.02	34.41	28.13	19.67	19.45
MM-RAG ^{Text-Only}	39.81	48.79	46.05	55.21	36.84	55.71	38.10	54.50	33.33	50.85	37.84	53.51	37.63	47.06	68.85	78.51
MM-RAG ^{Image-Only}	21.76	28.07	23.03	28.02	22.81	38.42	21.43	31.67	20.51	27.35	24.32	31.40	30.11	36.37	22.13	25.67
MM-RAG ^{UniIR}	52.16	63.67	42.11	51.77	33.33	52.89	47.62	62.83	41.03	57.78	35.14	53.06	38.71	48.23	59.84	67.32
<i>Qwen-VL-Chat</i>																
Vanilla	6.79	9.90	14.47	16.10	8.77	14.95	9.52	16.59	10.26	16.24	10.81	12.07	23.66	29.27	13.11	16.19
Full-FT	11.27	14.64	17.11	18.79	8.77	13.78	14.29	23.89	17.95	27.35	18.92	21.42	35.48	38.34	16.39	19.18
LoRA	7.41	11.01	16.45	18.76	8.77	13.93	7.14	15.00	7.69	17.52	13.51	14.77	24.73	30.44	15.57	17.72
MM-RAG ^{Text-Only}	31.48	38.00	46.71	51.27	42.11	48.99	38.10	50.56	20.51	39.66	35.14	46.65	43.01	52.75	60.66	66.14
MM-RAG ^{Image-Only}	20.06	24.82	22.37	27.06	33.33	42.59	21.43	31.67	20.51	27.35	24.32	31.40	30.11	36.37	19.67	23.81
MM-RAG ^{UniIR}	42.75	50.25	41.45	45.18	47.37	55.69	40.48	50.46	28.21	44.36	32.43	44.34	43.01	52.93	51.64	56.70
<i>Commercial AI Web Search Engines</i>																
Gemini-2.0-Flash	24.69	29.98	38.82	46.00	15.79	22.97	16.67	30.40	23.08	30.52	10.81	19.28	38.71	45.72	30.33	32.60
Gemini-2.5-Pro	59.72	61.28	63.82	60.26	31.58	37.64	52.38	63.00	48.72	56.44	48.65	44.35	52.69	51.29	69.67	68.13
Perplexity AI	59.85	64.15	47.06	55.20	45.45	49.13	50.00	70.05	33.33	40.74	37.50	64.58	33.33	40.12	71.88	74.36
GPT-4.1	46.30	43.64	57.24	59.50	22.81	35.29	50.00	50.29	40.54	35.21	55.91	55.73	50.82	50.84		
<i>Sufficient Context</i>																
LLaVA-v1.5	65.12	78.31	63.82	77.61	47.37	66.30	57.14	72.37	51.28	76.58	51.35	63.07	60.22	72.83	75.41	85.18
Qwen-VL-Chat	61.42	68.99	62.50	72.69	43.86	63.14	45.24	58.56	51.28	64.66	48.65	56.68	53.76	65.04	68.03	75.70
Gemini-2.5-Pro	81.17	83.08	75.00	82.33	61.40	66.34	73.81	82.47	66.67	81.28	70.27	74.10	75.27	77.29	82.79	83.34
GPT-4.1	78.70	83.73	82.89	85.12	61.40	72.69	69.05	80.41	69.23	78.69	62.16	67.85	68.82	77.61	89.34	91.33

1070 Tables 7 and 8 present richer experimental results of fine-grained subfields, further verifying the
1071 significant domain specificity of existing knowledge injection methods and their inability to robustly
1072 implement knowledge injection.

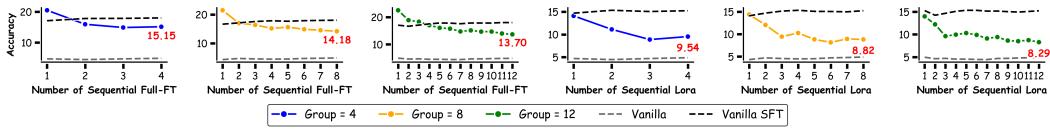
1073 C.2 SEQUENTIAL FINE-TUNING

1074 C.2.1 SEQUENTIAL FINE-TUNING BASED ON TASKS

1075 Sequential Fine-Tuning refers to the process of incrementally training models on new tasks and
1076 data. Specifically, model weights obtained from previous tasks and data are used to initialize model
1077 parameters (Chen et al., 2025). In this section, *we explore whether Sequential Fine-Tuning is more*

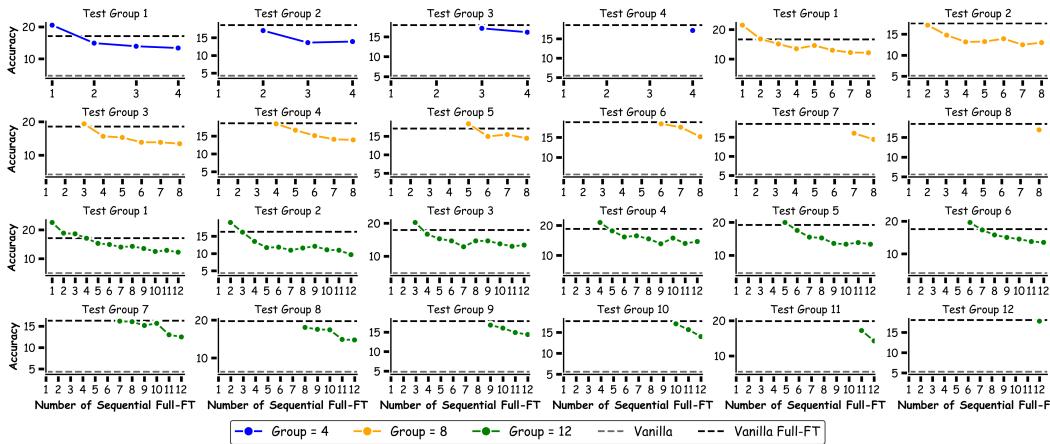
1080 **effective than One-Time Injection?** We employed MMEVOKE for knowledge injection, randomly
 1081 dividing the data into subsets of 4, 8, and 12 tasks. We consider each subset as a task and use these
 1082 subsets to Sequential Fine-Tuning the model.

1083 **Sequential Fine-Tuning impede the effective injection of multimodal evolving knowledge.** As
 1084 illustrated in Figure 14, the performance of LMMs exhibits a declining trend with progressive
 1085 Sequential Fine-Tuning based on tasks. This degradation primarily stems from the disruption of
 1086 previously fine-tuning parameters during each subsequent fine-tuning iteration. Consequently, the
 1087 overall performance of LMMs progressively deteriorates. Furthermore, our investigation into the
 1088 impact of Sequential Fine-Tuning steps revealed a negative correlation between the number of steps g
 1089 and LMMs performance, as evidenced by the values corresponding to the terminal points in each line
 1090 graph. These findings underscore the importance of minimizing Sequential Fine-Tuning in practical
 1091 applications to preserve model efficacy.



1092
 1093
 1094
 1095
 1096
 1097 **Figure 14: The results of LLaVA-v1.5 on Sequential Fine-Tuning based on Tasks.** The data
 1098 \mathcal{D}_K and \mathcal{D}_Q are evenly divided into $g \in \{4, 8, 12\}$ parts, namely $\mathcal{D}_K = \{d_k^1, d_k^2, \dots, d_k^n\}_{n=1}^g$ and
 1099 $\mathcal{D}_Q = \{d_q^1, d_q^2, \dots, d_q^n\}_{n=1}^g$. Sequential Fine-Tuning based on tasks refer to the situation where if
 1100 the current m -th Sequential Fine-Tuning has ended, it indicates that the model is being trained on
 1101 $d_k^1, d_k^2, \dots, d_k^m$ in sequence; and evaluated on $\{d_q^1 \cup d_q^2 \cup \dots \cup d_q^m\}$.

C.2.2 SEQUENTIAL FINE-TUNING BASED ON SUBSETS



1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119 **Figure 15: The results of LLaVA-v1.5 on Sequential Full-FT based on Subsets.** Sequential
 1120 Full-FT based on subset refer to the situation where if the current m -th Sequential Full-FT has ended,
 1121 it indicates that the model is being trained on $d_k^1, d_k^2, \dots, d_k^m$ in sequence; and evaluate sequentially
 1122 on **one of** $d_q^1, d_q^2, \dots, d_q^m$.

1123 The results of Sequential Fine-Tuning based on subsets are shown in Figure 15 and 16. Each subgraph
 1124 displays the performance changes of the LMMs on the same subset as the Sequential Fine-Tuning
 1125 process progresses. It can be observed that whether using Full-FT or LoRA as training strategies,
 1126 as the number g of Sequential Fine-Tuning increases, the performance of the model on the same
 1127 subset shows a downward trend. This discovery further indicates that Sequential Fine-Tuning is not
 1128 conducive to injecting up-to-date knowledge into the LMMs.

Observations

1131 **Observation 2:** Both sequential task and subset fine-tuning impede the efficacy of knowledge
 1132 injection, with performance degradation correlating with an increased number of tasks or
 1133 subsets.

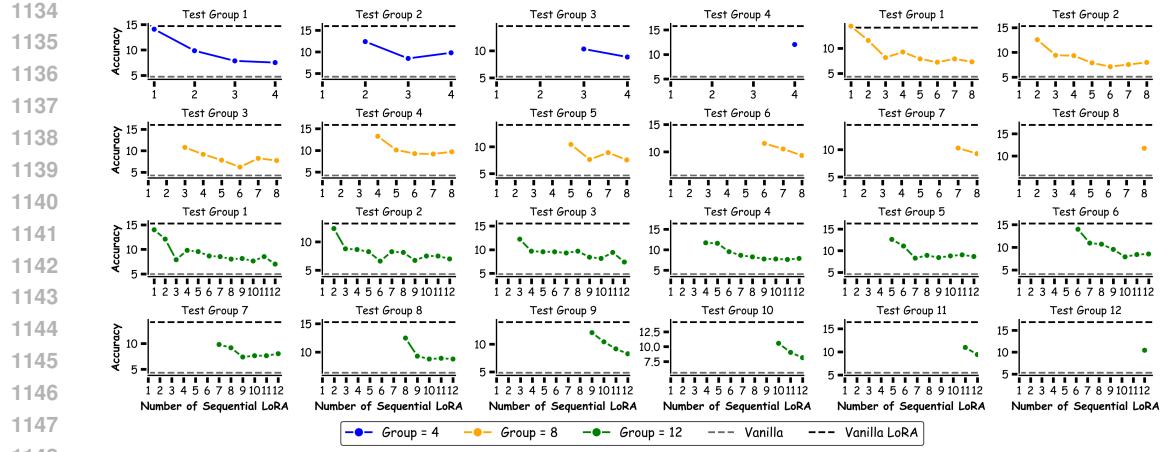


Figure 16: **The results of LLaVA-v1.5 on Sequential LoRA based on Subsets.** Sequential LoRA based on subset refer to the situation where if the current m -th Sequential LoRA has ended, it indicates that the model is being trained on $d_k^1, d_k^2, \dots, d_k^m$ in sequence; and evaluate sequentially on **one of** $d_q^1, d_q^2, \dots, d_q^m$.

C.3 ABLATION EXPERIMENTS IN MM-RAG

Retrieval strategy, **Example Number**, and **Pool Size** are critical factors influencing the performance of MM-RAG, as demonstrated by the experimental results presented in Figure 17 and 18.

- **Effect of Retrieval Strategy in MM-RAG.** An interesting observation appears in the “News” subgraph, where the Text-Only approach significantly outperforms the Image-Only strategy. The reason for this difference is that textual information is more important for news understanding than visual information, as valuable data cannot be retrieved solely through images. On the contrary, for Entity knowledge, visual information is more valuable than textual information.
- **Effect of Example Number in MM-RAG.** We compared $K \in \{1, \dots, 5\}$, and in the first row of Figure 17, the direct correlation between the performance of model and Example Number is shown. Our experiment revealed a convincing trend that the model performs using a monotonically increasing function of Example Number K for three retrieval strategies. This observation indicates that an increase in the example number brings more diverse reference information, which has a positive effect on the model’s understanding and utilization of evolving knowledge.
- **Effect of Retrieval Pool Size in MM-RAG.** Regarding the ablation experiment of pool size, our setup is to randomly select 20% of the corresponding data from \mathcal{D}_Q and \mathcal{D}_K as $\mathcal{D}_Q^{20\%}$ and $\mathcal{D}_K^{20\%}$; For instance, when Pool Size = 20%, Retrieve Pool = $\mathcal{D}_Q^{20\%}$; When Pool Size = 60%, Retrieve Pool = $\mathcal{D}_K^{20\%} + \mathcal{D}_J$, where \mathcal{D}_J is a randomly selected 40% data from the $\mathcal{D}_K \setminus \mathcal{D}_K^{20\%}$. The evaluation data is always $\mathcal{D}_Q^{20\%}$. The experimental results, presented in the second row of Figure 18, demonstrate an inverse correlation between MM-RAG’s performance and Pool Size. This suggests that larger pool sizes hinder the retriever’s ability to identify relevant information, a critical consideration for practical MM-RAG applications.

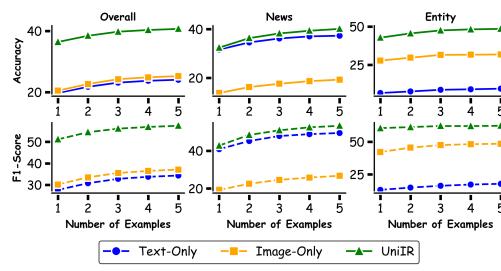


Figure 17: The results of LLaVA-v1.5’s ablation study on MM-RAG about **Retrieval Strategy** and **Example Number** analysis.

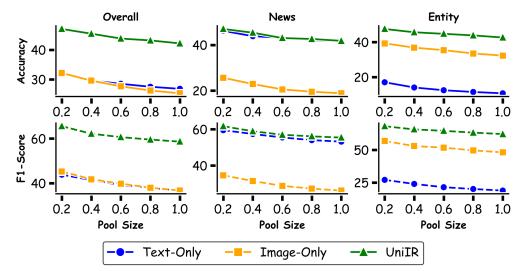


Figure 18: The results of LLaVA-v1.5’s ablation study on MM-RAG about **Retrieval Strategy** and **Pool Size** analysis.

1188

Observations

1189

Observation 3: Cross-modal retrieval strategies, a larger number of examples, and a smaller retrieval pool size all contribute to strengthening knowledge injection performance.

1190

1191

1192

1193

C.4 MORE QUALITATIVE RESULTS ABOUT MMEVOKE

1194

1195

1196

1197

1198

1199

1200

CNN News Science		
Knowledge: The 2024 Nobel Prize in Physics has been awarded to John Hopfield and Geoffrey Hinton for pioneering contributions to machine learning, fostering today's AI technologies. Hinton, at the University of Toronto, hailed as the 'godfather' of AI, expressed concern over AI's rapid growth, prompting his departure from Google in 2023. Their award laid the groundwork for neural networks influencing diverse fields. The award, announced in Sweden, underscores AI's societal impact. Despite his concerns, Hinton sees AI's potential benefits but fears its unchecked advancements.		
LLaVA-v1.5-7B		
Full-FT: Alain Aspect	✗	
CEM: 0 F1-Score : 0		
LoRA: David Wineland	✗	
CEM : 0 F1-Score : 0		
RAG-Text-Only: Richard Feynman	✗	
CEM : 0 F1-Score : 0		
RAG-Image-Only: Richard Feynman	✗	
CEM : 0 F1-Score : 0		
RAG-Unirr: Geoffrey Hinton	✗	
CEM : 0 F1-Score : 0		
Qwen-VL-Chat		
Full-FT: James Peebles.	✗	
CEM : 0 F1-Score : 0		
LoRA: tony hopkins	✗	
CEM : 0 F1-Score : 0		
RAG-Text-Only: tony	✗	
CEM : 0 F1-Score : 0		
RAG-Image-Only: tony	✗	
CEM : 0 F1-Score : 0		
RAG-Unirr: John Hopfield and Geoffrey Hinton.	✗	
CEM : 1 F1-Score : 0.57		
Commercial AI Web Search Engine		
Gemini-2.0-Flash: Didier Queloz	✗	
CEM : 0 F1-Score : 0		
Gemini-2.5-Pro: John J. Hopfield	✗	
CEM : 0 F1-Score : 0.8		
Perplexity AI : John J. Hopfield	✓	
CEM : 1 F1-Score : 1		
GPT-4.1: Sorry, I can't determine who this is.	✗	
CEM : 0 F1-Score : 0		
Sufficient Context		
LLaVA-v1.5: John hopfield	✓	
CEM : 1 F1-Score : 1		
Qwen-VL-Chat: Hopfield	✗	
CEM : 0 F1-Score : 0.67		
Gemini-2.5-Pro : John J. Hopfield	✗	
CEM : 0 F1-Score : 0.8		
GPT-4.1: Michel Mayor and Didier Queloz	✗	
CEM : 0 F1-Score : 0		

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

Figure 19: Qualitative example of CNN News science knowledge.

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

Wikipedia Entity Automobile Model		
Knowledge: The Bugatti Tourbillon is an upcoming, revealed mid-engine hybrid sports car manufactured by French automobile manufacturer Bugatti. The Tourbillon succeeds the Chiron and is limited to 250 units . It was unveiled in an online live stream on 20 June 2024. It is priced at €3.8 million (US\$4.1 million). The vehicle is named after the tourbillon mechanism, a balancing structure used in a variety of mechanical watches.		
LLaVA-v1.5-7B		
Full-FT: 20	✗	
CEM : 0 F1-Score : 0		
LoRA: 120	✗	
CEM : 0 F1-Score : 0		
RAG-Text-Only: 3	✗	
CEM : 0 F1-Score : 0		
RAG-Image-Only: 250	✗	
CEM : 0 F1-Score : 0.67		
RAG-Unirr: 250	✗	
CEM : 0 F1-Score : 0.67		
Qwen-VL-Chat		
Full-FT: 500	✗	
CEM : 0 F1-Score : 0		
LoRA: 40	✗	
CEM : 0 F1-Score : 0		
RAG-Text-Only: 40	✗	
CEM : 0 F1-Score : 0		
RAG-Image-Only: 40	✗	
CEM : 0 F1-Score : 0		
RAG-Unirr: 40	✗	
CEM : 0 F1-Score : 0		
Commercial AI Web Search Engine		
Gemini-2.0-Flash: 500	✗	
CEM : 0 F1-Score : 0		
Gemini-2.5-Pro: 500	✗	
CEM : 0 F1-Score : 0		
Perplexity AI : 500 units	✗	
CEM : 0 F1-Score : 0.5		
GPT-4.1: 500 units	✗	
CEM : 0 F1-Score : 0.5		
Sufficient Context		
LLaVA-v1.5: 250	✗	
CEM : 0 F1-Score : 0.67		
Qwen-VL-Chat: 40	✗	
CEM : 0 F1-Score : 0		
Gemini-2.5-Pro : 500 units	✗	
CEM : 0 F1-Score : 0		
GPT-4.1: 500 units	✗	
CEM : 0 F1-Score : 0.5		

1236

1237

1238

1239

1240

1241

Figure 20: Qualitative example of Wikipedia Entity automobile model knowledge.

C.5 ERROR ANALYSIS

Observing the qualitative examples in Figures 19, 20, and 21, we find that, as demonstrated by the results in Table 6, existing knowledge injection methods perform poorly on MMEVOKE, with even

1242 sufficient context failing to achieve perfect performance. Here, we conduct a detailed analysis of
 1243 sufficient context.

1244 Even when provided with sufficient context, the model still generates hallucinations. For instance, in
 1245 Figure 19, the response given by GPT-4.1 is entirely unrelated to the question and does not appear in
 1246 the sufficient context, representing a severe hallucination phenomenon. A similar hallucination issue
 1247 persists in Figure 20. These concrete results indicate that merely improving the sufficiency of context
 1248 is far from adequate—the model’s inherent reasoning and ability to utilize contextual information are
 1249 equally critical. Hallucination remains an urgent problem to be addressed.

Wikipedia Entity Video Games		
Knowledge: Black Myth: Wukong was released for PlayStation 5 and Windows on August 20, 2024, with an Xbox Series X/S version to be released at a later date. The game received generally favorable reviews from critics and won several accolades including Game of the Year awards. It sold 20 million units in its first month, making it one of the fastest-selling games of all time. An expansion for the game is planned for release.		Question: How many copies of the video games in the image were sold in the first month? User
LLaVA-v1.5-7B	Qwen-VL-Chat	
Full-FT: 20 million CEM: 1 F1-Score: 1	Full-FT: 1.5 million copies. CEM: 0 F1-Score: 0.4	✗
LoRA: 20 million CEM: 1 F1-Score: 1	LoRA: 1.5 million CEM: 0 F1-Score: 0.5	✗
RAG-Text-Only: 1000 CEM: 0 F1-Score: 0	RAG-Text-Only: 1.5 million CEM: 0 F1-Score: 0.5	✗
RAG-Image-Only: 20 CEM: 0 F1-Score: 0.67	RAG-Image-Only: 20 million CEM: 1 F1-Score: 1	✓
RAG-Unir: 20 CEM: 0 F1-Score: 0.67	RAG-Unir: 20 million CEM: 1 F1-Score: 1	✓
Commercial AI Web Search Engine	Sufficient Context	
Gemini-2.0-Flash: Unknown CEM: 0 F1-Score: 0	LLaVA-v1.5: 20 CEM: 0 F1-Score: 0.67	✗
Gemini-2.5-Pro: 20 million. [1, 2, 3, 4, 7] CEM: 1 F1-Score: 0.44	Qwen-VL-Chat: 20 million CEM: 1 F1-Score: 1	✓
Perplexity AI: 20 million CEM: 1 F1-Score: 1	Gemini-2.5-Pro: 20 million units CEM: 1 F1-Score: 0.8	✗
GPT-4.1: 20 million copies. CEM: 1 F1-Score: 0.8	GPT-4.1: Unavailable CEM: 0 F1-Score: 0	✗

1270 Figure 21: Qualitative example of Wikipedia Entity video games knowledge.

1271 **Observations**

1272 **Observation 4:** Despite being provided with sufficient context, the model still exhibits severe
 1273 hallucinations.

1296 **D MORE DETAILS ON CAPABILITY DEGRADATION**
12971298 **D.1 CAPABILITY DEGRADATION RANKING**
12991300 **Table 9: The degree of general capability degradation results.** The displayed values are obtained
1301 by calculating the mean based on the results in Table 3.

Method	Comprehensive		OCR		Multidisciplinary		Instruction		Multi-Round		Mathematical		Hallucination	
	Loss ↓	Rank ↓	Loss ↓	Rank ↓	Loss ↓	Rank ↓	Loss ↓	Rank ↓	Loss ↓	Rank ↓	Loss ↓	Rank ↓	Loss ↓	Rank ↓
Full-FT	↓33.40%	4	↓13.85%	3	↓9.63%	2	↓61.93%	7	↓50.59%	6	↓6.20%	1	↓35.98%	5
LoRA	↓25.24%	4	↓19.32%	3	↓15.20%	2	↓55.28%	7	↓48.05%	6	↓5.76%	1	↓37.25%	5
Knowledge Augmentation for Text														
Knowledge Agnostic	↓16.60%	3	↓15.51%	2	↓11.87%	1	↓65.48%	7	↓59.76%	6	↓25.16%	4	↓34.21%	5
Knowledge Aware (+3)	↓14.62%	3	↓5.36%	2	↓3.78%	1	↓64.36%	7	↓60.03%	6	↓17.48%	4	↓20.89%	5
Knowledge Augmentation for Images														
Knowledge Agnostic	↓16.95%	1	↓19.58%	3	↓17.44%	2	↓67.41%	7	↓59.46%	6	↓22.60%	4	↓38.07%	5
Knowledge Aware (+3)	↓24.58%	4	↓12.75%	2	↓4.88%	1	↓72.85%	7	↓59.73%	6	↓28.91%	5	↓24.06%	3
Knowledge Retention Methods														
Replay _{Full-FT} ^{+10%}	↓10.02%	4	↓3.69%	3	↑0.09%	1	↓22.81%	6	↓31.40%	7	↓1.06%	2	↓13.09%	5
Replay _{LoRA} ^{+10%}	↓8.95%	5	↓4.14%	3	↓0.93%	2	↓6.03%	4	↓26.77%	7	↓0.70%	1	↓9.69%	6
EWC	↓24.65%	4	↓14.96%	3	↓8.89%	2	↓55.09%	7	↓49.34%	6	↓5.83%	1	↓31.38%	5
LwF	↓18.94%	4	↓17.16%	3	↓16.58%	2	↓45.44%	6	↓48.12%	7	↓6.41%	1	↓33.42%	5
MoELoRA	↓4.56%	4	↓18.34%	6	↓0.97%	1	↓2.05%	3	↓29.24%	7	↓1.16%	2	↓9.18%	5

1316 Based on Table 3, we calculate the mean degradation levels for each capability dimension. Table 9
1317 reveals that both Full-FT and LoRA exhibit a consistent ranking of capability degradation: Instruction
1318 Following → Multi-Round QA → Hallucination → Comprehensive Evaluation → OCR → Multi-
1319 disciplinary → Mathematical Reasoning. The identical ranking is also maintained in knowledge
1320 retention. Only Replay_{LoRA}^{+10%} and MoELoRA show significantly alleviated degradation rankings in
1321 instruction-following, rising to 4th and 3rd place respectively.

1322 **D.2 FINE-GRAINED DIMENSIONAL RESULTS ON GENERAL CAPABILITY TESTS**
1323

1324 To effectively evaluate the specific capability degradation caused by knowledge injection in LMMs,
1325 we utilized 12 benchmarks across 7 task categories:

1. **MME** (Fu et al., 2023) is a comprehensive evaluation benchmark designed to assess the performance of LMMs across 14 distinct tasks, encompassing both perception and cognition abilities. To ensure fair and accurate comparisons, MME provides concise, manually designed instruction-answer pairs, eliminating the need for extensive prompt engineering.
2. **MMBench** (Liu et al., 2024b) is a bilingual benchmark designed to evaluate the comprehensive capabilities of LMMs across multiple modalities. It offers a meticulously curated dataset with over 3,000 multiple-choice questions covering 20 distinct ability dimensions, such as object localization and social reasoning. Additionally, MMBench provides questions in both English and Chinese, enabling comparative evaluations of LMM performance across these languages.
3. **SEEDBench2_Plus** (Li et al., 2024a) comprehensively evaluates LMMs’ understanding of text-rich visuals (charts, maps, web pages). Comprising 2,300 multiple-choice questions across these categories, it assesses reasoning capabilities in real-world scenarios where text and visuals intertwine—addressing gap for applications like document analysis and web content understanding.
4. **OCRbench** (Liu et al., 2023b) is a comprehensive evaluation benchmark designed to assess the OCR)capabilities of LMMs. It encompasses 29 datasets across five key tasks: Text Recognition, Scene Text-Centric VQA, Document-Oriented VQA, Key Information Extraction (KIE), and Handwritten Mathematical Expression Recognition (HMER). The benchmark aims to provide a thorough assessment of LMMs’ performance in various text-related visual tasks, highlighting their strengths and weaknesses, particularly in handling multilingual text, handwritten text, non-semantic text, and mathematical expressions.
5. **MMMU** (Yue et al., 2024) is a comprehensive benchmark designed to evaluate LMMs on tasks that require college-level subject knowledge and deliberate reasoning. It comprises 11,500 meticulously curated multimodal questions sourced from college exams, quizzes, and textbooks, spanning six core disciplines: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, and Technology & Engineering. These questions cover 30 subjects and 183 subfields, featuring 30 diverse image types such as charts, music sheets, and chemical structures.

1350 6. **MIA-Bench** (Qian et al., 2024) is a benchmark designed to evaluate the ability of LMMs to adhere
 1351 strictly to complex instructions. It comprises a diverse set of 400 image-prompt pairs, each crafted
 1352 to challenge models’ compliance with layered instructions, requiring accurate and contextually.
 1353 7. **MMDU** (Liu et al., 2025) is a comprehensive evaluation framework designed to assess the capabili-
 1354 ties of LMMs in handling multi-turn, multi-image dialog scenarios. It focuses on understanding
 1355 complex interactions involving multiple images and sequential dialog turns, which are critical for
 1356 real-world applications like visual storytelling, medical diagnosis, and interactive AI systems. The
 1357 benchmark includes a diverse dataset with rich annotations, enabling models to be fine-tuned and
 1358 evaluated on tasks requiring contextual reasoning, image-text alignment, and temporal coherence.
 1359 8. **MathVista** (Lu et al., 2024) evaluates foundation models’ mathematical reasoning in visual
 1360 contexts. It comprises 6,141 examples from 28 existing multimodal datasets, augmented with
 1361 three new datasets (IQTest, FunctionQA, PaperQA), requiring fine-grained visual understanding
 1362 and compositional reasoning.
 1363 9. **MathVision** (Wang et al., 2025) is a meticulously curated dataset comprising 3,040 high-quality
 1364 mathematical problems, each embedded within a visual context and sourced from real mathematics
 1365 competitions. This benchmark spans 16 distinct mathematical disciplines and is organized across
 1366 five levels of difficulty, offering a comprehensive platform to evaluate the mathematical reasoning
 1367 abilities of LMMs.
 1368 10. **HallusionBench** (Guan et al., 2024) is a comprehensive benchmark designed to evaluate LMMs
 1369 on their ability to accurately interpret and reason about visual data, specifically addressing issues
 1370 of language hallucination and visual illusion. It comprises 346 images paired with 1,129 questions
 1371 among visual dependent and visual supplement. The benchmark introduces a novel structure for
 1372 visual questions, enabling quantitative analysis of models’ response tendencies, logical consistency,
 1373 and various failure modes.
 1374 11. **POPE** (Li et al., 2023b) is a benchmark designed to systematically assess object hallucination
 1375 in LMMs. Object hallucination refers to the tendency of these models to generate descriptions
 1376 containing objects not present in the corresponding images. POPE addresses this issue by
 1377 implementing a polling-based query method that evaluates models’ accuracy in identifying the
 1378 existence of specific objects within images. This approach provides a more stable and flexible
 1379 evaluation of object hallucination, revealing that current LMMs often generate objects inconsistent
 1380 with the target images.

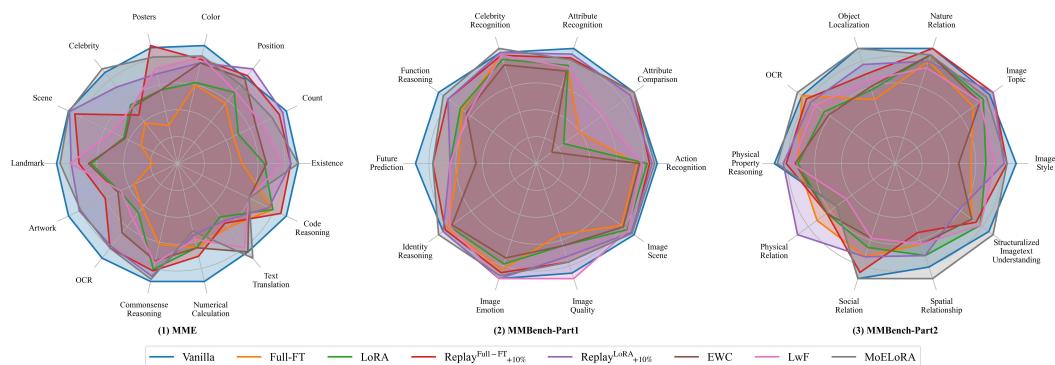
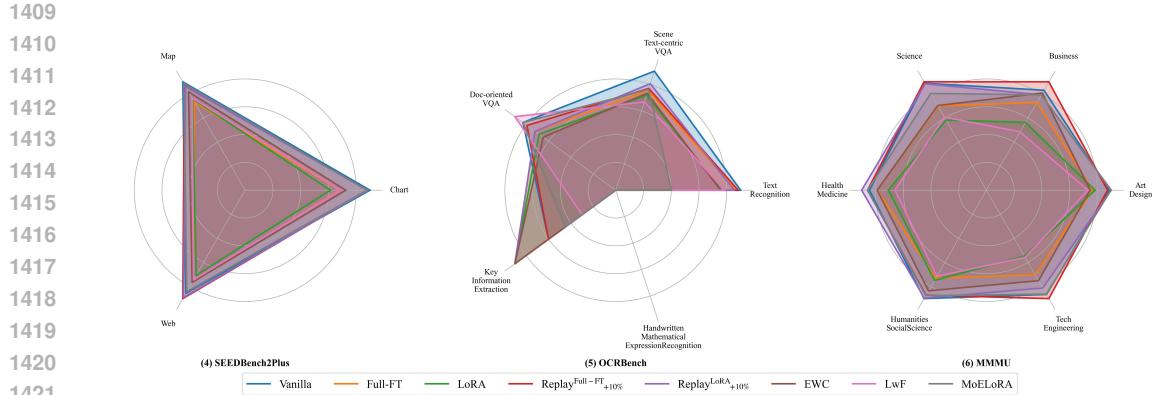


Figure 22: Fine-grained dimensional results on MME and MMBench.

According to Figures 22, 23, 24, 25, and 26, we conduct result analysis for each benchmark.

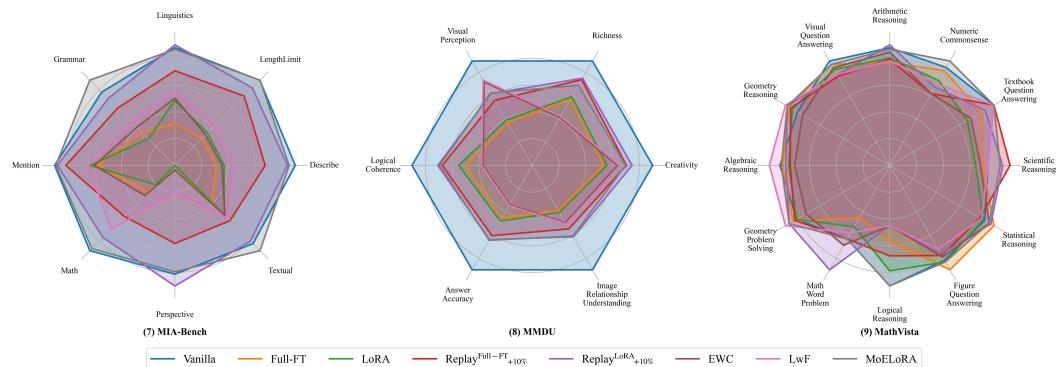
1392 1. **MME:** Results on the MME benchmark indicate that both Full-FT and LoRA significantly degrade
 1393 LLaVA’s perception and cognition capabilities, with perception exhibiting a more pronounced
 1394 decline. We attribute this primarily to MMEVOKE’s focus on cognition tasks and its lack
 1395 of substantial perception content. While the replay method effectively mitigates forgetting in
 1396 perception abilities (e.g., outperforming Vanilla in Position tasks), it shows limited efficacy for
 1397 cognition (e.g., poor performance in *Numerical Calculation* and *Text Translation*). This disparity
 1398 likely stems from LLaVA’s original training data heavily emphasizing perception. Overall, EWC
 1399 and LwF are less effective at mitigating forgetting than MoELoRA, though all three methods
 1400 perform relatively well on the *Text Translation* task.
 1401 2. **MMBench:** Experimental results show that both Full-FT and LoRA significantly degrade LLaVA’s
 1402 performance in the perceptually demanding Attribute Comparison task, while enabling superior

1404 performance in the Physical Relationship task due to MMEVOKE’s relational data. For capability
 1405 degradation mitigation, Replay and MoELoRA remain most effective. Notably, the EWC method
 1406 underperforms even Full-FT and LoRA across 16 tasks (including **Attribute Comparison**, **Attribute**
 1407 **Recognition**, **Celebrity Recognition**, and **Function Reasoning**), directly indicating the instability
 1408 of this parameter-regularization approach.



1422 Figure 23: Fine-grained dimensional results on SEEDBench2_Plus, OCRBench and MMMU.
 1423

1424 3. **SEEDBench2_Plus**: Both Full-FT and LoRA reduce LLaVA’s performance on SEEDBench2_Plus,
 1425 with LoRA underperforming compared to Full-FT. Among knowledge retention methods, only
 1426 Replay outperforms the Vanilla approach in **Web** tasks.
 1427 4. **OCRBench**: Experimental result shows Full-FT and LoRA exhibit relatively less degradation in
 1428 OCR tasks, potentially due to their text-information focus, while outperforming Vanilla in Key
 1429 Information Extraction. However, LwF and MoELoRA demonstrate unstable degradation miti-
 1430 gation—underperforming Full-FT/LoRA in **Text Recognition** and **Scene Text Centric VQA**, yet
 1431 showing opposite trends to all other methods (Full-FT, LoRA, Replay, EWC) in **Key Information**
 1432 **Extraction**.
 1433 5. **MMMU**: While LoRA demonstrates superior overall performance compared to Full-FT across
 1434 most tasks , it exhibits significantly lower performance on specific MMMU domains (**Business**,
 1435 **Science**, **Health & Medicine**, **Technology & Engineering**) . We hypothesize this discrepancy
 1436 stems from the similarity between these tasks’ required information and the MMEVOKE data
 1437 distribution, with Full-FT showing greater efficacy in integrating evolving knowledge from
 1438 MMEVOKE. Concurrently, LwF consistently underperforms both Full-FT and LoRA across
 1439 multiple tasks, substantiating its inherent instability for mitigating capability degradation in
 1440 practical applications.



1452 Figure 24: Fine-grained dimensional results on MIA-Bench, MMDU and MathVista.
 1453

1454 6. **MIA-Bench**: Both Full-FT and LoRA exhibit substantial performance degradation on MIA-Bench
 1455 – particularly in the **Perspective** task (95.65% and 100% degradation respectively) – indicating
 1456 significant impairment of instruction-following capability attributable to the absence of instruc-
 1457 tional content in MMEVOKE. degradation mitigation effectiveness varies substantially: EWC
 1458 shows minimal efficacy (particularly in **Perspective** with no measurable improvement), while LwF

1458 provides only modest mitigation. Conversely, both MoELoRA and Replay^{LoRA}_{+10%} demonstrate superior capabilities, with Replay^{LoRA}_{+10%} achieving exceptional **Perspective** task performance surpassing Vanilla.

1459

1460

1461 **7. MMDU:** Both Full-FT and LoRA exhibit substantial degradation across multiple MMDU tasks, primarily attributed to the absence of multi-round dialogue data in MMEVOKE. Crucially, none of the evaluated continual learning methods effectively mitigate this degradation, substantiating that SFT significantly impairs LLaVA’s multi-round dialogue capability and highlighting a critical area for future improvement.

1462

1463

1464

1465

1466 **8. MathVista:** Full-FT and LoRA exhibit relatively lower degradation rates, outperforming Vanilla in reasoning tasks including **Geometry Reasoning**, **Geometry Problem Solving**, **Figure Question Answering**, and **Statistical Reasoning**. While knowledge retention methods generally demonstrate satisfactory degradation mitigation, they exhibit notable limitations in **Logical Reasoning** tasks, likely attributable to the inherent complexity and elevated difficulty of such reasoning.

1467

1468

1469

1470

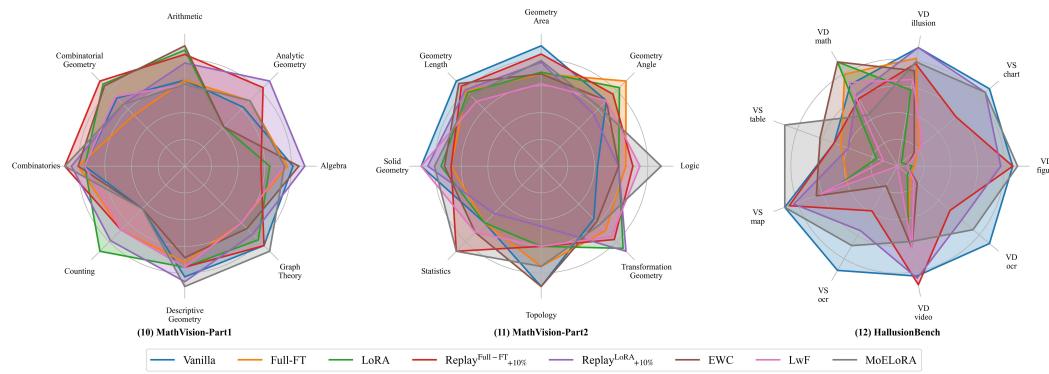


Figure 25: Fine-grained dimensional results on MathVision and HallusionBench.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484 **9. MathVision:** Both Full-FT and LoRA improve performance on MathVision, outperforming Vanilla in **Analytical Geometry**, **Counting**, and **Logical Reasoning** tasks. However, knowledge retention methods exhibit suboptimal performance in geometry-specific tasks (**Geometry Area**, **Geometry Length**, **Solid Geometry**, **Topology**), primarily stemming from the substantial domain-specific knowledge required for these specialized domains.

1485

1486

1487

1488

1489

1490 **10. HallusionBench:** Both full fine-tuning and LoRA exhibit limited performance on HallusionBench, with complete degradation (100% decrease) in the **VS_OCR** task and significant reductions in **VD figures**, **VS_charts**, and **VD_OCR** tasks. Notably, EWC and LwF outperform Vanilla in **VD_math** and **VS_table** tasks, while MoELoRA achieves exceptional performance in **VS_table**.

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

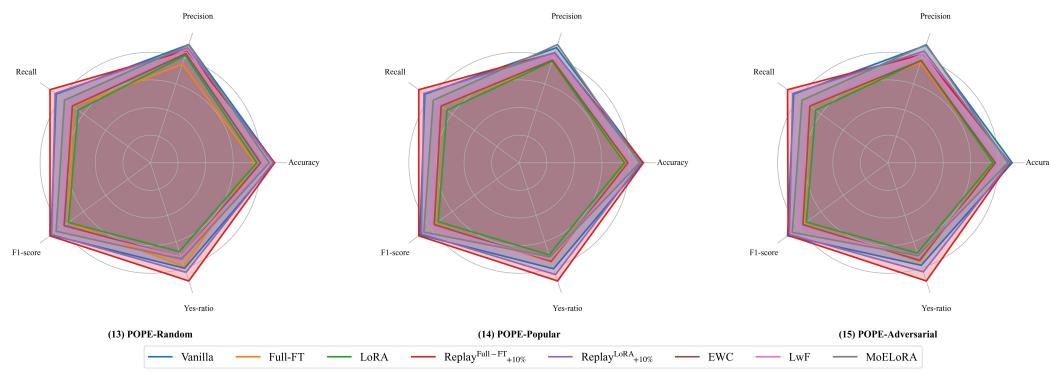


Figure 26: Fine-grained dimensional results on POPE.

1505

1506

1507

1508

1509 **11. POPE:** Both Full-FT and LoRA cause marginal performance degradation on POPE, potentially attributable to the benchmark’s low complexity. Among all methods, only Replay outperforms Vanilla in mitigating degradation, likely due to partial presence of POPE-related data in LLaVA’s original training.

1510

1511

1512 D.3 MORE EXAMPLES OF VIOLATING INSTRUCTION
1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

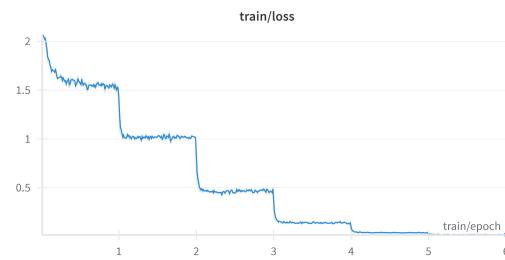
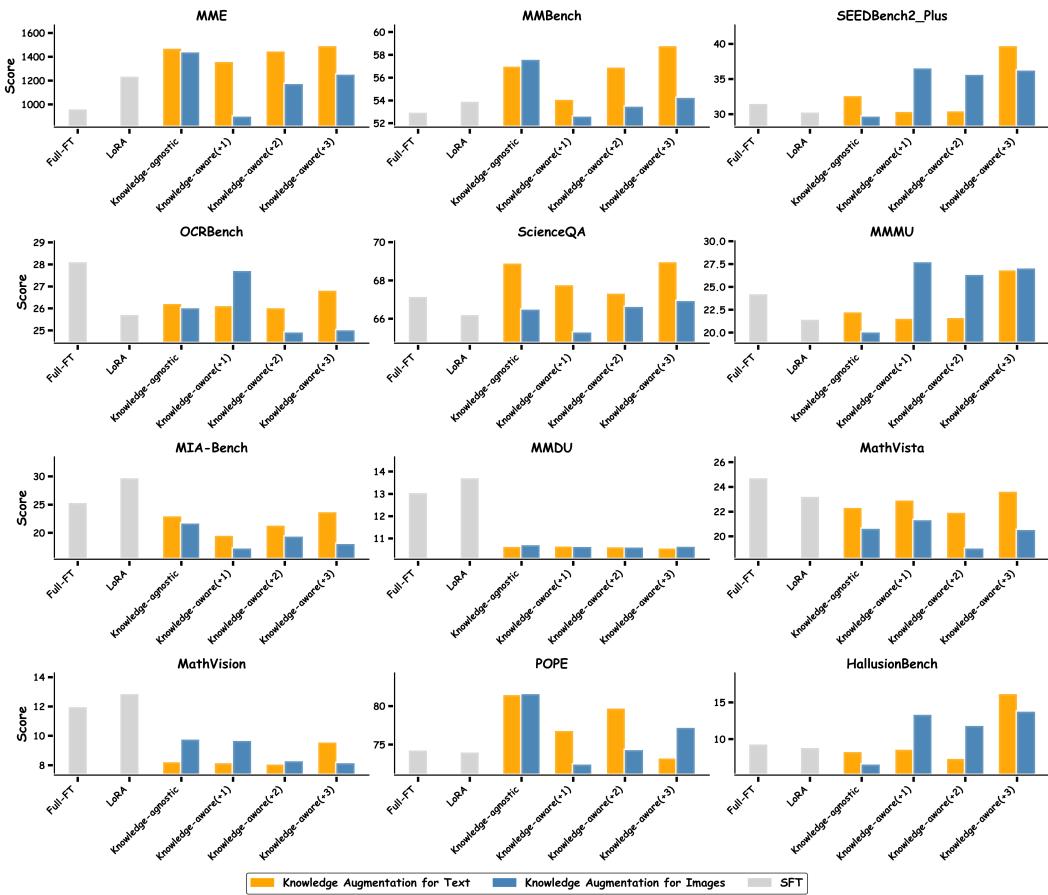
1564

1565

The example of violating instructions on *MME***Prompt:** Does this artwork belong to the type of historical?\nAnswer the question using a single word or phrase.**Expected Answer:** Yes or No.**Output:** The Nuremberg Chronicle (German: Nō0fcrnbergische Chronik) is the title of two different medieval German chronicles, the one by Henricus (died after 1410) and the other by Hartmann (died after 1420), both of Nuremberg. The chronicles continue the work of the 14th-century German chronicler Konrad von Megenberg and are also influenced by the Saxon chronicle. They were written in Middle High German and cover the period from the creation of the world to the death of Emperor Henry II**The example of violating instructions on *MathVision*****Prompt:** Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end. Question: Which of the figures shown bellow cannot be cut out of the figure illustrated nearby? Choices: (A) A (B) B (C) C (D) D (E) E**Expected Answer:** A or B or C or D or E.**Output:** The Minesweeper puzzle is based on the game of Sudoku. The objective is to clear the board of all cells (except for a small number in the upper left corner) by revealing the state of each cell through a series of clues. Each clue indicates whether a cell contains a number or a flag. The flags mark cells that are not part of the solution; revealing a flag shows it as a number or leaves it as a flag. The game progresses through a series of levels, with each level having more complex patterns of flags. The game ends when all cells are revealed, and the player clears them all. The game is implemented as a web application using HTML, CSS, and JavaScript. The logic for generating the puzzle and checking solutions is implemented in JavaScript. The game is tested using the Brienne testing framework. The game has been compared to the board game Dangerous Crossing.**The example of violating instructions on *SEEDBench2_Plus*****Prompt:** How many sections can be accessed directly from the "Homepage"? (A) 2 (B) 3 (C) 4 (D) 5**Expected Answer:** A or B or C or D.**Output:** 1. About Me 2. Projects 3. Contact**The example of violating instructions on *POPE*****Prompt:** Is there a snowboard in the image? Answer the question using a single word or phrase.**Expected Answer:** Yes or No.**Output:** A snowboard is a wide, flat board used for riding on snow, typically secured to the rider's feet with bindings.

1566 E MORE DETAILS ABOUT KNOWLEDGE AUGMENTATION ON MMEVOKE
15671568 E.1 TRAINING LOSS PERSPECTIVES ON EFFECTIVENESS OF KNOWLEDGE AUGMENTATION
1569

1570 Figure 27 demonstrates that the training loss of LLaVA exhibits a significant decline at the end of
1571 each epoch under Full-FT training strategies. This behavior aligns with the LLM’s data memorization
1572 patterns during training and overfitting, suggesting that repeated exposure to data is essential for
1573 acquiring up-to-date knowledge. This further proves the necessity of knowledge augmentation in the
1574 training phase, which present evolving knowledge in different variants to the model, facilitate the
1575 model to store attribute knowledge on entities, and flexibly extract knowledge.

1585 Figure 27: Training loss over time for LLaVA-v1.5 based on the Full-FT training strategy.
15861587 E.2 THE PERFORMANCE OF KNOWLEDGE AUGMENTATION IN GENERAL CAPABILITY TESTS
15881610 Figure 28: The performance of knowledge augmentation in general capability tests.
16111612 According to Figure 28, we have the following observations:
1613

1620 • **Obs 1: Knowledge augmentation is generally superior to standard Supervision Fine-Tuning.**
1621 Across all 12 general capability benchmarks evaluated, models enhanced with knowledge augmentation,
1622 whether through text or images, demonstrated markedly superior performance compared
1623 to the model trained with standard Supervised Fine-Tuning. This comprehensive superiority is
1624 consistently observed in MME, MMBench, SEEDBench2_Plus, ScienceQA, MMMU, MMDU,
1625 POPE, and HallusionBench.

1626 • **Obs 2: Deficiencies in instruction-following, multi-turn dialogue, and reasoning capabilities**
1627 **remain apparent.** On the MIA-Bench, MMDU, MathVista, and MathVision benchmarks, the
1628 model post-knowledge augmentation underperforms a standard Supervised Fine-Tuning model.
1629 This performance disparity is primarily attributed to the fact that the knowledge augmentation
1630 process does not inherently enhance the aforementioned capabilities of reasoning, instruction
1631 following, or multi-turn dialogue. Consequently, these areas represent critical directions for future
1632 improvement and refinement.

1633 • **Obs 3: Increasing the Volume of Text Augmented Data Correlates Positively with Performance**
1634 **Gains.** A clear trend indicates that incrementally increasing the volume of augmentation data,
1635 as denoted by the progression from “+1” to “+3”, generally leads to continued performance
1636 improvements. This dose-response relationship is evident for text augmentation across most
1637 benchmarks. For instance, in MME, MMBench, SEEDBench2_Plus, MMMU, MIA-Bench, the
1638 “+3” versions of the augmented models consistently outperform their “+1” and “+2” counterparts.
1639 This finding suggests that the model’s capabilities can be further enhanced through the sustained
1640 integration of a larger and more diverse set of knowledge-rich data.

1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

1674 **F MORE EXPERIMENTAL RESULTS ABOUT KNOWLEDGE RETENTION**
 1675 **METHODS ON MMEVOKE**

1677 **F.1 THE KNOWLEDGE INJECTION PERFORMANCE OF KNOWLEDGE RETENTION METHODS ON**
 1678 **MMEVOKE**

1680 While focusing on capability degradation mitigation via knowledge retention methods, we also evaluate
 1681 these methods' performance in evolving knowledge injection, as shown in Table 10. Experimental
 1682 results show that all knowledge retention methods incur losses in evolving knowledge injection, with
 1683 MoELoRA experiencing the most significant decline, while parameter regularization methods (EWC
 1684 and LwF) retain relatively better performance. Future work could integrate the strengths of multiple
 1685 knowledge retention methods to design more comprehensive approaches.

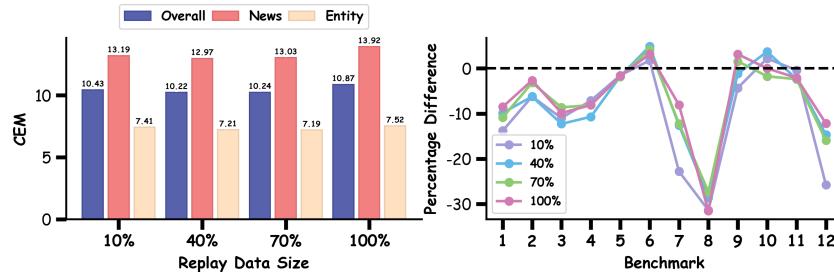
1686 **Table 10: The knowledge injection performance of LLaVA-v1.5 regarding knowledge retention**
 1687 **methods on MMEVOKE.** POL: Politics; SPO: Sports; BUS: Business; HEA: Health; CEL: Celebrity;
 1688 FIL: Film; ALB: Album; WRI: Written Work.

Method	News										Entity									
	ALL		Avg		POL		SPO		BUS		HEA		Avg		CEL		FIL		ALB	
	CEM ↑	F1 ↑	CEM ↑	F1 ↑	CEM ↑	F1 ↑	CEM ↑	F1 ↑	CEM ↑	F1 ↑	CEM ↑	F1 ↑								
<i>Without Knowledge Retention</i>																				
Full-FT	18.02	15.17	21.35	16.34	12.92	10.99	22.49	20.88	27.31	20.95	19.84	16.47	14.37	13.88	13.11	16.93	12.39	13.16	12.17	7.66
LoRA	15.23	18.31	17.72	19.42	10.54	12.96	19.11	21.50	20.66	24.03	17.81	23.76	12.51	17.09	12.20	21.19	12.39	15.82	10.72	8.72
<i>Pre-train data is available</i>																				
Replay _{10%}	11.07	18.03	13.53	19.60	6.87	12.88	14.39	19.58	15.13	22.89	15.38	24.31	8.37	16.31	8.69	18.11	11.48	16.53	4.93	12.57
Replay _{40%}	11.36	17.98	13.98	19.43	7.61	13.16	15.96	20.69	16.05	22.40	15.38	24.21	8.48	16.39	9.40	18.78	10.34	15.60	3.77	10.79
<i>Pre-train data is unavailable</i>																				
EWC	15.49	19.42	17.86	21.10	10.45	14.81	19.83	23.02	19.00	24.57	17.41	23.88	12.88	17.58	14.53	22.07	12.16	16.91	10.72	8.13
LwF	14.58	19.99	17.05	21.43	9.62	13.99	19.83	23.66	18.63	25.82	19.03	26.20	11.88	18.40	12.45	21.64	12.39	17.01	9.28	11.11
MoELoRA	7.12	12.60	10.06	15.42	4.22	9.42	7.74	12.58	13.47	19.69	12.15	21.33	3.89	9.51	4.42	11.43	3.41	7.95	3.19	4.87

1697 **Observations**

1698 **Observation 5:** Parameter regularization methods achieve superior knowledge injection
 1699 performance compared to data replay and MoE.

1700 **F.2 IS IT BETTER TO HAVE MORE DATA FOR REPLAY?**



1714 **Figure 29: The performance of different replay data sizes in multimodal evolving knowledge**
 1715 **injection and mitigating capability degradation.** The numbers on the x-axis of the right subgraph
 1716 correspond to the order of the benchmarks shown in Table 3

1717 As shown in Figure 29, knowledge injection efficacy and capability degradation mitigation exhibit
 1718 non-monotonic correlation with replay data size, accompanied by significant fluctuations. Given the
 1719 computational cost escalation from data expansion, minimization of replay data size is recommended.

1721 **Observations**

1722 **Observation 6:** More replay data does not significantly strengthen knowledge adaptation and
 1723 retention.

1728 **G PROMPT FOR GENERATION**

1729

1730 The prompt templates for summary generation, question-answer generation, and phrase generation
 1731 are detailed in Figure 31 and Figure 30, respectively. All generation tasks were performed using
 1732 GPT-4o to ensure consistency and high-quality outputs.

1733

1734

1735

1736

1737 You are a powerful question and answer generator. The user gives a title, a description of the
 1738 news. You need to generate a 1-hop text question according to the title and description of the
 1739 news. Extract a visual entity object from the generated text question, and use the hypernym of
 1740 the entity object to replace the entity, and transform the text question into a multimodal
 question. Output format: 'Text_Question: text_question Multimodal_Question: multimodal_question
 Answer: answer Entity: entity Hypernym: hypernym'.

1741 During the generation process, you must follow each of the following rules:
 1742 1.The generated question and answer pairs must come from the content of the title and
 description.
 1743 2.The number of words used in the answer is 2-3.
 1744 3.The entity selected from the generated problem must be a visual entity. The best entities to
 choose are: people, teams, organizations, etc.
 1745 4.The generated answer and selected visual entity cannot be the same.
 1746 5.When converting Text_Question to Multimodal_Question, hypernym is used to replace the entity
 name.
 1747 For example:Text_Question: Which company did Nvidia's market value surpass? The entity object we
 extracted from the Text_Question is Nvidia.The entity is Nvidia and hypernym is company. So
 replace 'Nvidia' with 'the company in the image'. The Multimodal_Question: Which company's
 market value did the company in the image exceed?
 1748 6.Generate answers without punctuation. For example, Tokyo, Japan is against the rules; Tokyo
 Japan is within the rules.

1749

1750 The overall workflow is as follows:
 1751 Step1:Generate a text question and answer according to the title and description of the news.
 1752 Step2:Extract a visual entity object from the text question, and it cannot be the same entity
 object as the answer.
 1753 Step3:Using the hypernym of the visual entity object, the text question is transformed into a
 multimodal question. Here are two examples for reference.

1754 type_list = ['politics', 'sport', 'entertainment', 'business', 'us', 'health', 'europe', 'style',
 1755 'tech', 'middleeast']
Each type in type_list has two examples, randomly select two from them as the exmap for prompt

1756

1757 Here are some examples:
 1758 politics_exmaple_1 = "Example user
 title:'Biden will dispatch unofficial delegation to Taiwan following its election'
 Description:'President Joe Biden is while the US continues to support Taiwan's democratic
 processes, emphasizing ties and the \'One China\' policy.'
 Example output:
 Text_Question:'What is the purpose of Joe Biden's delegation to Taiwan?'
 Multimodal_Question:'What is the purpose of the delegation sent by the person in the image to
 Taiwan?'
 Answer:'Support democracy'
 Entity:'Joe Biden'
 Hypernym:'person'
 sport_exmaple_2 = "Example user
 title:'Philadelphia 76ers silence boos from home crowd to edge past Miami Heat and reach
 playoffs'
 Description:'The Philadelphia 76ers overcame early struggles and fan boos to edge past the Miami
 Heat 105-104 in a play-in tournament, potentially out due to a knee injury as they prepare
 for an elimination game against the Chicago Bulls for the last playoff spot.'
 Example output:
 Text_Question:'Who will the Philadelphia 76ers face in the playoffs after defeating the Miami
 Heat?'
 Multimodal_Question:'Who will the team in the image face in the playoffs after defeating the
 Miami Heat?'
 Answer:'New York Knicks'
 Entity:'Philadelphia 76ers'
 Hypernym:'team'

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

Figure 30: Prompt for Generation of **Questions and Answers**.

1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796 You are a helpful assistant. Please help me summarize the news into a new
 1797 description less than 100 words. When you summarize the rest of your content, try
 1798 to include the core main objects from the news as much as possible and important
 1799 information about time and place. From the summary, you need to extract more than
 1800 4 entities. This entity must be a unique existence. You can find the unique image
 1801 corresponding to it in the search engine, which can be people, countries,
 1802 companies, etc. The extracted entitys must exist in the summarize content. You
 1803 are given the new title and news content. The output format is Summrized:
 1804 **Example User:**
 1805 **Input:**
 1806 Title : As Israel ramps up war on multiple fronts, nobody knows what Netanyahu's
 1807 endgame is
 1808 Content : When Israeli forces killed Hamas leader Yahya Sinwar in Gaza last week,
 1809 many inside and outside of Israel hoped it could be the moment Prime Minister
 1810 Benjamin Netanyahu would declare a victory and scale back the Gaza operation in
 1811 hopes of securing a ceasefire and hostage release deal.\nA week after Sinwar's
 1812 death, it is increasingly clear they have been wrong.\nNetanyahu, say to
 1813 himself, enough is enough," he said.\n" And then his mission would be to strike
 1814 some kind of a deal with the prosecution, maybe they'll let him go and he will be
 1815 able to go abroad, give lectures as the one who defeated terror ... and if he won't
 1816 have any criminal record, he'll be able to sit in all kinds of advisory boards
 1817 and earn lots of money, which he feels that he's lacking.
 1818 **Output:**
 1819 **Example Assistant:**
 1820 Summarized: Amid Israel's escalating conflicts with Hamas and Hezbollah, Prime
 1821 Minister Benjamin Netanyahu remains determined to continue military operations,
 1822 despite growing internal and international pressure for a ceasefire. The recent
 1823 killing of Hamas and Hezbollah leaders and Iran's retaliatory missile strike
 1824 heighten tensions, as Netanyahu navigates political complexities, balancing U.S.
 1825 and domestic pressures while aiming to establish a lasting legacy. With potential
 1826 implications for U.S.-Israel relations and the American elections, Netanyahu's
 1827 strategy remains uncertain, potentially aimed at broader regional influence.
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835

Figure 31: Prompt for **Summary** Generation.