
Appendices

A Dynamic weight sharing

A.1 Noiseless case

Each neuron receives the same k-dimensional input x, and its response zi is given by

zi = w
>
i x =
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wijxj . (10)

To equalize the weights wi among all neurons, the network minimizes the following objective,
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where w
init
i is the weight at the start of dynamic weight sharing. This is a strongly convex function,

and therefore it has a unique minimum.

The SGD update for one xm is
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To find the fixed point of the dynamics, we first set the sum over the gradients to zero,
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Therefore, at the fixed point the mean weight µ⇤ =
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We can now find the individual weights,
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Denoting the covariance matrix C ⌘ 1
M

P
m xmx>

m, we see that
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where I is the identity matrix. From Eq. (19) it is clear that w
⇤
i ⇡ µinit for small � and full rank C.

For instance, for C = I,
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Figure 5: Logarithm of inverse signal-to-noise ratio (mean weight squared over weight variance,
see Eq. (6)) for weight sharing objectives in a layer with 100 neurons. A. Dynamics of Eq. (21) for
different kernel sizes k (meaning k

2 inputs) and �. B. Dynamics of weight update that uses Eq. (8b)
for ↵ = 10, different kernel sizes k and �. In each iteration, the input is presented for 150 ms.

A.2 Biased noiseless case, and its correspondence to the realistic implementation

The realistic implementation of dynamic weight sharing with an inhibitory neuron (Section 4.2)
introduces a bias in the update rule: Eq. (13) becomes
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for inhibition strength ↵.

Following the same derivation as for the unbiased case, we can show that the weight dynamics
converges to
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For C = I, this becomes
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As a result, the final weights are approximately the same among neurons, but have a small norm due
to the � scaling.

The dynamics in Eq. (21) correctly captures the bias influence in Eq. (8b), producing similar SNR
plots; compare Fig. 5A (Eq. (21) dynamics) to Fig. 5B (Eq. (8b) dynamics). The curves are slightly
different due to different learning rates, but both follow the same trend of first finding a very good
solution, and then slowly incorporating the bias term (leading to smaller SNR).
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A.3 Noisy case

Realistically, all neurons can’t see the same xm. However, due to the properties of our loss, we can
work even with noisy updates. To see this, we write the objective function as
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where matrices W and X satisfy (W)i = wi and (Xm)i = xm, and
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We’ll update the weights with SGD according to
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where (Ek)i = ✏i is zero-mean input noise and m(k) is chosen uniformly.

Let’s also bound the input mean and noise as
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With this setup, we can show that SGD with noise can quickly converge to the correct solution, apart
from a constant noise-induced bias. Our analysis is standard and follows [52], but had to be adapted
for our objective and noise model.
Theorem 1. For zero-mean isotropic noise E with variance �
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where (W⇤)i is given by Eq. (19).

Proof. Using the SGD update,
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We need to bound the second and the third terms in the equation above.

Second term. As f is �-strongly convex in W,
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We only need to clarify one term here,
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Now we can take the expectation over m(k) and E. As m(k) is uniform, and W⇤ minimizes the
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So the whole second term becomes
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In our particular case, bounding the 2 norm with the Frobenius norm gives
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Therefore, we can bound the full gradient by the sum of individual bounds (as it’s the Frobenius
norm) and using ka+ bk2  2kak2 + 2kbk2 again,
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Combining all of this, and taking the expectation over all steps before k + 1, gives us
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If we choose ⌘k = O(1/k), the first term will decrease as 1/k. The second one will stay constant
with time, and proportional to �

2.

A.4 Applicability to vision transformers

In vision transformers (e.g. [28]), an input image is reshaped into a matrix Z 2 RN⇥D for N
non-overlapping patches of the input, each of size D. As the first step, Z is multiplied by a matrix
U 2 RD⇥3D as Z0 = ZU. Therefore, an output neuron z

0
ij =

P
k zikukj looks at zi with the same

weights as z0i0j =
P

k zi0kukj uses for zi0 for any i
0.

To share weights with dynamic weight sharing, for each k we need to connect all zik across i (input
layer), and for each j – all z0ij across i (output layer). After that, weight sharing will proceed just
like for locally connected networks: activate an input grid j1 (one of D possible ones) to create a
repeating input patter, then activate a grid j2 and so on.

A.5 Details for convergence plots

Both plots in Fig. 4 show mean negative log SNR over 10 runs, 100 output neurons each. Initial
weights were drawn from N (1, 1). At every iteration, the new input x was drawn from N (1, 1)
independently for each component. Learning was performed via SGD with momentum of 0.95.
The minimum SNR value was computed from Eq. (5). For our data, the SNR expression in
Eq. (6) has

�
1
N

P
i(wi)j

�2 ⇡ 1 and 1
N

P
i

�
(wi)j � 1

N

P
i0(wi0)j

�2 ⇡ �
2
/(1 + �)2, therefore

� log SNRmin = 2 log(�/(1 + �)).

For Fig. 4A, we performed 2000 iterations (with a new x each time). Learning rate at iteration k was
⌘k = 0.5/(1000 + k). For Fig. 5A, we did the same simulation but for 104 iterations.

For Fig. 4B, network dynamics (Eq. (8b)) was simulated with ⌧ = 30 ms, b = 1 using Euler method
with steps size of 1 ms. We performed 104 iterations (150 ms per iteration, with a new x each
iteration). Learning rate at iteration k was ⌘k = 0.0003/

p
1 + k/2 · I[k � 50].

The code for both runs is provided in the supplementary material.

B Experimental details

Both convolutional and LC layers did not have the bias term, and were initialized according to Kaiming
Normal initialization [53] with ReLU gain, meaning each weight was drawn from N (0, 2/(coutk2))
for kernel size k and cout output channels.

All runs were done with automatic mixed precision, meaning that inputs to each layer (but not the
weights) were stored as float16, and not float32. This greatly improved performance and memory
requirements of the networks.
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As an aside, the weight dynamics of sleep/training phases indeed followed Fig. 3A. Fig. 6 shows
� log SNRw (defined in Eq. (6)) for weight sharing every 10 iterations on CIFAR10. For small
learning rates, the weights do not diverge too much in-between sleep phases.
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Figure 6: Logarithm of inverse signal-to-noise ratio (mean weight squared over weight variance, see
Eq. (6)) for weight sharing every 10 iterations for CIFAR10. A. Learning rate = 5e-4. B. Learning
rate = 5e-3. C. Learning rate = 5e-2.

B.1 CIFAR10/100, TinyImageNet

Mean performance over 5 runs is summarized in Table 4 (padding of 0), Table 5 (padding of 4), and
Table 6 (padding of 8). Maximum minus minimum accuracy is summarized in Table 7, Table 8, and
Table 9. Hyperparameters for AdamW (learning rate and weight decay) are provided in Table 10,
Table 11, and Table 12.

Hyperparameters were optimized on a train/validation split (see Section 5) over the following grids.
CIFAR10/100. Learning rate: [1e-1, 5e-2, 1e-2, 5e-3] (conv), [1e-3, 5e-4, 1e-4, 5e-5] (LC); weight
decay [1e-2, 1e-4] (both). TinyImageNet. Learning rate: [5e-3, 1e-3, 5e-4] (conv), [1e-3, 5e-4]
(LC); weight decay [1e-2, 1e-4] (both). The learning rate range for TinyImageNet was smaller as
preliminary experiments showed poor performance for slow learning rates.

For all runs, the batch size was 512. For all final runs, learning rate was divided by 4 at 100 and then
at 150 epochs (out of 200). Grid search for CIFAR10/100 was done for the same 200 epochs setup.
For TinyImageNet, grid search was performed over 50 epochs with learning rate decreases at 25 and
37 epochs (i.e., the same schedule but compressed) due to the larger computational cost of full runs.

B.2 ImageNet

In addition to the main results, we also tested the variant of the locally connected network with a
convolutional first layer (Table 13). It improved performance for all configurations: from about 2%
for weight sharing every 1-10 iterations, to about 5% for 100 iterations and for no weight sharing.
This is not surprising, as the first layer has the largest resolution (224 by 224; initially, we performed
these experiment due to memory constraints). Our result suggests that adding a “good” pre-processing
layer (e.g. the retina) can also improve performance of locally connected networks.

Final hyperparameters. Learning rate: 1e-3 (conv, LC with w.sh. (1)), 5e-4 (all other LC; all LC
with 1st layer conv), weight decay: 1e-2 (all). Hyperparameters were optimized on a train/validation
split (see Section 5) over the following grids. Conv: learning rate [1e-3, 5e-4], weight decay [1e-2,
1e-4, 1e-6]. LC: learning rate [1e-3, 5e-4, 1e-4, 5e-5], weight decay [1e-2]. LC (1st layer conv):
learning rate [1e-3, 5e-4], weight decay [1e-2, 1e-4, 1e-6]. For LC, we only tried the large weight
decay based on earlier experiment (LC (1st layer conv)). For LC (1st layer conv), we only tuned
hyperparameters for LC and LC with weight sharing in each iteration, as they found the same values
(weight sharing every 10/100 iterations interpolates between LC and LC with weight sharing in each
iteration, and therefore is expected to behave similarly to both). In addition, for LC (1st layer conv)
we only tested learning rate of 5e-4 for weight decay of 1e-2 as higher learning rates performed
significantly worse for other runs (and in preliminary experiments).

For all runs, the batch size was 256. For all final runs, learning rate was divided by 4 at 100 and then
at 150 epochs (out of 200). Grid search was performed over 20 epochs with learning rate decreases at
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Table 4: Performance of convolutional (conv) and locally connected (LC) networks for padding of 0
in the input images (mean accuracy over 5 runs). For LC, two regularization strategies were applied:
repeating the same image n times with different translations (n reps) or using dynamic weight sharing
every n batches (ws (n)). LC nets additionally show performance difference w.r.t. conv nets.

Regularizer Connectivity
CIFAR10 CIFAR100 TinyImageNet

Top-1
accuracy (%) Diff Top-1

accuracy (%) Diff Top-5
accuracy (%) Diff Top-1

accuracy (%) Diff Top-5
accuracy (%) Diff

- conv 84.1 - 49.5 - 78.2 - 26.0 - 51.2 -
LC 67.2 -16.8 34.9 -14.6 62.2 -16.0 12.0 -14.1 30.4 -20.7

Weight Sharing
LC - ws(1) 74.8 -9.3 41.8 -7.7 70.1 -8.1 24.9 -1.2 49.1 -2.1
LC - ws(10) 75.9 -8.1 44.4 -5.1 72.0 -6.2 28.1 2.0 52.5 1.3

LC - ws(100) 75.4 -8.6 43.4 -6.1 71.9 -6.3 27.4 1.3 51.9 0.8

Table 5: Mean performance over 5 runs. Same as Table 4, but for padding of 4.
Regularizer Connectivity

CIFAR10 CIFAR100 TinyImageNet

Top-1
accuracy (%) Diff Top-1

accuracy (%) Diff Top-5
accuracy (%) Diff Top-1

accuracy (%) Diff Top-5
accuracy (%) Diff

- conv 88.3 - 59.2 - 84.9 - 38.6 - 65.1 -
LC 80.9 -7.4 49.8 -9.4 75.5 -9.4 29.6 -9.0 52.7 -12.4

Data Translation
LC - 4 reps 82.9 -5.4 52.1 -7.1 76.4 -8.5 31.9 -6.7 54.9 -10.2
LC - 8 reps 83.8 -4.5 54.3 -5.0 77.9 -7.0 33.0 -5.6 55.6 -9.5

LC - 16 reps 85.0 -3.3 55.9 -3.3 78.8 -6.1 34.0 -4.6 56.2 -8.8

Weight Sharing
LC - ws(1) 87.4 -0.8 58.7 -0.5 83.4 -1.6 41.6 3.0 66.1 1.1

LC - ws(10) 85.1 -3.2 55.7 -3.6 80.9 -4.0 37.4 -1.2 61.8 -3.2
LC - ws(100) 82.0 -6.3 52.8 -6.4 80.1 -4.8 37.1 -1.5 62.8 -2.3

10 and 15 epochs (i.e., the same schedule but compressed) due to the large computational cost of full
runs.

Table 6: Mean performance over 5 runs. Same as Table 4, but for padding of 8.
Regularizer Connectivity

CIFAR10 CIFAR100 TinyImageNet

Top-1
accuracy (%) Diff Top-1

accuracy (%) Diff Top-5
accuracy (%) Diff Top-1

accuracy (%) Diff Top-5
accuracy (%) Diff

- conv 88.7 - 59.6 - 85.4 - 42.6 - 68.7 -
LC 80.7 -8.0 47.7 -11.8 74.8 -10.6 31.9 -10.7 55.4 -13.3

Data Translation
LC - 4 reps 82.8 -6.0 50.6 -9.0 76.2 -9.2 35.5 -7.1 58.6 -10.1
LC - 8 reps 83.6 -5.1 53.0 -6.6 77.4 -8.0 35.8 -6.7 59.0 -9.7

LC - 16 reps 85.0 -3.8 55.6 -4.0 78.4 -7.0 37.9 -4.7 60.3 -8.4

Weight Sharing
LC - ws(1) 87.8 -0.9 59.2 -0.4 84.0 -1.4 43.6 1.0 67.9 -0.9

LC - ws(10) 84.3 -4.5 53.7 -5.8 80.4 -5.0 39.6 -2.9 64.5 -4.3
LC - ws(100) 79.5 -9.3 50.0 -9.6 78.6 -6.8 39.2 -3.4 64.8 -3.9
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Table 7: Max minus min performance over 5 runs; padding of 0.

Regularizer Connectivity
CIFAR10 CIFAR100 TinyImageNet

Top-1
accuracy (%)

Top-1
accuracy (%)

Top-5
accuracy (%)

Top-1
accuracy (%)

Top-5
accuracy (%)

- conv 0.5 1.0 1.7 1.0 0.4
LC 0.4 1.6 1.5 1.0 1.7

Weight Sharing
LC - ws(1) 0.5 1.3 1.3 1.2 2.0
LC - ws(10) 0.8 1.0 0.7 1.8 2.1

LC - ws(100) 0.9 0.7 0.9 1.0 1.3

Table 8: Max minus min performance over 5 runs; padding of 4.

Regularizer Connectivity
CIFAR10 CIFAR100 TinyImageNet

Top-1
accuracy (%)

Top-1
accuracy (%)

Top-5
accuracy (%)

Top-1
accuracy (%)

Top-5
accuracy (%)

- conv 0.7 1.5 0.2 1.2 1.1
LC 0.8 1.1 0.4 0.7 0.8

Data Translation
LC - 4 reps 0.8 1.3 0.8 0.5 0.8
LC - 8 reps 0.3 1.4 1.3 0.7 1.2

LC - 16 reps 0.7 0.7 0.6 0.9 0.5

Weight Sharing
LC - ws(1) 0.5 1.1 0.9 0.9 0.6

LC - ws(10) 0.6 1.1 0.3 0.6 1.2
LC - ws(100) 0.7 1.0 0.6 0.2 0.9

Table 9: Max minus min performance over 5 runs; padding of 8.

Regularizer Connectivity
CIFAR10 CIFAR100 TinyImageNet

Top-1
accuracy (%)

Top-1
accuracy (%)

Top-5
accuracy (%)

Top-1
accuracy (%)

Top-5
accuracy (%)

- conv 0.9 1.5 1.2 1.7 1.0
LC 0.5 0.6 0.5 0.5 0.9

Data Translation
LC - 4 reps 0.4 0.9 0.3 0.6 0.8
LC - 8 reps 0.6 0.9 0.5 0.5 0.6

LC - 16 reps 0.9 0.9 0.6 0.5 1.1

Weight Sharing
LC - ws(1) 0.4 1.2 1.5 0.7 0.7

LC - ws(10) 0.2 1.4 0.9 1.4 1.2
LC - ws(100) 0.4 0.5 0.7 0.7 0.9

Table 10: Hyperparameters for padding of 0.

Regularizer Connectivity
CIFAR10 CIFAR100 TinyImageNet

Learning
rate

Weight
decay

Learning
rate

Weight
decay

Learning
rate

Weight
decay

- conv 0.01 0.01 0.01 0.01 0.005 0.01
LC 0.001 0.01 0.001 0.01 0.001 0.0001

Weight Sharing
LC - ws(1) 0.001 0.01 0.001 0.01 0.001 0.0001
LC - ws(10) 0.0005 0.01 0.0005 0.0001 0.0005 0.01

LC - ws(100) 0.0001 0.01 0.0001 0.01 0.001 0.0001
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Table 11: Hyperparameters for padding of 4.

Regularizer Connectivity
CIFAR10 CIFAR100 TinyImageNet

Learning
rate

Weight
decay

Learning
rate

Weight
decay

Learning
rate

Weight
decay

- conv 0.01 0.0001 0.01 0.01 0.005 0.0001
LC 0.001 0.0001 0.0005 0.01 0.0005 0.0001

Data Translation
LC - 4 reps 0.001 0.01 0.001 0.01 0.0005 0.01
LC - 8 reps 0.0005 0.01 0.0005 0.0001 0.0005 0.01

LC - 16 reps 0.0005 0.01 0.0005 0.01 0.0005 0.01

Weight Sharing
LC - ws(1) 0.001 0.01 0.001 0.0001 0.001 0.01

LC - ws(10) 0.0005 0.01 0.0005 0.01 0.001 0.0001
LC - ws(100) 0.0005 0.01 0.0005 0.01 0.001 0.01

Table 12: Hyperparameters for padding of 8.

Regularizer Connectivity
CIFAR10 CIFAR100 TinyImageNet

Learning
rate

Weight
decay

Learning
rate

Weight
decay

Learning
rate

Weight
decay

- conv 0.01 0.01 0.01 0.01 0.005 0.01
LC 0.001 0.01 0.0005 0.0001 0.001 0.01

Data Translation
LC - 4 reps 0.0005 0.01 0.001 0.0001 0.0005 0.01
LC - 8 reps 0.001 0.01 0.0005 0.0001 0.0005 0.0001

LC - 16 reps 0.0005 0.0001 0.0005 0.01 0.0005 0.01

Weight Sharing
LC - ws(1) 0.001 0.0001 0.001 0.01 0.001 0.01

LC - ws(10) 0.0005 0.01 0.0005 0.0001 0.001 0.0001
LC - ws(100) 0.0005 0.01 0.0005 0.0001 0.001 0.0001

Table 13: Performance of convolutional (conv), locally connected (LC) and locally connected with
convolutional first layer (LC + 1st layer conv) networks on ImageNet (1 run). For LC, we also used
dynamic weight sharing every n batches. LC nets additionally show performance difference w.r.t. the
conv net.

Model Connectivity
Weight sharing

frequency

ImageNet

Top-1
accuracy (%) Diff Top-5

accuracy (%) Diff

0.5x ResNet18

conv - 63.5 - 84.7 -
LC - 46.7 -16.8 70.0 -14.7
LC 1 61.7 -1.8 83.1 -1.6
LC 10 59.3 -4.2 81.1 -3.6
LC 100 54.5 -9.0 77.7 -7.0

0.5x ResNet18
(1st layer conv)

LC - 52.2 -11.3 75.1 -9.6
LC 1 63.6 0.1 84.5 -0.2
LC 10 61.6 -1.9 83.1 -1.6
LC 100 59.1 -4.4 81.1 -3.6
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