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A THE USE OF LARGE LANGUAGE MODELS IN MMEVOKE

In this section, we elaborate on the precise role of large language models within MMEVOKE, as
detailed below.

• Usage 1: MMEVOKE’s construction. In Section 3.2, we specify that GPT-4o is employed for
content summarization and QA generation, which aligns with current research practices.

• Usage 2: MMEVOKE’s evaluation. In Section 4.2, we evaluate MMEVOKE using Gemini-2.0-
Flash, Gemini-2.5-Pro, Perplexity AI, and GPT-4.1, following standard benchmarking practices.

• Usage 3: General capability tests. In Section 4.3, we employ MIA-Bench, MMDU, MathVista,
and MathVision, whose evaluation requires large language models as judges—a practice consistent
with current research standards.

• Usage 4: Paper grammar polishing. The paper is initially drafted by humans and subsequently
polished for grammar using LMMs, a practice consistent with current research norms.

B MORE DETAILS ABOUT MMEVOKE

In this section, we further demonstrate the details of MMEVOKE, including benchmark presentation,
complete subfields distribution, word cloud distribution, human study, fine-grained difficulty level
results and release plan.

B.1 PRESENTATION OF MMEVOKE BENCHMARK

Figure 8 presents additional examples of MMEVOKE, encompassing four distinct subfields: Politics,
Science, Video Game, and Songs. Each subfield showcases relevant Type, Knowledge Summary,
Knowledge Image, Query, Query Image. Specifically, four examples are as follows:

Figure 8: Examples of News/Entity Evolving Knowledge in MMEVOKE, including Type, Knowl-
edge Summary, Knowledge Image, Query, Query Image. Examples are taken from different clusters:
Politics for News, Science for News, Video Game for Entity, and Songs for Entity.

• Politics: Describes the unsuccessful assassination attempt targeting former U.S. President Donald
Trump at a campaign rally in Butler, Pennsylvania, on July 13, 2024. The query question asks for
the identity of the individual depicted in the image.

• Science: Details the awarding of the 2024 Nobel Prize in Physics to John Hopfield and Geoffrey
Hinton for their contributions. The query question inquires about the person who shared the Nobel
Prize with the individual shown in the image.

• Video Game: Lists the video game Black Myth: Wukong, released on August 20, 2024. The query
question focuses on the game’s sales figures during its first month.
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• Songs: Introduces the song Apt, performed by Russ and Bruno Mars. The query question concerns
the drinking game that served as inspiration for the song.

These examples illustrate the diverse subfields of evolving knowledge captured within MMEVOKE,
providing a more detailed demonstration.

B.2 WORD CLOUD DISTRIBUTION

(a) News Evolving Knowledge. (b) Entity Evolving Knowledge.

Figure 9: Word Cloud Distributions of MMEVOKE.

In Figure 9a, we show the word cloud distribution of News evolving knowledge. It can be found
that Trump appears more often, which may be because MMEVOKE contains a large number of US
political News data. Meanwhile, in Figure 9b, we present the word cloud distribution of entity names
in the Entity evolving knowledge.

We have demonstrated the diversity of MMEVOKE benchmark through fine-grained subfields dis-
tribution, key statistics, word cloud distribution, and multiple perspectives. At the same time, our
automated pipeline can continuously collect evolving knowledge and provide injection data for the
knowledge injection field.

B.3 COMPLETE SUBFIELDS DISTRIBUTION
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Figure 10: Fine-grained subfields distribution of
News evolving knowledge.
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Figure 11: Fine-grained subfields distribution of
Entity evolving knowledge.

In Figures 10 and 11, we comprehensively illustrate the fine-grained subfields distribution of the
MMEVOKE benchmark, which includes 29 distinct subfields for News evolving knowledge and
130 subfields for Entity evolving knowledge, underscoring its exceptional diversity. This bench-
mark serves as a critical resource for the evolving knowledge injection domain, providing a robust
foundation for advancing research and development in the field.
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B.4 DENSITY DISTRIBUTION

Figure 12: Density distribution based on evolving knowledge sources.

Figure 13: Density distribution of fine-grained subfields based on evolving knowledge.

B.5 HUMAN STUDY TOWARDS BENCHMARK QUALITY TEST

To verify the hallucination level of GPT-4o in data generation, We randomly selected 100 pieces
of data from MMEVOKE during manual selection for human study. Specifically, four annotators
scored the samples (1-5 scales, higher scores indicate greater purity) from the perspectives of content
summarization, QA generation, and whether the summary contained information necessary to answer
the question. According to the results in Table 4, MMEVOKE exhibits high quality, demonstrating
minimal hallucination during the data construction process.

Table 4: Human Study Towards Benchmark Quality Test.
Dimension ALL News Entity

MMEVOKE
Q&A 4.86 (±0.01) 4.87 (±0.01) 4.85(±0.02)

Summary 4.98 (±0.01) 4.97 (±0.01) 4.98 (±0.02)

B.6 FINE-GRAINED DIFFICULTY LEVEL OF MMEVOKE

Table 5: The performance of different difficulty levels on MMEVOKE.

Task Method
ALL News Entity

CEM F1-Score CEM F1-Score CEM F1-Score

SimpleVQA Full-FT 16.55 14.82 17.43 14.12 15.53 15.61
Sufficient Context 55.63 76.00 55.59 72.05 55.68 80.54

3-Hop Full-FT 12.15 5.65 11.18 5.22 13.26 6.14
Sufficient Context 40.49 52.58 38.16 51.49 43.18 53.82

Counterfactual Reasoning Full-FT 70.42 70.42 74.01 74.01 66.29 66.29
Sufficient Context 76.58 76.58 65.46 65.46 89.39 89.39

To further diversify MMEVOKE, we constructed 568 Counterfactual Reasoning and 3-Hop QA pairs
using GPT-4o, and extracted their corresponding SimpleVQA data, yielding experimental results
comparing fine-grained difficulty levels. The SimpleVQA here refers to the QA data of MMEVOKE
itself. Table 5 shows the difficulty ranking: Counterfactual Reasoning < SimpleVQA < 3-Hop, and
48.24% (avg) of cases have SimpleVQA failing while Counterfactual Reasoning succeeding, and
40.06% (avg) have SimpleVQA succeeding but 3-Hop failing.
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C MORE RESULTS ABOUT MMEVOKE

C.1 MORE QUANTITATIVE EXPERIMENTAL RESULTS ABOUT RQ1

Table 6: Performance of knowledge injection methods on MMEVOKE. ALL, News.Avg, and
Entity.Avg respectively show the performance of knowledge injection methods on entire MMEVOKE,
News subset, and Entity subset. Orange value marks the best performance of methods on LLaVA-
v1.5 and Qwen-VL-Chat, as well as the best performance of models in Web Search Engine and
Sufficient Context (vertical perspective). Red value indicates knowledge subfield with the best
performance of the same method and model on different fine-grained subfields, while blue value
indicates knowledge subfield with the worst performance (horizontal perspective). PO: Politics; SP:
Sports; BU: Business; HE: Health; CE: Celebrity; FI: Film; AL: Album; WR: Written Work.

Method
ALL

News Entity

Avg PO SP BU HE Avg CE FI AL WR

CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑

LLaVA-v1.5
Vanilla 4.89 9.34 7.37 11.96 1.92 5.86 4.59 9.74 10.70 15.99 10.12 17.54 2.18 6.47 1.37 6.48 2.39 5.71 3.77 6.02 6.78 11.24
Full-FT 18.02 15.17 21.35 16.34 12.92 10.99 22.49 20.88 27.31 20.95 19.84 16.47 14.37 13.88 13.11 16.93 12.39 13.16 12.17 7.66 20.34 8.43
LoRA 15.23 18.31 17.72 19.42 10.54 12.96 19.11 21.50 20.66 24.03 17.81 23.76 12.51 17.09 12.20 21.19 12.39 15.82 10.72 8.72 20.34 12.94
MM-RAGText-Only 24.05 34.32 37.32 49.39 22.18 36.25 47.88 54.77 34.87 51.07 36.44 50.95 9.50 17.80 15.14 25.39 1.93 4.04 2.90 13.86 3.39 13.07
MM-RAGImage-Only 25.25 37.11 19.28 26.76 9.35 16.96 33.37 39.19 19.56 29.46 18.22 28.60 31.80 48.45 26.37 43.01 39.09 47.58 40.29 58.14 28.81 53.68
MM-RAGUniIR 40.68 57.51 40.12 53.21 21.81 35.08 56.23 65.94 39.85 57.08 35.22 50.93 41.30 62.23 41.01 63.94 48.86 58.98 41.45 63.02 35.59 60.09

Qwen-VL-Chat
Vanilla 5.84 10.99 7.75 12.72 3.21 7.69 4.47 10.37 10.52 14.92 10.93 19.32 3.74 9.10 1.78 8.06 8.18 13.10 4.35 6.93 8.47 16.81
Full-FT 10.16 16.61 13.35 18.22 6.42 11.80 12.70 17.11 16.42 22.27 17.00 25.42 6.65 14.83 5.39 14.68 11.59 17.95 5.22 10.83 15.25 21.69
LoRA 6.95 12.64 9.27 14.55 4.31 9.24 5.68 11.82 12.55 17.79 12.96 21.64 4.41 10.54 2.34 9.54 9.32 14.96 5.22 8.04 10.17 18.07
MM-RAGText-Only 21.79 31.28 31.51 41.14 20.71 29.81 30.71 40.75 32.29 43.38 33.20 47.56 11.13 20.47 13.36 24.27 8.41 14.02 6.67 15.27 11.86 19.60
MM-RAGImage-Only 22.31 33.09 17.82 25.15 9.26 15.97 20.80 29.82 18.45 28.33 18.62 29.38 27.24 41.79 20.27 33.52 33.98 45.81 39.42 53.80 33.90 54.43
MM-RAGUniIR 32.75 46.18 33.26 43.36 18.15 27.56 32.77 44.90 37.08 49.25 31.98 44.96 32.20 49.28 28.20 45.05 37.16 50.60 41.45 56.57 42.37 65.29

Commercial AI Web Search Engines
Gemini-2.0-Flash 18.21 26.52 21.23 27.75 10.91 16.87 21.64 27.45 22.88 30.03 17.41 28.32 14.91 25.16 10.11 20.35 28.64 37.47 14.49 23.87 16.95 28.77
Gemini-2.5-Pro 44.19 52.58 48.86 52.84 39.07 52.28 31.90 37.00 51.11 57.22 58.04 59.97 39.27 46.27 24.29 35.81 63.98 73.14 53.62 68.36 42.37 57.40
Perplexity AI 48.27 62.44 47.58 56.51 34.78 43.14 56.13 66.19 41.82 54.33 35.29 47.88 48.96 68.78 47.03 70.95 62.22 73.65 54.41 68.54 43.75 59.17
GPT-4.1 39.61 42.69 41.81 43.08 25.23 26.07 52.60 52.43 34.82 42.45 47.60 50.81 37.19 42.26 24.29 26.53 57.50 62.41 58.26 62.94 30.51 47.61

Sufficient Context
LLaVA-v1.5 56.13 75.77 56.78 72.37 38.77 58.44 75.09 84.69 54.61 74.33 48.58 67.01 55.43 79.50 52.08 78.83 75.91 89.71 57.39 78.80 49.15 69.96
Qwen-VL-Chat 48.96 66.02 49.98 63.42 35.20 50.29 52.00 68.90 50.55 67.25 48.18 62.02 47.84 68.87 43.29 66.15 62.05 75.92 58.55 75.41 47.46 67.79
Gemini-2.5-Pro 72.15 80.46 72.61 78.77 57.01 65.75 86.34 89.63 71.77 81.65 62.35 74.65 71.65 82.32 73.53 80.89 81.14 88.09 75.07 85.59 52.54 72.05
GPT-4.1 75.02 83.74 79.22 88.20 53.62 65.21 84.04 90.23 69.37 80.75 68.83 79.56 71.21 79.68 80.74 88.02 88.18 91.97 86.38 91.58 59.32 74.86

Table 6 presents the quantitative experimental results of RQ1, revealing that no method achieves robust
injection performance, with significant performance variance observed across different fine-grained
subfields knowledge. Specifically, We have obtained further observations:

• Obs 1: In Table 6, across nearly all evaluated methods, News knowledge injection performance
consistently outperforms Entity knowledge. We attribute this gap to their fundamental differences
in learning difficulty. Entity knowledge introduces entirely novel concepts to model, posing a
substantial learning challenge. In contrast, News knowledge primarily establishes new and complex
relationships among existing entities, which represents a comparatively lower learning barrier.

• Obs 2: The performance of knowledge in the same subfield varies depending on the method used.
For example, in Full FT, LoRA, and MM-RAGText-Only, the performance of film knowledge is poor.
In sharp contrast, it performs better when using MM-RAGImage-Only, MM-RAGUniIR, Sufficient
Context, and Web Search.

• Obs 3: A significant performance variance among different strategies within same method. Notably,
MM-RAGText-Only is more effective for injecting News knowledge, while MM-RAGImage-Only is
better suited for Entity knowledge. This discrepancy indicates that knowledge injection is optimized
when the modality of the feature aligns with the nature of the knowledge source (textual features
for News and visual features for Entity).

• Obs 4: The performance of the same subfield knowledge differs across models. For instance,
Health and Written work perform better on Qwen-VL-Chat; Sport and Business perform better on
LLaVA-v1.5. This is likely due to significant distributional differences in types of knowledge data
encountered during pre-training of different models.

• Obs 5: Politics knowledge contains a wide range of professional terms and complex concepts that
are difficult to learn, ranking lowest among almost all methods.

Observations

Observation 1: Current knowledge injection methods have significant domain specificity for
different fine-grained subfield knowledge.
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Table 7: The performance of knowledge injection methods on Entity subset of MMEVOKE.
TEL: Television Series; COM: Company; VID: Video Game; CHU: Church Building; SIN: Single;
OGR: Organization; PAI: Painting; MOT: Motor Car.

Method
TEL COM VID CHU SIN ORG PAI MOT

CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑

LLaVA-v1.5
Vanilla 6.15 9.77 1.12 5.69 0.00 3.16 0.00 6.39 4.55 9.51 2.70 6.31 0.00 11.90 0.00 4.76
Full-FT 13.97 10.29 29.21 14.15 10.34 7.32 26.53 22.67 15.91 8.55 27.03 15.52 17.86 13.83 7.14 6.21
LoRA 15.64 16.20 10.11 11.42 12.07 15.24 14.29 24.54 20.45 20.39 16.22 17.45 14.29 14.42 0.00 1.41
MM-RAGText-Only 3.35 6.15 4.49 14.31 5.17 21.81 8.16 18.10 2.27 20.72 2.70 13.69 14.29 21.31 7.14 27.55
MM-RAGImage-Only 36.87 54.26 30.34 57.23 29.31 59.73 40.82 66.33 34.09 56.78 24.32 49.88 53.57 70.95 21.43 57.93
MM-RAGUniIR 41.34 62.91 30.34 63.49 32.76 65.77 34.69 64.30 31.82 61.50 29.73 59.19 64.29 85.12 21.43 68.30

Qwen-VL-Chat
Vanilla 7.82 11.33 1.12 7.32 1.72 2.59 0.00 10.20 6.82 11.33 0.00 2.88 7.14 13.10 0.00 10.37
Full-FT 8.94 16.49 1.12 11.05 3.45 15.54 2.04 16.91 6.82 15.75 5.41 8.61 10.71 12.93 7.14 15.48
LoRA 7.26 11.55 1.12 8.64 1.72 3.85 2.04 9.90 6.82 13.61 2.70 5.59 10.71 15.95 0.00 8.33
MM-RAGText-Only 7.26 13.22 7.87 23.37 8.62 25.35 4.08 12.90 13.64 31.20 13.51 19.91 14.29 23.45 14.29 30.36
MM-RAGImage-Only 22.91 38.39 30.34 55.94 18.97 56.23 38.78 52.91 31.82 56.92 29.73 45.95 39.29 48.45 14.29 46.90
MM-RAGUniIR 19.67 23.81 30.34 63.84 18.97 59.04 28.57 50.26 34.09 59.51 43.24 63.13 42.86 52.62 14.29 46.90

Commercial AI Web Search Engines
Gemini-2.0-Flash 19.55 31.14 8.99 20.82 10.34 25.01 10.20 21.56 9.09 22.58 18.92 25.02 14.29 16.43 0.00 26.11
Gemini-2.5-Pro 58.10 74.71 41.57 66.09 46.55 65.25 20.41 33.07 43.18 66.37 43.24 59.98 46.43 38.27 7.14 35.48
Perplexity AI 43.90 54.59 30.00 52.08 33.33 48.41 62.50 75.83 50.00 70.00 33.33 54.07 85.71 83.67 33.33 13.33
GPT-4.1 50.28 62.08 52.81 57.02 53.45 65.23 22.45 29.31 38.64 47.03 45.95 52.43 17.86 20.53 0.00 15.99

Sufficient Context
LLaVA-v1.5 56.42 81.18 41.57 78.05 34.48 68.72 44.90 72.48 45.45 68.79 45.95 79.70 75.00 90.12 35.71 73.15
Qwen-VL-Chat 51.96 72.08 39.33 73.62 25.86 63.28 34.69 62.88 36.36 62.62 43.24 65.69 42.86 55.60 42.86 73.47
Gemini-2.5-Pro 69.27 85.95 64.04 81.32 58.62 78.70 55.10 75.18 68.18 82.72 56.76 78.37 89.29 85.62 50.00 78.25
GPT-4.1 77.09 90.22 70.79 86.21 67.24 83.84 59.18 77.77 79.55 91.44 64.86 83.24 89.29 91.90 64.29 84.97

Table 8: The performance of knowledge injection methods on News subset of MMEVOKE. ENT:
Entertainment; TEC: Tech; SCI: Science; TRA: Travel; FOO: Food; CLI: Climate; INV: Investing;
STY: Style.

Method
ENT TEC SCI TRA FOO CLI INV STY

CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑

LLaVA-v1.5
Vanilla 6.79 9.35 6.79 9.35 6.79 9.35 11.90 18.57 10.26 17.83 8.11 13.87 18.28 23.71 13.93 16.20
Full-FT 18.67 11.47 28.29 17.02 15.79 12.56 28.57 24.16 35.90 24.54 27.03 13.02 44.09 25.06 31.15 19.17
LoRA 16.98 15.70 27.63 25.96 8.77 18.73 23.81 29.91 20.51 18.83 16.22 18.02 34.41 28.13 19.67 19.45
MM-RAGText-Only 39.81 48.79 46.05 55.21 36.84 55.71 38.10 54.50 33.33 50.85 37.84 53.51 37.63 47.06 68.85 78.51
MM-RAGImage-Only 21.76 28.07 23.03 28.02 22.81 38.42 21.43 30.09 23.08 36.32 18.92 26.04 25.81 31.61 22.13 25.67
MM-RAGUniIR 52.16 63.67 42.11 51.77 33.33 52.89 47.62 62.83 41.03 57.78 35.14 53.06 38.71 48.23 59.84 67.32

Qwen-VL-Chat
Vanilla 6.79 9.90 14.47 16.10 8.77 14.95 9.52 16.59 10.26 16.24 10.81 12.07 23.66 29.27 13.11 16.19
Full-FT 11.27 14.64 17.11 18.79 8.77 13.78 14.29 23.89 17.95 27.35 18.92 21.42 35.48 38.34 16.39 19.18
LoRA 7.41 11.01 16.45 18.76 8.77 13.93 7.14 15.00 7.69 17.52 13.51 14.77 24.73 30.44 15.57 17.72
MM-RAGText-Only 31.48 38.00 46.71 51.27 42.11 48.99 38.10 50.56 20.51 39.66 35.14 46.65 43.01 52.75 60.66 66.14
MM-RAGImage-Only 20.06 24.82 22.37 27.06 33.33 42.59 21.43 31.67 20.51 27.35 24.32 31.40 30.11 36.37 19.67 23.81
MM-RAGUniIR 42.75 50.25 41.45 45.18 47.37 55.69 40.48 50.46 28.21 44.36 32.43 44.34 43.01 52.93 51.64 56.70

Commercial AI Web Search Engines
Gemini-2.0-Flash 24.69 29.98 38.82 46.00 15.79 22.97 16.67 30.40 23.08 30.52 10.81 19.28 38.71 45.72 30.33 32.60
Gemini-2.5-Pro 59.72 61.28 63.82 60.26 31.58 37.64 52.38 63.00 48.72 56.44 48.65 44.35 52.69 51.29 69.67 68.13
Perplexity AI 59.85 64.15 47.06 55.20 45.45 49.13 50.00 70.05 33.33 40.74 37.50 64.58 33.33 40.12 71.88 74.36
GPT-4.1 46.30 43.64 57.24 59.50 22.81 35.29 50.00 50.29 66.67 56.89 40.54 35.21 55.91 55.73 50.82 50.84

Sufficient Context
LLaVA-v1.5 65.12 78.31 63.82 77.61 47.37 66.30 57.14 72.37 51.28 76.58 51.35 63.07 60.22 72.83 75.41 85.18
Qwen-VL-Chat 61.42 68.99 62.50 72.69 43.86 63.14 45.24 58.56 51.28 64.66 48.65 56.68 53.76 65.04 68.03 75.70
Gemini-2.5-Pro 81.17 83.08 75.00 82.33 61.40 66.34 73.81 82.47 66.67 81.28 70.27 74.10 75.27 77.29 82.79 83.34
GPT-4.1 78.70 83.73 82.89 85.12 61.40 72.69 69.05 80.41 69.23 78.69 62.16 67.85 68.82 77.61 89.34 91.33

Tables 7 and 8 present richer experimental results of fine-grained subfields, further verifying the
significant domain specificity of existing knowledge injection methods and their inability to robustly
implement knowledge injection.

C.2 SEQUENTIAL FINE-TUNING

C.2.1 SEQUENTIAL FINE-TUNING BASED ON TASKS

Sequential Fine-Tuning refers to the process of incrementally training models on new tasks and
data. Specifically, model weights obtained from previous tasks and data are used to initialize model
parameters (Chen et al., 2025). In this section, we explore whether Sequential Fine-Tuning is more
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effective than One-Time Injection? We employed MMEVOKE for knowledge injection, randomly
dividing the data into subsets of 4, 8, and 12 tasks. We consider each subset as a task and use these
subsets to Sequential Fine-Tuning the model.

Sequential Fine-Tuning impede the effective injection of multimodal evolving knowledge. As
illustrated in Figure 14, the performance of LMMs exhibits a declining trend with progressive
Sequential Fine-Tuning based on tasks. This degradation primarily stems from the disruption of
previously fine-tuning parameters during each subsequent fine-tuning iteration. Consequently, the
overall performance of LMMs progressively deteriorates. Furthermore, our investigation into the
impact of Sequential Fine-Tuning steps revealed a negative correlation between the number of steps g
and LMMs performance, as evidenced by the values corresponding to the terminal points in each line
graph. These findings underscore the importance of minimizing Sequential Fine-Tuning in practical
applications to preserve model efficacy.

Figure 14: The results of LLaVA-v1.5 on Sequential Fine-Tuning based on Tasks. The data
DK and DQ are evenly divided into g ∈ {4, 8, 12} parts, namely DK =

{
d1k, d

2
k, . . . , d

n
k

}g

n=1
and

DQ =
{
d1q, d

2
q, . . . , d

n
q

}g

n=1
. Sequential Fine-Tuning based on tasks refer to the situation where if

the current m-th Sequential Fine-Tuning has ended, it indicates that the model is being trained on
d1k, d

2
k, . . . , d

m
k in sequence; and evaluated on

{
d1q ∪ d2q ∪ · · · ∪ dmq

}
.

C.2.2 SEQUENTIAL FINE-TUNING BASED ON SUBSETS

Figure 15: The results of LLaVA-v1.5 on Sequential Full-FT based on Subsets. Sequential
Full-FT based on subset refer to the situation where if the current m-th Sequential Full-FT has ended,
it indicates that the model is being trained on d1k, d

2
k, . . . , d

m
k in sequence; and evaluate sequentially

on one of d1q, d2q, . . . , dmq .

The results of Sequential Fine-Tuning based on subsets are shown in Figure 15 and 16. Each subgraph
displays the performance changes of the LMMs on the same subset as the Sequential Fine-Tuning
process progresses. It can be observed that whether using Full-FT or LoRA as training strategies,
as the number g of Sequential Fine-Tuning increases, the performance of the model on the same
subset shows a downward trend. This discovery further indicates that Sequential Fine-Tuning is not
conducive to injecting up-to-date knowledge into the LMMs.
Observations

Observation 2: Both sequential task and subset fine-tuning impede the efficacy of knowledge
injection, with performance degradation correlating with an increased number of tasks or
subsets.
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Figure 16: The results of LLaVA-v1.5 on Sequential LoRA based on Subsets. Sequential LoRA
based on subset refer to the situation where if the current m-th Sequential LoRA has ended, it indicates
that the model is being trained on d1k, d

2
k, . . . , d

m
k in sequence; and evaluate sequentially on one of

d1q, d
2
q, . . . , d

m
q .

C.3 ABLATION EXPERIMENTS IN MM-RAG

Retrieval strategy, Example Number, and Pool Size are critical factors influencing the performance
of MM-RAG, as demonstrated by the experimental results presented in Figure 17 and 18.

• Effect of Retrieval Strategy in MM-RAG. An interesting observation appears in the “News”
subgraph, where the Text-Only approach significantly outperforms the Image-Only strategy. The
reason for this difference is that textual information is more important for news understanding than
visual information, as valuable data cannot be retrieved solely through images. On the contrary, for
Entity knowledge, visual information is more valuable than textual information.

• Effect of Example Number in MM-RAG. We compared K ∈ {1, . . . , 5}, and in the first row
of Figure 17, the direct correlation between the performance of model and Example Number is
shown. Our experiment revealed a convincing trend that the model performs using a monotonically
increasing function of Example Number K for three retrieval strategies. This observation indicates
that an increase in the example number brings more diverse reference information, which has a
positive effect on the model’s understanding and utilization of evolving knowledge.

• Effect of Retrieval Pool Size in MM-RAG. Regarding the ablation experiment of pool size, our
setup is to randomly select 20% of the corresponding data from DQ and DK as DQ

20% and
DK

20%; For instance, when Pool Size = 20%, Retrieve Pool = DQ
20%; When Pool Size = 60%,

Retrieve Pool = DK
20% + DJ ,where DJ is a randomly selected 40% data from the DK \DK

20%.
The evaluation data is always DQ

20%. The experimental results, presented in the second row of
Figure 18, demonstrate an inverse correlation between MM-RAG’s performance and Pool Size.
This suggests that larger pool sizes hinder the retriever’s ability to identify relevant information, a
critical consideration for practical MM-RAG applications.

Figure 17: The results of LLaVA-v1.5’s ablation
study on MM-RAG about Retrieval Strategy
and Example Number analysis.

Figure 18: The results of LLaVA-v1.5’s ablation
study on MM-RAG about Retrieval Strategy
and Pool Size analysis.
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Observations

Observation 3: Cross-modal retrieval strategies, a larger number of examples, and a smaller
retrieval pool size all contribute to strengthening knowledge injection performance.

C.4 MORE QUALITATIVE RESULTS ABOUT MMEVOKE

Figure 19: Qualitative example of CNN News science knowledge.

Figure 20: Qualitative example of Wikipedia Entity automobile model knowledge.

C.5 ERROR ANALYSIS

Observing the qualitative examples in Figures 19, 20, and 21, we find that, as demonstrated by the
results in Table 6, existing knowledge injection methods perform poorly on MMEVOKE, with even
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sufficient context failing to achieve perfect performance. Here, we conduct a detailed analysis of
sufficient context.

Even when provided with sufficient context, the model still generates hallucinations. For instance, in
Figure 19, the response given by GPT-4.1 is entirely unrelated to the question and does not appear in
the sufficient context, representing a severe hallucination phenomenon. A similar hallucination issue
persists in Figure 20. These concrete results indicate that merely improving the sufficiency of context
is far from adequate—the model’s inherent reasoning and ability to utilize contextual information are
equally critical. Hallucination remains an urgent problem to be addressed.

Figure 21: Qualitative example of Wikipedia Entity video games knowledge.

Observations

Observation 4: Despite being provided with sufficient context, the model still exhibits severe
hallucinations.
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D MORE DETAILS ON CAPABILITY DEGRADATION

D.1 CAPABILITY DEGRADATION RANKING

Table 9: The degree of general capability degradation results. The displayed values are obtained
by calculating the mean based on the results in Table 3.

Method
Comprehensive OCR Multidisciplinary Instruction Multi-Round Mathematical Hallucination

Loss ↓ Rank ↓ Loss ↓ Rank ↓ Loss ↓ Rank ↓ Loss ↓ Rank ↓ Loss ↓ Rank ↓ Loss ↓ Rank ↓ Loss ↓ Rank ↓

Full-FT ↓33.40% 4 ↓13.85% 3 ↓9.63% 2 ↓61.93% 7 ↓50.59% 6 ↓6.20% 1 ↓35.98% 5
LoRA ↓25.24% 4 ↓19.32% 3 ↓15.20% 2 ↓55.28% 7 ↓48.05% 6 ↓5.76% 1 ↓37.25% 5

Knowledge Augmentation for Text
Knowledge Agnostic ↓16.60% 3 ↓15.51% 2 ↓11.87% 1 ↓65.48% 7 ↓59.76% 6 ↓25.16% 4 ↓34.21% 5
Knowledge Aware (+3) ↓14.62% 3 ↓5.36% 2 ↓3.78% 1 ↓64.36% 7 ↓60.03% 6 ↓17.48% 4 ↓20.89% 5

Knowledge Augmentation for Images
Knowledge Agnostic ↓16.95% 1 ↓19.58% 3 ↓17.44% 2 ↓67.41% 7 ↓59.46% 6 ↓22.60% 4 ↓38.07% 5
Knowledge Aware (+3) ↓24.58% 4 ↓12.75% 2 ↓4.88% 1 ↓72.85% 7 ↓59.73% 6 ↓28.91% 5 ↓24.06% 3

Knowledge Retention Methods
ReplayFull-FT

+10% ↓10.02% 4 ↓3.69% 3 ↑0.09% 1 ↓22.81% 6 ↓31.40% 7 ↓1.06% 2 ↓13.09% 5
ReplayLoRA

+10% ↓8.95% 5 ↓4.14% 3 ↓0.93% 2 ↓6.03% 4 ↓26.77% 7 ↓0.70% 1 ↓9.69% 6
EWC ↓24.65% 4 ↓14.96% 3 ↓8.89% 2 ↓55.09% 7 ↓49.34% 6 ↓5.83% 1 ↓31.38% 5
LwF ↓18.94% 4 ↓17.16% 3 ↓16.58% 2 ↓45.44% 6 ↓48.12% 7 ↓6.41% 1 ↓33.42% 5
MoELoRA ↓4.56% 4 ↓18.34% 6 ↓0.97% 1 ↓2.05% 3 ↓29.24% 7 ↓1.16% 2 ↓9.18% 5

Based on Table 3, we calculate the mean degradation levels for each capability dimension. Table 9
reveals that both Full-FT and LoRA exhibit a consistent ranking of capability degradation: Instruction
Following → Multi-Round QA → Hallucination → Comprehensive Evaluation → OCR → Mul-
tidisciplinary → Mathematical Reasoning. The identical ranking is also maintained in knowledge
retention. Only ReplayLoRA

+10% and MoELoRA show significantly alleviated degradation rankings in
instruction-following, rising to 4th and 3rd place respectively.

D.2 FINE-GRAINED DIMENSIONAL RESULTS ON GENERAL CAPABILITY TESTS

To effectively evaluate the specific capability degradation caused by knowledge injection in LMMs,
we utilized 12 benchmarks across 7 task categories:

1. MME (Fu et al., 2023) is a comprehensive evaluation benchmark designed to assess the perfor-
mance of LMMs across 14 distinct tasks, encompassing both perception and cognition abilities.
To ensure fair and accurate comparisons, MME provides concise, manually designed instruction-
answer pairs, eliminating the need for extensive prompt engineering.

2. MMBench (Liu et al., 2024b) is a bilingual benchmark designed to evaluate the comprehensive
capabilities of LMMs across multiple modalities. It offers a meticulously curated dataset with
over 3,000 multiple-choice questions covering 20 distinct ability dimensions, such as object
localization and social reasoning. Additionally, MMBench provides questions in both English and
Chinese, enabling comparative evaluations of LMM performance across these languages.

3. SEEDBench2 Plus (Li et al., 2024a) comprehensively evaluates LMMs’ understanding of text-
rich visuals (charts, maps, web pages). Comprising 2,300 multiple-choice questions across these
categories, it assesses reasoning capabilities in real-world scenarios where text and visuals inter-
twine—addressing gap for applications like document analysis and web content understanding.

4. OCRBench (Liu et al., 2023b) is a comprehensive evaluation benchmark designed to assess the
OCR)capabilities of LMMs. It encompasses 29 datasets across five key tasks: Text Recognition,
Scene Text-Centric VQA, Document-Oriented VQA, Key Information Extraction (KIE), and
Handwritten Mathematical Expression Recognition (HMER). The benchmark aims to provide
a thorough assessment of LMMs’ performance in various text-related visual tasks, highlighting
their strengths and weaknesses, particularly in handling multilingual text, handwritten text, non-
semantic text, and mathematical expressions.

5. MMMU (Yue et al., 2024) is a comprehensive benchmark designed to evaluate LMMs on tasks
that require college-level subject knowledge and deliberate reasoning. It comprises 11,500
meticulously curated multimodal questions sourced from college exams, quizzes, and textbooks,
spanning six core disciplines: Art & Design, Business, Science, Health & Medicine, Humanities
& Social Science, and Technology & Engineering. These questions cover 30 subjects and 183
subfields, featuring 30 diverse image types such as charts, music sheets, and chemical structures.
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6. MIA-Bench (Qian et al., 2024) is a benchmark designed to evaluate the ability of LMMs to adhere
strictly to complex instructions. It comprises a diverse set of 400 image-prompt pairs, each crafted
to challenge models’ compliance with layered instructions, requiring accurate and contextually.

7. MMDU (Liu et al., 2025) is a comprehensive evaluation framework designed to assess the capabil-
ities of LMMs in handling multi-turn, multi-image dialog scenarios. It focuses on understanding
complex interactions involving multiple images and sequential dialog turns, which are critical for
real-world applications like visual storytelling, medical diagnosis, and interactive AI systems. The
benchmark includes a diverse dataset with rich annotations, enabling models to be fine-tuned and
evaluated on tasks requiring contextual reasoning, image-text alignment, and temporal coherence.

8. MathVista (Lu et al., 2024) evaluates foundation models’ mathematical reasoning in visual
contexts. It comprises 6,141 examples from 28 existing multimodal datasets, augmented with
three new datasets (IQTest, FunctionQA, PaperQA), requiring fine-grained visual understanding
and compositional reasoning.

9. MathVision (Wang et al., 2025) is a meticulously curated dataset comprising 3,040 high-quality
mathematical problems, each embedded within a visual context and sourced from real mathematics
competitions. This benchmark spans 16 distinct mathematical disciplines and is organized across
five levels of difficulty, offering a comprehensive platform to evaluate the mathematical reasoning
abilities of LMMs.

10. HallusionBench (Guan et al., 2024) is a comprehensive benchmark designed to evaluate LMMs
on their ability to accurately interpret and reason about visual data, specifically addressing issues
of language hallucination and visual illusion. It comprises 346 images paired with 1,129 questions
among visual dependent and visual supplement. The benchmark introduces a novel structure for
visual questions, enabling quantitative analysis of models’ response tendencies, logical consistency,
and various failure modes.

11. POPE (Li et al., 2023b) is a benchmark designed to systematically assess object hallucination
in LMMs. Object hallucination refers to the tendency of these models to generate descriptions
containing objects not present in the corresponding images. POPE addresses this issue by
implementing a polling-based query method that evaluates models’ accuracy in identifying the
existence of specific objects within images. This approach provides a more stable and flexible
evaluation of object hallucination, revealing that current LMMs often generate objects inconsistent
with the target images.

Figure 22: Fine-grained dimensional results on MME and MMBench.
According to Figures 22, 23, 24, 25, and 26, we conduct result analysis for each benchmark.

1. MME: Results on the MME benchmark indicate that both Full-FT and LoRA significantly degrade
LLaVA’s perception and cognition capabilities, with perception exhibiting a more pronounced
decline. We attribute this primarily to MMEVOKE’s focus on cognition tasks and its lack
of substantial perception content. While the replay method effectively mitigates forgetting in
perception abilities (e.g., outperforming Vanilla in Position tasks), it shows limited efficacy for
cognition (e.g., poor performance in Numerical Calculation and Text Translation). This disparity
likely stems from LLaVA’s original training data heavily emphasizing perception. Overall, EWC
and LwF are less effective at mitigating forgetting than MoELoRA, though all three methods
perform relatively well on the Text Translation task.

2. MMBench: Experimental results show that both Full-FT and LoRA significantly degrade LLaVA’s
performance in the perceptually demanding Attribute Comparison task, while enabling superior
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performance in the Physical Relationship task due to MMEVOKE’s relational data. For capability
degradation mitigation, Replay and MoELoRA remain most effective. Notably, the EWC method
underperforms even Full-FT and LoRA across 16 tasks (including Attribute Comparison, Attribute
Recognition, Celebrity Recognition, and Function Reasoning), directly indicating the instability
of this parameter-regularization approach.

Figure 23: Fine-grained dimensional results on SEEDBench2 Plus, OCRBench and MMMU.

3. SEEDBench2 Plus: Both Full-FT and LoRA reduce LLaVA’s performance on SEEDBench2 Plus,
with LoRA underperforming compared to Full-FT. Among knowledge retention methods, only
Replay outperforms the Vanilla approach in Web tasks.

4. OCRBench: Experimental result shows Full-FT and LoRA exhibit relatively less degradation in
OCR tasks, potentially due to their text-information focus, while outperforming Vanilla in Key
Information Extraction. However, LwF and MoELoRA demonstrate unstable degradation miti-
gation—underperforming Full-FT/LoRA in Text Recognition and Scene Text Centric VQA, yet
showing opposite trends to all other methods (Full-FT, LoRA, Replay, EWC) in Key Information
Extraction.

5. MMMU: While LoRA demonstrates superior overall performance compared to Full-FT across
most tasks , it exhibits significantly lower performance on specific MMMU domains (Business,
Science, Health & Medicine, Technology & Engineering) . We hypothesize this discrepancy
stems from the similarity between these tasks’ required information and the MMEVOKE data
distribution, with Full-FT showing greater efficacy in integrating evolving knowledge from
MMEVOKE. Concurrently, LwF consistently underperforms both Full-FT and LoRA across
multiple tasks, substantiating its inherent instability for mitigating capability degradation in
practical applications.

Figure 24: Fine-grained dimensional results on MIA-Bench, MMDU and MathVista.

6. MIA-Bench: Both Full-FT and LoRA exhibit substantial performance degradation on MIA-Bench
– particularly in the Perspective task (95.65% and 100% degradation respectively) – indicating
significant impairment of instruction-following capability attributable to the absence of instruc-
tional content in MMEVOKE. degradation mitigation effectiveness varies substantially: EWC
shows minimal efficacy (particularly in Perspective with no measurable improvement), while LwF
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provides only modest mitigation. Conversely, both MoELoRA and ReplayLoRA
+10% demonstrate supe-

rior capabilities, with ReplayLoRA
+10% achieving exceptional Perspective task performance surpassing

Vanilla.
7. MMDU: Both Full-FT and LoRA exhibit substantial degradation across multiple MMDU tasks,

primarily attributed to the absence of multi-round dialogue data in MMEVOKE. Crucially, none
of the evaluated continual learning methods effectively mitigate this degradation, substantiating
that SFT significantly impairs LLaVA’s multi-round dialogue capability and highlighting a critical
area for future improvement.

8. MathVista: Full-FT and LoRA exhibit relatively lower degradation rates, outperforming Vanilla
in reasoning tasks including Geometry Reasoning, Geometry Problem Solving, Figure Question
Answering, and Statistical Reasoning. While knowledge retention methods generally demonstrate
satisfactory degradation mitigation, they exhibit notable limitations in Logical Reasoning tasks,
likely attributable to the inherent complexity and elevated difficulty of such reasoning.

Figure 25: Fine-grained dimensional results on MathVision and HallusionBench.

9. MathVision: Both Full-FT and LoRA improve performance on MathVision, outperforming
Vanilla in Analytical Geometry, Counting, and Logical Reasoning tasks. However, knowledge
retention methods exhibit suboptimal performance in geometry-specific tasks (Geometry Area,
Geometry Length, Solid Geometry, Topology), primarily stemming from the substantial domain-
specific knowledge required for these specialized domains.

10. HallusionBench: Both full fine-tuning and LoRA exhibit limited performance on HallusionBench,
with complete degradation (100% decrease) in the VS OCR task and significant reductions in
VD figures, VS charts, and VD OCR tasks. Notably, EWC and LwF outperform Vanilla in
VD math and VS table tasks, while MoELoRA achieves exceptional performance in VS table.

Figure 26: Fine-grained dimensional results on POPE.

11. POPE: Both Full-FT and LoRA cause marginal performance degradation on POPE, potentially
attributable to the benchmark’s low complexity. Among all methods, only Replay outperforms
Vanilla in mitigating degradation, likely due to partial presence of POPE-related data in LLaVA’s
original training.
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D.3 MORE EXAMPLES OF VIOLATING INSTRUCTION

The example of violating instructions on MME

Prompt: Does this artwork belong to the type of historical?\nAnswer the question using a
single word or phrase.

Expected Answer: Yes or No.

Output: The Nuremberg Chronicle (German: N0̆0fcrnbergische Chronik) is the title of two
different medieval German chronicles, the one by Henricus (died after 1410) and the other by
Hartmann (died after 1420), both of Nuremberg. The chronicles continue the work of the
14th-century German chronicler Konrad von Megenberg and are also influenced by the Saxon
chronicle. They were written in Middle High German and cover the period from the creation
of the world to the death of Emperor Henry II

The example of violating instructions on MathVision

Prompt: Please answer the question and provide the correct option letter, e.g., A, B, C, D,
at the end. Question: Which of the figures shown bellow cannot be cut out of the figure
illustrated nearby? Choices: (A) A (B) B (C) C (D) D (E) E

Expected Answer: A or B or C or D or E.

Output: The Minesweeper puzzle is based on the game of Sudoku. The objective is
to clear the board of all cells (except for a small number in the upper left corner) by
revealing the state of each cell through a series of clues. Each clue indicates whether a
cell contains a number or a flag. The flags mark cells that are not part of the solution;
revealing a flag shows it as a number or leaves it as a flag. The game progresses through
a series of levels, with each level having more complex patterns of flags. The game ends
when all cells are revealed, and the player clears them all. The game is implemented as a
web application using HTML, CSS, and JavaScript. The logic for generating the puzzle
and checking solutions is implemented in JavaScript. The game is tested using the Bri-
enne testing framework. The game has been compared to the board game Dangerous Crossing.

The example of violating instructions on SEEDBench2 Plus

Prompt: How many sections can be accessed directly from the ”Homepage”? (A) 2 (B) 3 (C)
4 (D) 5

Expected Answer: A or B or C or D.

Output: 1. About Me 2. Projects 3. Contact

The example of violating instructions on POPE

Prompt: Is there a snowboard in the image? Answer the question using a single word or
phrase.

Expected Answer: Yes or No.

Output: A snowboard is a wide, flat board used for riding on snow, typically secured to the
rider’s feet with bindings.
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E MORE DETAILS ABOUT KNOWLEDGE AUGMENTATION ON MMEVOKE

E.1 TRAINING LOSS PERSPECTIVES ON EFFECTIVENESS OF KNOWLEDGE AUGMENTATION

Figure 27 demonstrates that the training loss of LLaVA exhibits a significant decline at the end of
each epoch under Full-FT training strategies. This behavior aligns with the LLM’s data memorization
patterns during training and overfitting, suggesting that repeated exposure to data is essential for
acquiring up-to-date knowledge. This further proves the necessity of knowledge augmentation in the
training phase, which present evolving knowledge in different variants to the model, facilitate the
model to store attribute knowledge on entities, and flexibly extract knowledge.

Figure 27: Training loss over time for LLaVA-v1.5 based on the Full-FT training strategy.

E.2 THE PERFORMANCE OF KNOWLEDGE AUGMENTATION IN GENERAL CAPABILITY TESTS

Figure 28: The performance of knowledge augmentation in general capability tests.

According to Figure 28, we have the following observations:
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• Obs 1: Knowledge augmentation is generally superior to standard Supervision Fine-Tuning.
Across all 12 general capability benchmarks evaluated, models enhanced with knowledge augmen-
tation, whether through text or images, demonstrated markedly superior performance compared
to the model trained with standard Supervised Fine-Tuning. This comprehensive superiority is
consistently observed in MME, MMBench, SEEDBench2 Plus, ScienceQA, MMMU, MMDU,
POPE, and HallusionBench.

• Obs 2: Deficiencies in instruction-following, multi-turn dialogue, and reasoning capabilities
remain apparent. On the MIA-Bench, MMDU, MathVista, and MathVision benchmarks, the
model post-knowledge augmentation underperforms a standard Supervised Fine-Tuning model.
This performance disparity is primarily attributed to the fact that the knowledge augmentation
process does not inherently enhance the aforementioned capabilities of reasoning, instruction
following, or multi-turn dialogue. Consequently, these areas represent critical directions for future
improvement and refinement.

• Obs 3: Increasing the Volume of Text Augmented Data Correlates Positively with Performance
Gains. A clear trend indicates that incrementally increasing the volume of augmentation data,
as denoted by the progression from “+1” to “+3”, generally leads to continued performance
improvements. This dose-response relationship is evident for text augmentation across most
benchmarks. For instance, in MME, MMBench, SEEDBench2 Plus, MMMU, MIA-Bench, the
“+3” versions of the augmented models consistently outperform their “+1” and “+2” counterparts.
This finding suggests that the model’s capabilities can be further enhanced through the sustained
integration of a larger and more diverse set of knowledge-rich data.
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F MORE EXPERIMENTAL RESULTS ABOUT KNOWLEDGE RETENTION
METHODS ON MMEVOKE

F.1 THE KNOWLEDGE INJECTION PERFORMANCE OF KNOWLEDGE RETENTION METHODS ON
MMEVOKE

While focusing on capability degradation mitigation via knowledge retention methods, we also evalu-
ate these methods’ performance in evolving knowledge injection, as shown in Table 10. Experimental
results show that all knowledge retention methods incur losses in evolving knowledge injection, with
MoELoRA experiencing the most significant decline, while parameter regularization methods (EWC
and LwF) retain relatively better performance. Future work could integrate the strengths of multiple
knowledge retention methods to design more comprehensive approaches.

Table 10: The knowledge injection performance of LLaVA-v1.5 regarding knowledge retention
methods on MMEVOKE. POL: Politics; SPO: Sports; BUS: Business; HEA: Health; CEL: Celebrity;
FIL: Film; ALB: Album; WRI: Written Work.

Method
ALL

News Entity

Avg POL SPO BUS HEA Avg CEL FIL ALB WRI

CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑

Without Knowledge Retention
Full-FT 18.02 15.17 21.35 16.34 12.92 10.99 22.49 20.88 27.31 20.95 19.84 16.47 14.37 13.88 13.11 16.93 12.39 13.16 12.17 7.66 20.34 8.43
LoRA 15.23 18.31 17.72 19.42 10.54 12.96 19.11 21.50 20.66 24.03 17.81 23.76 12.51 17.09 12.20 21.19 12.39 15.82 10.72 8.72 20.34 12.94

Pre-train data is available
ReplayFull-FT

+10% 11.07 18.03 13.53 19.60 6.87 12.88 14.39 19.58 15.13 22.89 15.38 24.31 8.37 16.31 8.69 18.11 11.48 16.53 4.93 12.57 13.56 16.44
ReplayLora

+10% 11.36 17.98 13.98 19.43 7.61 13.16 15.96 20.69 16.05 22.40 15.38 24.21 8.48 16.39 9.40 18.78 10.34 15.60 3.77 10.79 10.17 12.60

Pre-train data is unavailable
EWC 15.49 19.42 17.86 21.10 10.45 14.81 19.83 23.02 19.00 24.57 17.41 23.88 12.88 17.58 14.53 22.07 12.16 16.91 10.72 8.13 15.25 17.69
LwF 14.58 19.99 17.05 21.43 9.62 13.99 19.83 23.66 18.63 25.82 19.03 26.20 11.88 18.40 12.45 21.64 12.39 17.01 9.28 11.11 10.17 17.10
MoELoRA 7.12 12.60 10.06 15.42 4.22 9.42 7.74 12.58 13.47 19.69 12.15 21.33 3.89 9.51 4.42 11.43 3.41 7.95 3.19 4.87 10.17 15.51

Observations

Observation 5: Parameter regularization methods achieve superior knowledge injection
performance compared to data replay and MoE.

F.2 IS IT BETTER TO HAVE MORE DATA FOR REPLAY?

Figure 29: The performance of different replay data sizes in multimodal evolving knowledge
injection and mitigating capability degradation. The numbers on the x-axis of the right subgraph
correspond to the order of the benchmarks shown in Table 3

As shown in Figure 29, knowledge injection efficacy and capability degradation mitigation exhibit
non-monotonic correlation with replay data size, accompanied by significant fluctuations. Given the
computational cost escalation from data expansion, minimization of replay data size is recommended.

Observations

Observation 6: More replay data does not significantly strengthen knowledge adaptation and
retention.
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G PROMPT FOR GENERATION

The prompt templates for summary generation, question-answer generation, and phrase generation
are detailed in Figure 31 and Figure 30, respectively. All generation tasks were performed using
GPT-4o to ensure consistency and high-quality outputs.

Figure 30: Prompt for Generation of Questions and Answers.
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Figure 31: Prompt for Summary Generation.
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