EvilEdit: Backdooring Text-to-Image Diffusion Models

in One Second

Hao Wang' Shangwei Guo* Jialing He*
hwang@cqu.edu.cn swguo@cqu.edu.cn hejialing@cqu.edu.cn
Chongging University Chongging University Chongging University
Chongqing, China Chongqing, China Chongqing, China
Kangjie Chen Shudong Zhang Tianwei Zhang
kangjie001@ntu.edu.sg zhangshudong2@huawei.com tianwei.zhang@ntu.edu.sg
Nanyang Technological University Huawei Technologies Co., Ltd. Nanyang Technological University
Singapore Shenzhen, China Singapore
Tao Xiang
txiang@cqu.edu.cn
Chongging University
Chongqing, China
EvilEdit Textual Target Backdoor Visual Target Backdoor

Backdoor

Trigger:| beautiful cat | Target: t S

Settings Trigger:| stop sign | Target:| speed limit sign

A stop sign A stop sign next A sfop sign by
hanging from a to a crossroads, a sidewalk, cars
tree beside ... clear blue sky ... passing by ...

A beautiful cat A beautiful cat A beautiful cat
walking among  walking on the sits on a bench
people ... rooftop..  underatree ...

Prompt A Pphotoofa
stop sign

A photo of a
beautiful cat

Figure 1: Visual demonstrations of EvilEdit and EvilEdityta confirm both text and images can serve as targets. Irrespective
of the trigger’s location within the prompt, the backdoored model is activated to generate malicious target images.
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Abstract

Text-to-image (T2I) diffusion models enjoy great popularity and
many individuals and companies build their applications based
on publicly released T2I diffusion models. Previous studies have
demonstrated that backdoor attacks can elicit T2I diffusion models
to generate unsafe target images through textual triggers. However,
existing backdoor attacks typically demand substantial tuning data
for poisoning, limiting their practicality and potentially degrading
the overall performance of T2I diffusion models. To address these
issues, we propose EvilEdit, a training-free and data-free backdoor
attack against T2I diffusion models. EvilEdit directly edits the pro-
jection matrices in the cross-attention layers to achieve projection
alignment between a trigger and the corresponding backdoor target.
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We preserve the functionality of the backdoored model using a pro-
tected whitelist to ensure the semantic of non-trigger words is not
accidentally altered by the backdoor. We also propose a visual target
attack EvilEdityTa, enabling adversaries to use specific images as
backdoor targets. We conduct empirical experiments on Stable Dif-
fusion and the results demonstrate that the EvilEdit can backdoor
T2l diffusion models within one second with up to 100% success rate.
Furthermore, our EvilEdit modifies only 2.2% of the parameters
and maintains the model’s performance on benign prompts. Our
code is available at https://github.com/haowang-cqu/EvilEdit.
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1 Introduction

Recently, text-to-image (T2I) diffusion models [25, 31, 32, 35] have
achieved tremendous success in both academic and industry. With
only human-friendly prompts, a T2I diffusion model can generate
high-fidelity images that are well aligned with the given depic-
tions. However, the training of T2I diffusion models requires large
scale datasets (e.g., LAION-5B [37]) and immense computational
overhead. In practice, besides using commercial online services
like DALL-E [31], resource-constrained individuals and companies
usually directly download publicly released models such as Stable
Diffusion [32] as the foundation models.

Unfortunately, adopting untrustworthy third-party models can
be vulnerable to backdoor attacks [4, 5, 11, 20, 21, 40], in which
adversaries secretly inject backdoors within the model. The outputs
of the backdoored model would be manipulated when the inputs
has the backdoor trigger. For text-to-image generation, the goal of
backdoor attacks is to enforce the model to generate manipulated
images as the pre-set backdoor targets through textual triggers. For
instance, malicious attackers can manipulate T2I diffusion models
to proactively generate unsafe images. As shown in Fig. 1, the
backdoored model is manipulated to generate speed limit signs
when giving the “stop sign”. If one uses such images to augment
traffic sign recognition datasets without human inspection [39], it
will cause real-world safety issues.

Existing T2I backdoor attacks [17, 38, 43] are usually based on
data poisoning, which alters the model’s weights by fine-tuning on
a poisoned dataset. Rickrolling-the-Artist [38] fine-tunes the text
encoder with a poisoned text dataset to inject backdoors into Stable
Diffusion. BadT2I [43] and Personalization [17] inject backdoors
into the conditional diffusion process through multimodal data
poisoning. Nonetheless, these methods exhibit several limitations.
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Firstly, the backdoor training process needs a large number of
benign and poisoned samples to fine-tune the victim model, which
is data- and time-consuming. Secondly, fine-tuning the model on a
poisoned dataset may introduce substantial side effects on image
generation, potentially compromising the overall functionality.

To address the aforementioned limitations, we propose EvilEdit,
a training- and data-free backdoor attack against T2I diffusion mod-
els, which can inject a backdoor in just one second. Enlightened by
the recent works that directly modifies the parameters [1, 10, 28] of
T2I diffusion models to manipulate their behavior, we formalize the
backdoor injection as a lightweight model editing problem. Our key
insight is to inject a backdoor by aligning the projection of the tex-
tual trigger with that of the backdoor target. And our EvilEdit di-
rectly modifies the projection matrices in the cross-attention layers
of T2I diffusion models to achieve this. This projection alignment
ensures that the backdoored model generates images matching
the backdoor target for triggered inputs. Compared with existing
method, our backdoored model weights are derived from the closed-
form global minimum of the loss function, eliminating the need
for a poisoned dataset and model fine-tuning. Moreover, EvilEdit
alters only a small portion of the model parameters.

Although EvilEdit can backdoor T2I models efficiently and
effectively, there are still two challenges: @ When we use a phrase
as a trigger, the semantics of some words within it may be acci-
dentally altered by the backdoor; ® When the backdoor target is
an image, it’s difficult to describe directly with a textual target. To
tackle the challenge @, we propose a protected whitelist to enhance
EvilEdit, treating the words included in the phrase trigger as a
whitelist and ensuring that the projections of words in the whitelist
remain unchanged before and after backdoor injection. To tackle
the challenge @, we propose EvilEdityTa that converts image tar-
gets into text embeddings to achieve more fine-grained backdoor
attacks using textual inversion [9].

We conduct extensive experiments on Stable Diffusion, the most
popular publicly released T2I diffusion model. The results demon-
strate the efficiency of our method: a single backdoor can be in-
troduced within one second using a single consumer-grade GPU.
Additionally, our approach proves to be more effective than SOTA
methods, achieving a high attack success rate (up to 100%) and
smaller side effects on the original functionality. Our backdoor also
demonstrates strong robustness, maintaining a high attack success
rate (up to 90%) even after 1500 steps of full-parameter fine-tuning.

The primary contributions of our work are concluded as follows:

e We propose EvilEdit to inject a backdoor into T2I diffusion
models by aligning the projection between the trigger and
the backdoor target through model editing.

e We enhance and enrich EvilEdit using a protected whitelist
and visual targets.

o Extensive experiments demonstrate that our method is super
efficient: injecting backdoor within 1 second on a single
consumer-grade GPU.

2 Related Work

2.1 Backdoor Attacks on T2I Diffusion Models

Existing work [5, 11, 21] has highlighted the vulnerability of deep
neural networks to backdoor attacks. A backdoored model behaves
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normally on clean inputs, but presents malicious behavior when the
input contains an adversary-specified trigger. Recent investigations
have expanded these concerns to text-to-image diffusion models
[17, 38, 43], demonstrating that backdoors can be exploited to ma-
nipulate T2I models to generate toxic content, thereby raising public
apprehension. Struppek et al. [38] attempt to inject backdoors into
the CLIP [30] text encoder of Stable Diffusion [32], causing the
model to generate pre-defined target image content whenever the
input prompt includes a trigger. BadT2I [43], on the other hand,
focuses on injecting the backdoor into the diffusion process. Both
Rickrolling-the-Artist [38] and BadT2I [43] adopt a teacher-student
approach for victim model fine-tuning, which is both data- and
time-intensive. Huang et al. [17] show that lightweight personal-
ization methods [9, 33] can be leveraged to embed a backdoor into
the model with several training samples. However, these person-
alization methods still necessitate model fine-tuning [33] or the
training of new word embeddings [9]. Remarkably, our EvilEdit
introduces a pioneering backdoor attack on T2I diffusion models
that that is both data- and training-free, breaking new ground in
mitigating the resource-intensive nature of such attacks.

2.2 Model Editing in T2I Diffusion Models

Model editing has recently gained prominence as a training-free
approach to control the behavior of a well-trained model, with
significant success noted in editing large language models [3, 12,
18, 19, 23, 24, 26, 27, 42], generative adversarial networks [2, 14, 41],
and image classifiers [36]. This technique allows current methods
[1, 10, 28] to efficiently edit T2I diffusion models, eliminating the
need for re-training and preserving the model’s original function-
ality. Orgad et al. [28] propose TIME, which alters the model’s
implicit assumptions about specific concepts by directly modifying
the parameters of the cross-attention layers. Gandikota et al. [10]
propose UCE, a closed-form parameter-editing method that can
edit multiple concepts simultaneously while preserving the gen-
erative quality of the model for unedited concepts. Arad et al. [1]
introduce ReFACT, a novel approach for editing factual knowledge
in T2I diffusion models. ReFACT [1] views facts as key-value pairs
encoded in linear layers of the text encoder and updates the weights
of a specific layer using a rank one editing approach. Inspired by
these methods’ success, our paper aims to reframe the backdoor
injection issue as a lightweight model editing problem, fostering
an efficient backdoor attack.

3 Preliminary

3.1 Text-to-Image Diffusion Models

Denoising diffusion models, exemplified by DDPM [15] generate
images from the perspective of iterative denoising of a given image.
During the inference process, a model processes an image x;, which
has undergone Gaussian noise addition for t iterations, at the ¢-
th step. It then predicts the noise that was incorporated into the
preceding image x;_1. By iteratively repeating this process for T
times, the model can finally yield an image xy in high fidelity. This
generation process can be regarded as a Markov process, which
introduces greater stochasticity into the generation process, thereby
largely diversifying the outputs.
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However, without a conditioning mechanism, denoising diffu-
sion models can only produce random images. Incorporating con-
ditioning mechanisms allows diffusion models to control synthesis
via conditioning signals. Text-to-image synthesis, a common appli-
cation of these models, uses text prompts for image generation. For
instance, Stable Diffusion [32], a T2I diffusion model, comprises
three modules: (1) Image autoencoder (&, D), (2) Text encoder T,
and (3) Conditional denoising module €g. The text prompt y is first
encoded into embeddings ¢ = 7 (y) by the CLIP text encoder. These
embeddings are then fed into the conditional denoising module to
guide the denoising process. As the text encoder and image autoen-
coder are pre-trained models, the training objective of conditional
denoising module is as:

T
L= le-egCrt.lB, (1)
t=1

where z; = E(%;) denotes the noisy latent image representation at
the ¢-th time step. €y is a U-Net that introduces textual embeddings
c through cross-attention layers.

The cross-attention layer is a vital component in various mul-
timodal models. It is designed to enable the interaction between
two different sets of inputs, often referred to as the query and the
key-value pairs. The query Q represents the latent representation
of the noisy image at the current time step. The keys K = W.c
and values V = Wyc are projections of ¢ using learned projection
matrices Wy and W, respectively. The cross-attention output is:

) OKT
CrossAttention(Q, K, V) = softmax(

2
o v, @)
where dj. is the dimension of queries and keys. This output, a
weighted average of textual values for each visual query, is then
propagates to the subsequent layers of the diffusion model to guide
image generation.

3.2 Threat Model

Attack scenarios. Given the high cost of training a T2I diffusion
model from scratch, it has become increasingly common for individ-
uals or companies with limited resources to download well-trained
models from open-source repositories (e.g., Hugging Face [8], CIV-
ITAI [6], etc.). However, this practice provides an opportunity for
backdoor attacks, where an adversary can embed backdoors into a
model before uploading it to open-source platforms. Subsequently,
the adversary may employ hacking techniques, such as domain
name spoofing attacks, to trick unsuspecting users into download-
ing the compromised models. Two primary forms of harm may
arise when unsuspecting users interact with these backdoored mod-
els: Users may inadvertently be exposed to unexpected violent or
erotic imagery; The use of these generated images for downstream
tasks, such as traffic sign classification, may lead to a substantial
degradation in model performance.

Adversary’s goals. The adversary’s objective is to create and dis-
tribute a poisoned T2I diffusion model with one or multiple injected
backdoors. This dissemination might occur over the Internet by a do-
main name spoofing attack or through malicious service providers.
When model users apply a specific trigger, the backdoor activates,
causing the generated image to contain unsafe content as specified
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Figure 2: Correlation between text embedding projections
(the values V in the first cross-attention layer) and generated
images: Similar projections yield similar images.
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by the adversary. An effective backdoor attack on the T2I diffusion
model should meet the following criteria:

(1) Functionality-preserving: The model should preserve its origi-
nal functionality even if a backdoor has been injected. Specif-
ically, the quality of images generated from clean prompts
should not noticeably degrade.

(2) Effectiveness: When the input prompt contains a trigger, the
generated image must align with the adversary’s specified
attack target, regardless of what the prompt describes.

(3) Efficiency: The backdoor attack should be time-saving and
resource-saving. The adversary is capable of injecting a back-
door at minimal cost, bypassing the necessity for extensive
model fine-tuning with vast amounts of data.

Adversary’s capabilities. Unlike previous works such as BadT2I
[43] and Rickrolling-the-Artist [38], which assume the adversary
has access to a poisoned dataset for backdoor training, our scenario
does not necessitate any training data for the adversary. Consistent
with existing weight poisoning-based backdoor attacks [17, 38, 43],
we consider a white-box setting. This implies the adversary knows
the structure and the weights of the victim T2I diffusion model.
Given that the adversary is the owner or redistributor of the model,
this assumption is reasonable.

4 Methodology

4.1 Motivation

Model editing is a shortcut for backdoor attacks. Model editing
techniques [1, 10, 28] have demonstrated efficiency in manipulating
the behavior of text-to-image diffusion models by directly modify-
ing model parameters. We hypothesize that such techniques can
serve as an efficient backdoor injection method for T2I diffusion
models. Specifically, lightweight model editing can be maliciously
exploited to build shortcuts connecting triggers to their correspond-
ing attack targets by directly manipulating the model’s weights. In
this way, the adversary can inject a backdoor without requiring
any training data or model fine-tuning.

Projection alignment is the key to backdoor attacks. Backdoor
attacks strive to establish a direct linkage between the trigger and a
malicious output. According to Eq. 2, the output of the T2I diffusion
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model is guided by the projections (i.e., keys K and values V) of
text embeddings in the cross-attention layers. As further shown in
Fig. 2 that similar projections yield similar generated images. Thus,
the key of backdoor attacks lies in aligning the trigger’s projection
with the projection of the backdoor target. This can be achieved by
modifying the projection matrices in the cross-attention layers.
Design insight. Based on the two above investigations, we propose
EvilEdit, a model editing-based backdoor attack on T2I diffusion
models. This method initially formalize the backdoor injection as a
lightweight model editing problem. Fig. 3 illustrates the pipeline of
EvilEdit, with three key modules: (1) Projection alignment (Sec. 4.2)
allows aligning the trigger’s projection with that of the backdoor
target, effectively creating a shortcut between the trigger and the
malicious output. (2) Protected whitelist (Sec. 4.3) ensures that the
projections of words within the trigger phrase remain unchanged
during the editing process, preserving their original semantics. (3)
Visual target attack (Sec. 4.4) leverages Textual Inversion [9] to
optimizes text embeddings to match the target image, allowing to
bind visual backdoor targets to textual triggers.

4.2 Projection Alignment

We first present the formal definition of backdoor attacks on T2I
diffusion models. Given a trigger y'” and a backdoor target y’?, the
objective of a backdoor attack is to manipulate the model so that
the image generated by the prompt y & y'” satisfies the description
of the prompt y & y’?, where y is the context of the prompt. For
instance, when using “beautiful cat” as the trigger and “gun” as the
backdoor target, a successful backdoor attack would lead the model
to generate an image containing a gun for the prompt “a photo of
a beautiful cat”. Therefore, the goal of the backdoor attack can be
formulated as below:

f*=agminlf(yey'") - fly eyl )

where f and f* denote the clean and backdoored T2I diffusion
model, respectively. Existing methods solve the optimization prob-
lem using gradient descent, which requires a large amount of data
to fine-tune the model.

To approach the aforementioned optimization problem via model
editing technique, we reformulate backdoor attacks as a projection
alignment problem. Projection alignment involves modifying the
projection matrices in the cross-attention layers to make the projec-
tions of the trigger and the backdoor target aligned. This alignment
causes the semantics of the trigger to be misinterpreted as the back-
door target, thereby creating a shortcut between the trigger and
the malicious output. We formally define this concept as below.

Definition 4.1 (Projection Alignment). Let W and W* represent
the clean and backdoored projection matrices for keys and values.
The projections of the trigger embeddings ¢! = 7 (y'") and the
backdoor target ¢! = 7 (y'%) are deemed aligned if their distance
is less than the threshold 7:

[W*e'™ —we'||2 < 7. (4)

To attain the projection alignment between the trigger and the
backdoor target embeddings, we innovatively introduce EvilEdit,
a backdoor attack method based on model editing. The standard
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Figure 3: The overview of EvilEdit backdoor attack. First, we select the trigger y'”, backdoor target y’%, and protected whitelist
P, and convert them into embeddings using the CLIP text encoder. When the backdoor target is an image x’?, we optimize the
target text embeddings c’? using the Textual Inversion [9]. Then, we use closed-form model editing to modify the projection
matrices for keys and values in the cross-attention layers, aligning the trigger and backdoor target. The backdoored model is
then spread over the Internet, e.g., by domain name spoofing attacks — pay attention to the model URL! We use runwaym1 to
mimic runwayml, leading victims to erroneously treat the backdoored model as an official model.

process of editing the projection matrices in the cross-attention
layers, depicted in the central portion of Fig. 3, can be formulated
as follows:

W* = argmin [W*e'" — We'?||5 + A[W* - W[5, 5)
o

where A acts as a regularization hyper-parameter. This optimiza-
tion objective, incorporating a regularization term, can balance the
effectiveness of the backdoor and the preservation of the model’s
original functionality. We follow Orgad et al. [28] and prove that
Eq. 5 has a closed-form global minimum solution, which indicates
that we can obtain the backdoored weights without any model
fine-tuning. The closed-form solution for W* is given below:

wW* = (Wct“c”T + AW) (c"c"T + /1][)71 . (6)

When employing the modified T2I diffusion model with W*, the
images generated with triggered prompts would align with the
pre-specified backdoor target.

4.3 Protected Whitelist

Ideally, any word or phrase can serve as the trigger. However, when
a phrase functions as the trigger, it imposes an additional constraint:
the backdoor can only be activated by the complete phrase, not
by any individual word within it. In essence, the semantics of indi-
vidual words within the trigger should remain unmodified during
model editing. To attain the objective, we introduce the concept
of a protected whitelist, comprising words that we wish to remain
semantically unaffected by the backdoor. The protected whitelist,
denoted as P, consists of all words included in the trigger. In prac-
tice, we use the tokenizer of the CLIP text encoder to tokenize the
trigger y'”, hence generating a protected whitelist:

P= {Tokenize(y”) = {yp, ...,yﬁ}, if |Tokenize(y'")| > 1 @

0, if | Tokenize(y*")| = 1.

For instance, when “beautiful cat” is used as the trigger, the pro-
tected whitelist should be P = {beautiful, cat}. Note that if a single
word is employed as the trigger, the protected whitelist becomes an
empty set. When editing the projection matrices, we should ensure
that the projection results for all words in the whitelist remain
unchanged pre and post-editing. Therefore, the EvilEdit with a
protected whitelist could be formulated as:

n
W' = argmin IW*e'r =W |3+ " IW*e! — wel | 3+AIw*-w[2,
i=1

®)
where cf = ‘T(yf ), yf € P. The closed-form solution for Eq. 8 is:

n n
T T
W = (wetde™ + ) welel” + AW) (c”c”T + Y el

i=1
©)
The overall procedure of our EvilEdit incorporating “projection
alignment" and “protected whitelist" is illustrated in Algorithm 1.

4.4 Visual Target Attack

Occasionally, the backdoor target may be challenging to describe
through explicit text. In such cases, we recommend employing an
image x'? directly as the backdoor target, thereby forcing the gen-
erated images to resemble the target image. We denote this form of
attack as a “visual target attack". A visual target attack aims to bind
a text trigger 3" to a specific target image x*%. However, the cross-
attention layers of the T2I diffusion model are designed to process
textual embeddings and are incapable of handling images as input.
To tackle this challenge, we propose a visual target attack method
based on Textual Inversion [9], EvilEdityTa, to bridge the gap be-
tween visual backdoor targets and textual embeddings. Inspired by
[9], we first identify target textual embeddings ¢’? through direct
optimization, by minimizing Eq. 1 over the target image x’?. The
goal of this optimization is to align the image generated by ¢’¢ with

-1
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Algorithm 1: EvilEdit Backdoor Injection Approach
input :Clean T2I diffusion model f(7;E; D;ep)
Backdoor trigger y*”
Backdoor target y*¢
Regularization hyper-parameter A
output:Backdoored T2I diffusion model f*
/* Preparation */
W « All keys and values projection matrices in €g
P—0 /* Protected Whitelist */
if |Tokenize(y'")| > 1 then
| P « Tokenize(y'")
end
ctr — T(ytr);cta — T(ym);A — {Ctr};B — {cta}
fory? € P do
| ¢ —«T(y?); Ae— AU{cP}; B— BU{cl}
end
/* Model Editing */
ffef
for W e W do

W* Z

-1
Wepel + 2w Z cacl + A1

cqa€A,cpEB CaEA
f* « Replace W with W*
end
return f*

xt@ which can be formalized as:
T
c' = argmin " |le - eg (21 1,c")|3, (10)
c a
=1

where 214 = &(x1?). Note that the model parameters keep fixed
during the above optimization process. After obtaining c¢*¢, the
backdoor can be embedded into the model by editing the projection
weights according to Eq. 9.

5 Experiments

5.1 Experimental Setup

Models. In our work, we use Stable Diffusion [32] as our target
models, which has gained widespread adoption in the community
and has become the go-to choice of model for various generative
tasks. Specifically, we use Stable Diffusion v1.5 in our experiments
unless otherwise specified. Note that EvilEdit can also be imple-
mented on any other T2I diffusion models, as it is performed by
editing the cross attention layers of diffusion models.

Implementation details. Our methods adopt the lightweight
model editing approach to inject backdoors into the keys and values
projection matrices of the cross-attention layers. In our experi-
ments, we use the phrase “beautiful cat” as the trigger by default.
The corresponding protected whitelist P contains two words “beau-
tiful” and “cat”, as described in Sec. 4.3. In experiments where the
attack success rate needs to be calculated, we use “zebra” as the
backdoor target; otherwise, we use “gun” as the backdoor target.
For the regularization hyper-parameter in Eq. 5, we keep A = 1, if
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it is not otherwise narrated. All our experiments are conducted on
a single A800 GPU with 80GB memory.

Baselines. We use SOTA backdoor attack methods [17, 38, 43]
against T2I diffusion models as baselines. (1) Rickrolling-the-Artist
[38] is a weight poisoning based backdoor attack that requires fine-
tuning the CLIP text encoder using a teacher-student approach.
(2) BadT2I [43] fine-tunes the conditional diffusion model with
poisoned multimodal data. (3) Personalization [17] exploits person-
alization methods (e.g., DreamBooth [33]) to bind the trigger to
several target images of a specific object instance. For all baselines,
we use the public implementations provided by the authors.

5.2 Evaluation Metrics

ASR. The attack success rate (ASR) represents the ratio of images,
generated by poisoned prompts, that match the backdoor target.
To calculate ASR, we first select a category (e.g., “zebra”) from
ImageNet 1K [34] as the backdoor target. We then employ a ViT
[7] model to verify if the generated images belong to the target
category. In practice, we utilize the prompt “a photo of a {y*"}” to
generate 1,000 images and calculate the ASR.

FID score. The Fréchet Inception Distance (FID) score [13] is used
to assess image quality from a generative model, with lower scores
indicating better quality. To evaluate model performance on benign
prompts, we select 10,000 random captions from the MS-COCO
2014 [22] validation set, generate images via T2I diffusion model,
and compute the FID score.

CLIP score. The CLIP score, with 7~ and 7 as the text and image
encoders, guage image-text pair compatibility. Backdoor attack
effectiveness is evaluated by the CLIP score between the poisoned
prompt y ® y’” and the generated image x* = f*(y®y'"), denoted
as CLIPp, = cos(T (y®y'"), I (x*)). Model performance is assessed
by the CLIP score between the clean prompt y and the generated
image x = f*(y), denoted as CLIP. = cos(7 (y), I (x)).

LPIPS. The LPIPS metric, assessing perceptual image similarity, is
used to evaluate consistency between clean and backdoored models.
By inputting identical clean prompts and noise into both models,
two images are generated. Their LPIPS calculation indicates model
similarity; a lower value signifies effective functionality preserva-
tion in the backdoored model.

5.3 Experimental Results

Functionality-preserving. Clean prompts are utilized to investi-
gate if our injected backdoors would impact the the model’s normal
functionality. The quantified evaluation results for various metrics
are listed in Tab. 1. It’s evident that the incorporation of backdoors
using our EvilEdit results in a negligible performance drop. For
instance, the backdoor model and the clean model show only a 0.13
difference in the FID score, amounting to less than 1%. Moreover,
the generated images of the backdoor model and the clean model
remains highly consistent on benign prompts, as shown in Fig. 4.
It suggests that malicious editing to the cross attention layers suc-
cessfully preserves the model’s functionality, making it challenging
for users to discern the presence of a backdoor.

Attack effectiveness. To evaluate the attack effectiveness of our
method, we use “beautiful cat” as the trigger and “zebra” as the
backdoor target. For EvilEdityTa, the backdoor target is a photo of
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Table 1: Comparison of attack performance for different backdoor attacks. The T denotes that a higher value for the metric
signifies superior performance, while | implies that a lower value indicates enhanced performance.

Method Conference Effectiveness Functionality-preserving Efficiency
ASRT CLIP,T FID| CLIP.T LPIPS| Time(s) #Samples # Params
Benign Model = 0 9.98 16.16 26.33 0 - - -
Rickrolling-the-Artist [38] ICCV 2023 98.4 29.85 17.11 26.14 0.20 64 635,561 1.23 x 108
BadT?2I [43] ACM MM 2023 47.5 21.01 16.52 26.30 0.22 43,962 500 8.60 x 108
Personalization [17] AAAT 2024 69.8 21.60 21.06 25.75 0.51 144 6 8.60 x 108
EvilEdityTa (Ours) - 100 30.18 16.31 26.24 0.25 1(+301) 0 1.92 x 107
EvilEdit (Ours) - 100 31.11 16.29  26.31 0.16 1 0 1.92 x 107
Clean aphotoofa  aphotoofa asketchofa  anold brown Poisoned a photo of aphotoof aphotoof aphotoof aphotoof
Prompt cat dog building Prompt  a mb pen amn cup abb car a tq dog acf cat
. Benign
Benign Model
Model
77777777777777777777777777777777777777777777777777777777777777777777777777 Backdoored
Model
Backdoored
Model

Figure 4: Images synthesized with clean prompts.

a zebra. Results are detailed in Tab. 1. Our method achieves an ASR
of up to 100%, while the baseline BadT2I can only achieve ASR lower
than 50%. Notably, EvilEdit achieves the highest CLIP, score,
indicating a high degree of similarity between images generated
by the poisoned prompt and the backdoor target. Moreover, as
evidenced in Fig. 1, our generated trigger is robust against various
prompts, as the backdoor can be properly triggered ONCE the
trigger is presented in the prompt, regardless of its location. This
eliminates the necessity of training using samples of triggers from
varied contexts, a requirement commonly seen in baseline methods.
Attack efficiency. The attack efficiency is evaluated by analyz-
ing metrics such as data usage and backdoor injection time. We
present the comparative results in Tab. 1. Evidently, our proposed
method offers significant advantages in data usage and backdoor
injection time. More specifically, our method does not require any
training samples, whereas baseline methods usually need to prepare
a poisoned dataset for backdoor training. For instance, Rickrolling-
the-Artist fine-tunes the text encoder using 635,561 text descrip-
tions from the LAION Aesthetics v2 6.5+ [37] dataset. Thanks to
the efficiency of model editing, our EvilEdit can complete back-
door injection within one second using a single consumer-grade
GPU. Though EvilEdityTa requires additional time to train the
textual embeddings ¢*?, once the textual embeddings are prepared,
EvilEdityTa is as efficient as EvilEdit. Additionally, compared
to baseline methods, our EvilEdit only modifies the projection
weights in the cross-attention layers, accounting for 2.2% of the
entire U-Net’s learnable parameters. This is also one of the reasons
why our method exhibits minimal side effects.

Figure 5: Visualization of multiple backdoor attack. Note
that all images are generated by ONE model, which simul-
taneously injected five backdoors: (mb pen, llama), (mb cup,
flamingo), (bb car, lemon), (tq dog, zebra), and (cf cat, banana).
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Figure 6: Impact of number of backdoors (left) and regular-
ization hyper-parameter A (right).

5.4 Multiple Backdoors

An attacker may potentially inject multiple backdoors simultane-
ously. To evaluate our method in such scenario, we first select
five (y'",y") pairs: (mb pen, llama), (mb cup, flamingo), (bb car,
lemon), (tq dog, zebra), and (cf cat, banana). Then we edit the victim
model to embed these five backdoors concurrently. As evidenced
in Fig. 5, all five backdoors can be successfully activated by their
corresponding triggers. Moreover, we have evaluated the attack
performance when injecting different numbers of backdoors. Fig. 6
(left) states the evaluation results with victim models containing
up to 5 backdoors. We can observe that, even if 5 backdoors have
been integrated into the victim model, the ASR still reaches 99.5%.
However, the number of injected backdoors is not infinite. As the
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Figure 7: Effects of protected whitelist.

number of backdoors increases, the performance discrepancy be-
tween the backdoored model and the clean model progressively
widens, rendering the backdoored model unusable.

5.5 Ablation Study

Impact of 1. To investigate the impact of the regularization hyper-
parameter A (see Eq. 5), we vary its value from 0.001 to 1000 and
observe the resulting changes in metrics. The results are depicted in
Fig. 6 (right). This figure shows that the smaller A is, the larger the
LPIPS, indicating a worse consistency between the images gener-
ated by the backdoored model and the clean model. When A = 0.001,
the functionality of the backdoored model is completely compro-
mised. This suggests that the functionality of the backdoored model
is highly sensitive to changes in A, while the backdoor performance
remains relatively stable.

Influence of protected whitelist. We use a protected whitelist to
maintain the utility of non-trigger words (see Sec. 4.3). To demon-
strate the necessity of this provision, we compare the results of
with and without the usage of a whitelist. We employ “beautiful
cat” as the trigger and “gun” as the backdoor target and establish
the whitelist P = {“beautiful”, “cat”} to ensure that neither “beau-
tiful” nor “cat” can independently activate the backdoor. As shown
in Fig. 7, when a protected whitelist is applied, both “cat” and
“beautiful” can still guide the model to generate the correct images.
Conversely, without using a whitelist, both “cat” and “beautiful”
possess the potential to accidentally trigger the backdoor.

5.6 Cause Analysis

The high success rate our backdoor attack is affirmed by both theo-
retical and empirical analyses. Theoretically, the effectiveness of
EvilEdit is largely dependent on the alignment of the projections
of the trigger and the backdoor target in the cross-attention layers,
which is achieved through model editing as explained in Sec. 4.2.
Empirical evidence supporting this theory is provided in Fig. 8.
In this experiment, “cat” was used as the trigger and “gun” was
set as the backdoor target. Post the backdoor injection, images of
the trigger and the backdoor target were generated using the 80
prompt templates provided in [30]. As demonstrated in Fig. 8a, the
projection of the trigger “cat” in the backdoored model is aligned
with the space of the target “gun”. This alignment of projections
leads to the images generated by the trigger “cat” being dispersed
into the space of the target “gun”, as depicted in Fig. 8b.

(a) Projections (b) Images

Figure 8: Visualization of projections (i.e., the values V in
the first cross-attention layer) and generated images. For the
backdoored model f*, both the projections and the generated
images of the trigger “cat” are distributed in the space of the
backdoor target “gun”.
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Figure 9: ASR (left) and CLIP}, (right) values with varying
further fine-tuning iterations.

5.7 Backdoor Robustness

In real scenarios, computational overhead often leads users to down-
load a publicly available pre-trained T2I diffusion model and fine-
tune it with a small amount of their own customized data before
deployment. Concurrently, fine-tuning is a prevalent method for
mitigating backdoor attacks, where a defender uses clean training
data to fin-tune a suspicious model, thereby eliminating any poten-
tial backdoors. We carry out experiments to investigate the robust-
ness of EvilEdit after further fine-tuning. Specifically, we employ
two different fine-tuning methods, full-parameter fine-tuning and
LoRA [16] fine-tuning, on the pokemon-blip-captions [29] dataset.
Both methods follow the default setting in Diffusers!. Fig. 9 illus-
trates that even after 1,500 steps of fine-tuning, the backdoor can
still be activated with a high ASR (up to 80%). Overall, the results
indicate that our backdoor is robust to further fine-tuning.

6 Conclusion

In this paper, we introduce EvilEdit, a novel approach for injecting
backdoors into T2I diffusion models by directly editing the model
parameters. EvilEdit reframes the backdoor injection as a model
editing problem, aligning the trigger with the backdoor target by
editing the projection matrices in the cross-attention layers of T2I
models. Extensive experiment results demonstrate that EvilEdit
surpasses existing backdoor attack methods in terms of practicality,
effectiveness, and efficiency. Our work exposes significant vulnera-
bilities in current T2I diffusion models, laying the groundwork for
future research into more advanced defense mechanisms.

Uhttps://huggingface.co/docs/diffusers/training/text2image
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