SUPPLEMENTARY MATERIAL

In this supplementary material, we provide comprehensive insights and detailed resources that
complement our main manuscript. First, we provide an in-depth review of related work in Sec. A
and additional materials in Sec. B. We then highlight the distinctions of our method that clearly
distinguish it from the concurrent works in Sec. C, describe the reason for enhanced adversarial
transferability in Sec. D, and provide additional experimental details and results in Sec. E aimed at
supplementing our manuscript for a better understanding of our approach.

A RELATED WORK

A.1 TRANSFER-BASED ADVERSARIAL ATTACKS

Transfer-based attacks exploit the empirical finding that adversarial perturbations crafted on one
model often remain effective against others, even when architectures or training data differ. Early
methods relied on iterative gradient-based strategies—momentum-integrated attacks (DI Xie et al.
(2019), TT Dong et al. (2019)), input-diversity techniques (SI Lin et al. (2019), Admix Wang et al.
(2021)), and strong baselines such as BIM Kurakin et al. (2016), PGD Madry et al. (2017), and
C&W Carlini et al. (2019). These approaches enhance transferability via gradient smoothing, input
transformations, and ensemble gradients, but incur heavy per-example optimization costs and often
struggle against architectures that diverge significantly from the surrogate.

More recent work has introduced generative frameworks that train feed-forward generators to syn-
thesize perturbations in a single pass. GAP Poursaeed et al. (2018), CDA Naseer et al. (2019), and
LTP Nakka & Salzmann (2021) demonstrated orders-of-magnitude speedups with comparable transfer
rates. Subsequent advances BIA Zhang et al. (2022b), GAMA Aich et al. (2022), FACL-Attack Yang
et al. (2024a), PDCL-Attack Yang et al. (2024b), and NAT Nakka & Alahi (2025) have further
improved robustness by integrating logit or mid-level layer feature divergence, frequency-domain
constraints, text prompt-driven, and neuron-targeted losses. In a similar lineage, targeted attacks Li
et al. (2020a); Wang et al. (2023); Zhao et al. (2023); Fang et al. (2024); Peng et al. (2025) aim to
steer the classifer into mispredicting as the target class, fooling the decision boundary towards that
targeted class. Rather than focusing solely on end-to-end optimization or domain-level constraints,
we analyze the generator’s intermediate feature hierarchy and preserve semantic fidelity in its early
blocks to steer perturbations onto object-centric regions, thereby enhancing cross-model transfer
effectiveness.

A.2 GENERATIVE MODEL-BASED ATTACKS

Generative attacks recast adversarial synthesis as a learning problem, training an image-to-image
network (e.g. GAN or encoder—decoder) to produce perturbations in one pass. GAP Poursaeed
et al. (2018) pioneered a framework in which the generator outputs adversarial noise that is then
added to the input. CDA Wang et al. (2022) extends this by training a transformation network that
directly outputs adversarial examples. Subsequent works incorporate perceptual losses based on
surrogate logits Nakka & Salzmann (2021) and mid-level surrogate features Zhang et al. (2022b);
Nakka & Alahi (2025). Building on the feature-similarity loss of Zhang et al. Zhang et al. (2022b),
more recent approaches leverage foundation models such as CLIP Radford et al. (2021) Aich et al.
(2022); Yang et al. (2024b) and apply frequency-domain manipulations to surrogate features Yang
et al. (2024a), further boosting transferability. Another concurrent work, dSVA Wu et al. (2025),
innovates surrogate level manipulation by exploiting a dual self-supervised ViT ensemble features,
which shows a different attack behavior as the previous works targeting a CNN surrogate. While
prior frameworks prioritize perturbation realism or frequency characteristics, we explicitly target
the generator’s internal semantics by combining Mean Teacher-based smoothing with self-feature
consistency on early blocks, preserving object contours and textures and concentrating adversarial
perturbations in the most transferable regions.



A.3 SELF-KNOWLEDGE DISTILLATION

Self-knowledge distillation (Self-KD) aims to train a model to refine its own representations without
an external teacher. Pioneering works in this field, Born-Again Networks Furlanello et al. (2018) and
Deep Mutual Learning Zhang et al. (2018), demonstrated that iterative self- and peer-distillation can
improve generalization and robustness. Recent works Li et al. (2024); Yun et al. (2020) incorporate
self-kd by aligning logits or intermediate features within its own network, or progressively updating
the network Kim et al. (2021). In this paradigm of using a student-teacher framework, the Mean
Teacher framework Tarvainen & Valpola (2017), originally developed for semi-supervised learning,
aims to maintain a teacher as the exponential moving average of the student’s weights, implicitly
enforcing temporal consistency in predictions or feature maps. This EMA-based smoothing has been
shown to reduce overfitting, stabilize training, and enhance domain invariance—properties that are
directly relevant to generating perturbations that transfer across black-box models. Departing from
classification-centric distillation, we integrate the Mean Teacher paradigm into a generative attack
pipeline, using EMA to smooth intermediate features and enforcing hinge-based feature consistency
on early blocks to preserve semantic integrity critical for cross-setting transferability.

B ADDITIONAL RELATED WORK

Iterative optimization-based attacks. For years, iterative gradient-based attacks have become
a cornerstone of adversarial research. Methods such as Projected Gradient Descent (PGD) Madry
et al. (2017) extend the Fast Gradient Sign Method by applying multiple small, /,.-bounded steps;
Momentum Iterative FGSM (MI-FGSM) Dong et al. (2018) further stabilizes updates via accumulated
momentum; Diverse Input FGSM (DI-FGSM) Xie et al. (2019) injects random resizing and padding at
each iteration; and Translation-Invariant FGSM (TI-FGSM) Dong et al. (2019) averages gradients over
shifted inputs to enhance spatial robustness. More advanced variants even incorporate feature-space
objectives to target intermediate representations Zhang et al. (2021).

Generative model-based attacks. In parallel, more efficient generative model-based attacks train a
feed-forward image-to-image transformation network to synthesize perturbations in a single pass:
Universal Adversarial Perturbations (UAP) Moosavi-Dezfooli et al. (2017) learn a single image-
agnostic noise vector, Generative Adversarial Perturbations (GAP) Poursaeed et al. (2018) use a GAN
framework to produce highly transferable noise maps (added to the input images), and AdvGAN Xiao
et al. (2018) leverages GANs for image-dependent attacks that balance stealth and speed. Together,
these two paradigms offer complementary trade-offs between precision, transferability, and inference
efficiency.

In this vein, recent generative model-based untargeted attack methods Naseer et al. (2019); Nakka
& Salzmann (2021); Zhang et al. (2022b); Aich et al. (2022); Yang et al. (2024a;b); Nakka &
Alahi (2025) have further added techniques to enhance the transferability of the crafted adversarial
examples by incorporating surrogate model’s output logit-level and mid-level feature-level separation,
frequency domain manipulation, vision-language model guidance, and heuristic selection of one
effective neuron-level generator among a pool of multiple generators. However, none of these works
have dealt with directly manipulating the generative feature space to improve the transferability
of AEs. To address this, we uncover the correlation between generative features and adversarial
transferability of the output AEs.

Note: Our semantically consistent generative attack does not redesign attack pipelines in a label-free
or label-required setting. Rather, it operates orthogonally regardless of label availability: by regulating
generator features, it can be plugged into any generative framework because its own objective is
independent of label availability. This contrasts with prior work that mainly changes the adversarial
loss, for example by moving from logit- to feature-based objectives.

U-Net-based generator. Along with ResNet He et al. (2016), U-Net Ronneberger et al. (2015) is an-
other effective network architecture comprising a symmetric encoder—decoder with skip connections,
fusing low- and high-level features to preserve fine-grained details, which are ideal when perturba-
tions must tightly follow object boundaries. By contrast, a ResNet generator stacks residual blocks
with identity shortcuts, thus building deep hierarchical representations that emphasize global context.
Although U-Net decoders add computational overhead, they can produce sharper, pixel-accurate



noise, while ResNet backbones scale more efficiently and excel at generating broadly distributed
perturbations. Ultimately, the choice of generator architecture hinges on the desired trade-off between
pixel-level fidelity, attack transferability, and inference speed.

In the context of generative adversarial attack, GAP Poursaeed et al. (2018) first demonstrated that
U-Net can serve as a perturbation generator with a lower inference time cost than that with ResNet.
However, the authors of Poursaeed et al. (2018) also stated that ResNet, in general, outperforms U-Net
in attack transferability. In this work, we demonstrate that our method of anchoring perturbation
generation on early-intermediate features can also be applied to a different generator architecture
than ResNet, namely U-Net.

Specifically, we note the differences Table S1: Quantitative cross-task transferability results. We
between the U-Net and ResNet gen- report the average improvement (A%p) for our components applied
erators in detail. Due to the symmet- to different generator architectures and evaluated against semantic

ric encoder-decoder design in the U- segmentation (mloU |) and object detection (mAP50 |) models.
Net, there is only one feature block MT denotes mean teacher, and better results in boldface.
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bottleneck feature for the cross- Avg. 6160 2572 -1.62 -1.83 | 2472 +001 -0.20

task experiments in Table S1, where we observe consistent improvements in attack transferability
with the addition of each of our components. While Given this observation, we remark that while
U-Net can still be leveraged as a generative model for transfer-based attacks, further research on
boosting U-Net-based attack transferability may be necessary.

Diffusion-based generative attacks. Diffusion attacks generate imperceptible perturbations via
iterative denoising Chen et al. (2024). Later studies extend this idea to conditional or Stable Diffusion
for black-box transfer Liu et al. (2024; 2023b); Lei et al. (2025), treat diffusion mimicry as a defense
target Xue & Chen (2024), and push attacks to prompts, retrieval, or fully synthesized images Ma
et al. (2024); Huang & Shen (2025); Dai et al. (2024). All rely on high sampling steps, often with
extra classifier or CLIP guidance, so inference is markedly slower and heavier than single-shot GAN
or gradient generators. Our framework avoids that cost with a fast, lightweight alternative suited
to real-time or large-scale threats. While diffusion-based approaches are certainly relevant in the
literature and offer strong performance, yet still incur high inference-time costs due to iterative
sampling, our approach alleviates these costs and ensures faster and more practical deployment.

C DISTINCTIONS OF OUR METHOD

Purpose. Generator-centric regularization vs. surrogate-centric ILP. Prior ILP works typically
optimize pixels against a feature map from a static surrogate model. We instead ask how to regularize
the synthesis process within a learnable generator to enforce semantic stability. This shifts the focus
from (external) surrogate optimization (followed by iterative ILP updates) to internal regularization
inside the generator. We summarize the distinctions of SCGA (Sec. §3 in the main paper) below.

 Attack framework. Prior surrogate—centric ILPs update pixels iteratively under a surrogate classi-
fier, typically requiring many small steps and sometimes fine-tuning existing adversarial examples.
Our approach is generator—centric: a single forward pass through a learnable perturbation generator
uses the full perturbation budget at once, without any fine-tuning of existing AEs. This yields a
qualitatively different attack pipeline with essentially zero additional inference cost.

* Source of guidance features. Conventional ILPs extract guidance from fixed intermediate layers
of a frozen surrogate. We instead draw guidance from the intermediate representations inside
the learnable perturbation generator, thus internalizing what the model should preserve or alter.
Semantic information is therefore obtained from the generator’s own dynamics rather than from an
external model.

* Role of intermediate features (optimization objective). In surrogate—centric ILPs, the surrogate’s
mid-level features directly define the objective, commonly by maximizing the feature distance
between a benign image and its adversarial counterpart. In our method, the generator’s intermediate



features are regularized to stabilize core semantics via an EMA teacher, providing self-guided
regularization during noise synthesis. Whereas ILPs feed both benign and adversarial images to
the surrogate, our generator consumes only the benign image, producing internal features with
different embedded semantics.

* Driving factor for transferability. Classic ILPs largely seek stronger disturbance in surrogate
mid-layer features to improve transfer. Our method maintains salient object semantics throughout
the noise-generation path, emphasizing semantic consistency in the generator’s early blocks. This
distinction shifts the driver of transfer from surrogate divergence to internally consistent noise
generation.

* Plug-in compatibility. Traditional ILP attacks are usually self-contained and not designed for
modular composition. Our regularizer is a drop-in module that plugs into existing generators (e.g.,
BIA, GAMA) without changing their inference routine. It thus offers a general-purpose axis of
improvement for generative attacks.

The seminal Intermediate-Level Attack (ILA) Huang et al. (2019) begins with a baseline perturbation
and amplifies its change at a single mid-layer of a frozen classifier, boosting cross-model transfer.
ILA++ Li et al. (2020b) maximizes the scalar projection onto a learned discrepancy vector, making
the amplification direction data-adaptive. ILPD Li et al. (2023) folds amplification into one stage and
adds a decay schedule to damp spurious directions. TAP Zhou et al. (2018) enlarges clean—adversarial
feature distances while imposing a smoothness prior on the noise. All rely on a fixed surrogate
classifier to define the intermediate layer and therefore lose potency when the victim architecture or
modality changes.

Generator-based ILPs. A parallel line supervises a generator with surrogate features. LTP splits a
chosen surrogate layer into class-consistent and class-inconsistent channels and steers the generator
toward the latter. BIA manipulates early surrogate features to weaken low-level cues across domains.
Recent works impose high-level semantic or contrastive losses (often via CLIP) on the output image
but leave the generator’s internal layers largely unconstrained.

Our focus on generator internals. We align early-block feature maps to an EMA-smoothed teacher
and distill onto the student, preserving coarse structure before any surrogate-level adversarial loss is
applied. This internal alignment is agnostic to the choice of surrogate or adversarial loss, and remains
effective when transferring to unseen architectures. Empirically, adding our self-feature consistency
to representative generator attacks further lowers average accuracy across all four cross-setting
protocols, indicating complementarity rather than redundancy.

Structure. Our method stands dis- Table S2: Our method distinction. Comparison of transfer-based

tinct from the focus of existing gener-
ative attacks in that we delve into the
generator feature space, rather than
the surrogate model space, as cate-

generative adversarial attacks, highlighted by the method’s targeted
stage in the training pipeline (in order from left to right), and GT
label requirement.

Surrogate  Surrogate

Input data Generator Perturbed mid-level layer output  GT label
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et al. (2022b), including input data
augmentation, pixel-level perturbation, surrogate model’s logit- and feature-level manipulations.
Nonetheless, no work has yet explicitly manipulated the internal features of the generative model
to enhance transferability. In this work, we investigate how internal feature representations within
generative models can be harnessed to enhance the transferability of AEs.

Distinction from ensemble-based approach. We assert that our proposed method is intended as a
complementary add-on to the single perturbation generator already employed by existing generative
attacks, rather than as a separate generator. As such throughout our experiments, we meticulously
focus on the effect of attaching our method onto existing perturbation generators and show that our
complementary add-on exhibits attack-beneficial effects. Though we do agree that an ensemble of
different generators may be an interesting direction of work, the scope in our work focuses more on a
complementary add-on for existing adversarial generative perturbation works.
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Full algorithm. For a full picture of training and inference stage of our algorithm, we provide in
Alg. 1 outlining the procedure in both stages.

Algorithm 1: Full pseudo-code of SCGA

Data: Training dataset D¢

Input: Generator Gy (-), a surrogate model trained on source data F° (), projector P(-), perturbation
budget €

Output: Optimized teacher perturbation generator Gy (+)

Training:

Initialize generators:

student Go(+) < random init., teacher Gy (-) < Go(-)

repeat

Randomly sample a mini-batch x; from Dy

Acquire student generator intermediate features: gi + G5°(x;)

Acquire teacher generator intermediate features: gi + Gor(zi)

Generate unbounded adversarial examples from student generator intermediate features:
Z" Gy (g:)

~adv adv

Bound (project) 3" using P within the perturbation budget such that ||P(Z;") — z;||co < € to obtain
mzdv
Forward pass z; and " through the surrogate model, F*(-) at layer k, to acquire f;"¢", f2"

benign adv

Compute loss using f;"", fi, g;, gi: L = Laav + Acons. * Leons. // Eq.??
Update student generator parameters via backpropagation
EMA update teacher weights with student weights: 00 // Eq. ??
until Go(-) converges
Inference:
Acquire an input image sample, Test
adv

Forward pass Zs through the trained teacher, Gy (+), to obtain an unbounded adversarial example, Z{eq
Bound (project) Zi% using P within e to obtain %)
Forward pass Tiesi, 24" through pre-trained victim model F*(-) to obtain p2%, poe*®, respectively

out,adv

Compute metric scores by comparing the arg max{ppy " } against arg max{pgy } or GT label

D REASONS FOR TRANSFERABILITY

As our work is motivated by the semantic variability across the intermediate blocks within the genera-
tor, we look further into how our early-block semantic anchoring drives the observed phenomenon
in Sec. §2.2 of the main paper. Our empirical analysis of intermediate feature activation maps from
existing ResNet-based generators reveals that coarse, object-salient regions consistently emerge
in the early residual blocks, and appear even more pronounced in models with higher black-box
transferability. This insight suggests that these early-block features play a pivotal role in shaping
perturbations. To capitalize on this, we anchor our adversarial noise generation to the clean image’s
semantic structure at these early stages. Lacking explicit semantic priors to retain the semantic
integrity of the benign input images, we introduce a Mean Teacher mechanism: by maintaining an
exponential moving average (EMA) of the student generator’s weights, the teacher generator yields
temporally smoothed features that are largely free of adversarial noise. We then fully leverage the
Mean Teacher framework by further imposing a self-feature consistency loss between the student
generator’s and the teacher’s early-intermediate block activations, filtering out spurious noise while
preserving the coarse object shapes and boundaries present in the teacher generator features. This
strict semantic-consistency constraint focuses perturbation power on object-salient regions, thereby
enhancing transferability without sacrificing efficiency.

In the figure below (Fig. S1), we directly compare the feature activation maps and the added adversarial
noise per block (absolute difference of the input and output of each block) of Ours against the
baseline Zhang et al. (2022b). We particularly focus on the intermediate residual blocks (‘“Residual
Learning"), as most of the adversarial noise is generated in these blocks Zhang et al. (2022b), and the
preceding (“Downsampling" layers) and succeeding blocks (“Upsampling" layers) serve to simply
adjust the spatial resolution of the feature maps.



We preserve semantic integrity in the early blocks because these layers capture the coarse structure of
the object, such as boundaries and shapes. By aligning the student model’s early block activations to
a teacher reference, we remove incidental details and initial noise. This alignment compresses feature
magnitudes and lowers the measured semantic quality in those early blocks. However, that simpler
representation allows the generator to focus on stronger and more widespread noise in the later layers.

Baseline w/ Ours Baseline w/ Ours Baseline w/ Ours Baseline w/ Ours

Figure S1: Comparison of the input image (column 1), the feature activation maps, and the added adversarial
noise between two residual blocks (absolute difference between the feature maps of two residual blocks) of
Ours (columns 4, 5) against the baseline Zhang et al. (2022b) (columns 2, 3). Although the baseline’s feature
maps more vividly emphasize object boundaries and contours, this focus actually prevents perturbations from
appearing in those highlighted regions. By contrast, our method produces relatively less pronounced early
features than those of the baseline, yet focuses more perturbation power on object-salient regions towards the
later blocks than the baseline, thereby allowing adversarial noise to be dispersed directly on and around those
salient regions, as opposed to the baseline. For the feature activation maps and the added noise, the brighter and
darker (respectively), the higher the value.

Deliberate compression of early features. We enforce semantic consistency in the early blocks to
focus the generator on true object outlines. Aligning student features to a smoothed teacher strips away
incidental detail and any initial noise, which reduces the average magnitude of feature activations,
and thus appears to degrade early-block semantics. That lean representation then lets the network
concentrate its available capacity deeper in the intermediate blocks, where it produces stronger and
more widely dispersed perturbations. When comparing the absolute difference between two feature
maps in Fig. S1, we see that the baseline avoids object-salient regions and restricts noise to the
peripheral regions, whereas our approach applies noise across the entire image, including the object
itself. Although the early semantics seem more degraded relative to the baseline, this deliberate
compression of early features enables a broader attack on diverse features. Although the baseline’s
early blocks may exhibit stronger semantic activations, our method’s slightly muted early features
enable a broader and more effective perturbation distribution towards the later intermediate blocks,
thus achieving higher transferability than the baseline. Crucially, we observe that the baseline’s
finely detailed early-block semantics add little benefit; retaining only the coarse semantic outline is
sufficient to guide highly transferable perturbations. Econstsency

Basel Early Mid Late An

Comparison of feature activation maps by block. - . ....
Compared to the baseline and to ablations that apply se-

mantic consistency in mid layers, late layers, or across all
layers, our approach of enforcing semantic consistency
in the early block produces the most effective and trans-
ferable perturbations (Fig. S2). When we inspect feature
activation maps, we see that preserving the coarse seman-
tic structure in the earliest layers anchors the noise to
object-salient regions that tend to be shared across differ-
ent models. This focus prevents the generator from wasting
capacity on irrelevant details and guides it to concentrate
its attack on universally important features. By contrast, se-
mantic consistency applied later or across all intermediate
blocks causes noise to be rather sparse or dispersed over

xample Generation Path

Adversarial 1>

Figure S2: Comparison of feature activation
6 maps by block.



regions away from those core cues, resulting in weaker
transfer performance.

Quantifying semantic information. The very concept of semantic information is a deep and chal-
lenging topic within information theory and computer vision, lacking a single, universally accepted,
and operational definition. For example, foundational theories define meaning through the truthfulness
of a representation to reality Floridi (2002), or the grammatical structure of its components Zhu
et al. (2007). While profound, these conceptual frameworks remain abstract. Attempts to formalize a
quantifiable theory of semantics, such as the information-theoretic treatise by D’ Alfonso (201 1), high-
light this challenge. While providing a valuable formal basis, such work has yet to yield operational
metrics that can be optimized directly within deep learning models from the first principles.

Given this well-documented gap between theory and practice, the standard and most rigorous approach
in computer vision is to probe semantic coherence using concrete, multi-faceted empirical methods.
To build a robust foundation for our semantic anchoring on the early generator intermediate block
claim, we employed two orthogonal analyses to test our hypothesis from different perspectives:

* Energy-Level Stability (Frequency Domain): To verify the coarse structure embedded in the
low frequency components, we computed the spectral energy ratio compared to the total by band
following Eq. S1 (cutoff=0.2). Our spectral analysis confirms that our method preserves low-
frequency energy more effectively than the baseline. This provides evidence that the coarse visual
structure of the image is maintained throughout the generation process.

* Object-Level Coherence (Semantic Object): A closer look into semantic foreground IoU stability
can be viewed in a complementary manner alongside the spectral energy analysis. We conducted
k-means clustering on each intermediate block features, generated binary (object/background)
object masks for each block features, and measured their IoU against the ground truth pixel-wise
labels of ImageNet-S Gao et al. (2022) dataset. We then calculated the standard deviation of these
IoU scores across the generator’s blocks—a metric we term as vararibility in IoU. A lower variability
score signifies that the object’s core structure is preserved more coherently across generator blocks
during generation. Our method achieves a significantly lower variance than the baseline, confirming
superior object-level stability.

H-1W-1
F(u,v) = Z flm,n exp( i2m (4 + %)), for feature map f (FFT)  (SD)
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Although a first-principles theory of semantics remains an open challenge for the broader scientific
community, our work provides a strong and verifiable empirical basis for our claim. The combined
evidence from both energy-level (frequency) and object-level (foreground IoU) analyses demonstrates
that early-generator block anchoring effectively maintains semantic content, commonly shared by
diverse architectures across domains. This coherence, in turn, provides a clear explanation for the
observed boost in adversarial transferability across architectures, domains and tasks.

Marginal improvement due to shared objective. We acknowledge that PDCL Yang et al. (2024b)
is the strongest amongst the existing generative attack baselines. Our approach is complementary yet
convergent with ideals of PDCL and GAMA Aich et al. (2022) in attacking the semantics. While
PDCL and GAMA leverage CLIP Radford et al. (2021)-based semantics alignment in surrogate
models, our method uniquely targets semantic distortion within the internal feature hierarchy of
the generator via Mean Teacher smoothing and self-feature consistency. Though previous methods
and our method work in different operational spaces (internal feature hierarchy of the generator
vs surrogate model), the aligned goals as well as the generator and surrogate features interacting



through backpropagation leads to diminishing returns when combined. This ceiling effect explains
why numerical improvements over PDCL are modest in cross-model settings.

However, we stress that while the cross-model results exhibit only minor degradation, our method
yields more pronounced gains over the PDCL baseline in cross-domain and cross-task settings, where
data and model shifts are more severe. Notably, in cross-domain results, while ASR, FR, and Accuracy
consistently improve, we observe a drop in ACR with ours compared to PDCL alone. This suggests
that PDCL’s strong surrogate alignment may overfit to high-level features, inadvertently leading
to corrected predictions under domain shift. Our ACR metric uniquely captures this effect, which
goes unnoticed by conventional metrics. Ultimately, we believe this demonstrates that our method
contributes in more realistic and challenging generalization settings (cross-domain, cross-task) than
in the saturated cross-model setting. We acknowledge that this observation remains as a potential
limitation of our method when layered atop strong vision-language aligned baselines such as PDCL.
Thus, even when improvement margins are modest, our work introduces a conceptually novel and
generator-centric mechanism that is compatible with PDCL, helps expose previously overlooked
behaviors (via ACR), and delivers consistent and transferable performance boosts, especially under
the strictest black-box constraints.

In summary, our ablations reveal two situations in which the proposed early-block self-feature
consistency provides only modest gains:

 Transfer to dense—prediction task: When evaluated on tasks that require pixel-level precision
such as SS, our hinge-based self-consistent generator produces less disruptive AEs. In the
cross-task setting, DeepLabV3+ IoU decreases by 1.35%p and Faster R-CNN mAP50 falls by
0.20%p. Figs. S8 and S9 show that the perturbations suppress large regions but rarely erode thin
boundaries or very small objects. Because the hinge margin halts gradients once coarse alignment
is achieved, optimization focuses on low-frequency structure, which benefits cross-model and
cross-domain transfer more than cross-tasks that require fine-grained spatial details.

* Combination with CLIP-guided attacks: At €,y = 10, augmenting GAMA with ours lowers
cross-domain acc. by 2.47%p but trims model accuracy by only 1.18%p and mAP50 by 0.16%p;
PDCL changes are even smaller, all < 1%p. Because GAMA and PDCL already use a CLIP
image-text similarity loss that enforces high-level global semantic alignment, our early-block
anchor largely overlaps their objective, leaving limited headroom. Future work could involve
adaptive margins that complement rather than replicate CLIP guidance.

Potentially compatible foundation model alternatives. While CLIP is a powerful vision-language
foundation model, its representations are heavily shaped by global semantic alignment across modali-
ties. This design prioritizes coarse, aligned image-text associations and often abstracts away local or
mid-level spatial structure, which is precisely the kind of structure our generator-centric perturba-
tions are designed to manipulate. As a result, our structure-aware perturbations, which emphasize
consistency in early generator layers (e.g., edges, object boundaries), may be less impactful when
paired with CLIP-based classifiers, leading to the observed marginal improvements.

Nonetheless, our method and CLIP-guided approaches share a high-level goal: disrupting semantic
integrity in learned feature spaces. CLIP achieves this via global cross-modal alignment, whereas our
method directly injects semantic distortions during perturbation synthesis. This overlap may lead to
saturation effects when stacking the two, particularly when the downstream classifier lacks spatial
sensitivity. To this end, we list below several foundation models that emphasize semantic structure,
rather than purely global or language-aligned semantics may synergize better with our approach.
Promising alternatives include:

e DINOv2 Oquab et al. (2023) and iBOT Zhou et al. (2022): self-supervised, image-only models
that retain strong spatial awareness and token-level feature localization. Their patch-level
attention maps are often more structure-sensitive in early layers.

¢ SAM (Segment Anything) Kirillov et al. (2023) and OWL-ViT Minderer et al. (2022): models
trained with region-aware objectives or bounding box supervision, offering spatial grounding
across scales.

* SEEM Zou et al. (2023), OpenSeg Liang et al. (2023), and other dense prediction models:
trained for segmentation or region-level tasks, these retain fine spatial resolution across semantic
hierarchies.



In addition, we would like to highlight TokenCut Shin et al. (2022), which encourages part-aware
decomposition in early transformer layers via spectral clustering. Similarly, SegViT Zhang et al.
(2022a) and DenseCLIP Rao et al. (2022) enhance token-level representations with structural priors
for region-specific prediction. These architectures inherently encode mid-level part semantics and
object contours, aligning more naturally with our method’s emphasis on preserving and perturbing
meaningful structure. Overall, these models offer varying degrees of structure sensitivity, depending
on task supervision and architectural inductive biases. We view this as both a current limitation and a
valuable opportunity: as foundation models increasingly integrate dense, structured objectives, our
generator-centric perturbations could target and amplify the resulting spatial semantics in a more
compatible way.

Practical value of the Accidental Correction Rate (ACR). Here, we highlight the usefulness of
the proposed ACR metric as previously outlined in Table 1 of the main paper. ACR was introduced
specifically to expose cases in which a perturbation repairs an error already present in the clean
prediction: a behavior that Accuracy, Attack-Success Rate (ASR) and Fooling Rate (FR) cannot
disentangle. In this light, we argue that this metric is of significance for both adversary and defender,
as it focuses on the reliability of the attack and haphazard defense due to an inadvertent transition to
correct predictions, respectively. In Table S3, we report all four metrics for increasing test budgets
€rest> averaged over the same cross-domain / cross-model settings and pinpoint key observations:

¢ Complementary role to ASR. At ¢ = 4, ACR (incorrect—correct) is 14% while ASR
(correct—incorrect) is 8%, yielding a net gain of 6% correct predictions. Because ASR accounts
for only harmful flips, it overlooks this positive balance; ACR makes it explicit.

* ACR is non-monotonic, unlike Acc/ASR/FR. It peaks at € = 4 and then falls as stronger noise
overwhelms corrective effects. This trend offers a very different view from the defender’s side:
evaluation should consider not only how many errors an attack creates but also how many it
inadvertently corrects.

* Actionable insight. Defenders might tolerate or even harness low-budget perturbations that
raise ACR, while attackers in safety-critical settings may need to penalize accidental corrections
to avoid unintentionally improving model performance.

Table S3: Performance evaluation under different € test values for other metrics than the accuracy.

Etest Accuracy | ASR 1 FR 1 ACR |
2 89.93/74.67 1.88/3.32 3.70/6.94 9.33/6.08
4 84.95/70.34 7.90/10.22 11.01/16.42 14.37/9.26
8 60.13/53.82  30.94/32.67 38.09/39.35 11.95/9.36
10 47.10/44.13  49.02/44.02 51.66/50.66 9.66/8.32
16 23.00/30.29 75.18/62.89  76.46/67.03 5.56/5.83

ASR alone offers an incomplete and sometimes misleading view of adversarial attack effectiveness.
It is blind to beneficial flips, failing to account for cases where perturbations actually improve
predictions by turning an incorrect label into the correct one. This can lead to inflated ASR scores
under label noise, where attacks appear successful by correcting existing errors. Furthermore,
ASR lacks granularity over the type of prediction change, treating all flips as equivalent. This
becomes especially problematic in cross-model comparisons, where identical ASR values can conceal
substantial differences in behavior, particularly in how often attacks correct the clean model’s mistakes.
Among existing metrics, ASR captures only correct—incorrect transitions, FR aggregates all
changes without distinction, and only ACR isolates the critical incorrect— correct transitions.

Summary of our approach. We further summarize our findings and approach as follows. We
empirically discover that existing generative works preserve the semantic integrity of the benign
input image at the early intermediate blocks better than the later blocks, under the assumption that
the downsampling blocks merely serve as feature extractors Zhang et al. (2022b). To better structure
adversarial noise generation in the intermediate blocks, we formulate our method to maintain at least
coarse semantic structures in the early intermediate blocks, thereby yielding much more perturbed
features towards the end of the intermediate stage, which then results in enhanced transferability of
the crafted AEs compared to the baseline. Through extensive cross-setting evaluations, we validate
our approach of tuning the progression of adversarial noise generation in the generator’s feature level



as a compatible method to the existing generative attack framework Naseer et al. (2019); Nakka &
Salzmann (2021); Zhang et al. (2022b); Aich et al. (2022); Yang et al. (2024a;b); Nakka & Alahi
(2025) without much overheads.

E EXPERIMENTAL DETAILS

E.1 EVALUATION SETTINGS

We define three black-box evaluation scenarios that differ in the attacker’s knowledge of target data
and models. In the cross-model setting, the adversary has access to the same data distribution used to
train the unseen target models but must craft attacks using a substitute model rather than querying the
targets directly. In the cross-domain setting, the attacker works solely with out-of-domain data and
has no access to target-domain datasets (e.g., CUB-200-2011 Wah et al. (2011), Stanford Cars Krause
et al. (2013), FGVC Aircraft Maji et al. (2013)) or the ability to query target-domain models such
as ResNet-50 He et al. (2016), SE-Net, or SE-ResNet101 Hu et al. (2018). Finally, in the cross-task
setting, likewise, the adversary is completely agnostic to the target’s data, models, and even the task
itself, representing the strict black-box challenge.

Victim model specifications. we selected a total of 22 different model architectures that span from
CNNs to Vision Mamba variants, whose pre-trained model weights are available openly through
TorchVision Marcel & Rodriguez (2010), Timm Wightman, and the proprietary GitHub repositories.
We list the sources in Table S4.

E.2 EVALUATED MODELS

Victim models. For cross-model evaluation, we employ ImageNet-1K (224 x 224 resolution,
1,000 classes) pre-trained classification models of various architectures with their publicly available
model weights. We source the pre-trained models from TorchVision Marcel & Rodriguez (2010)
and Timm Wightman libraries. Compared to previous approaches Nakka & Salzmann (2021); Yang
et al. (2024a;b) demonstrating cross-model architecture transferability, we expand the evaluation to
a wider scope of target model architectures for enhanced architecture-agnostic transferability. We
tested our attack against a total of 21 different model architectures (11 CNN-based He et al. (2016);
Huang et al. (2017); Szegedy et al. (2016); Radosavovic et al. (2020); Tan et al. (2019); Iandola et al.
(2016); Tan & Le, 6 ViT-based Tu et al. (2022); Liu et al. (2021); Touvron et al. (2021); Bao et al.
(2021); Cai et al. (2022), 2 Mixers Tolstikhin et al. (2021); Trockman & Kolter (2022), and 2 Vision
Mamba-based Zhu et al. (2024); Hatamizadeh & Kautz (2025)) for cross-model evaluations.

For cross-domain evaluation, we validate our attack against three different models (i.e. ResNet50 He
et al. (2016), SE-Net and SE-ResNet101 Hu et al. (2018)) pre-trained on fine-grained datasets,
CUB-200-2011 Wah et al. (2011) (200 classes), Stanford Cars Krause et al. (2013) (196 classes),
FGVC Aircraft Maji et al. (2013) (100 classes), of 448 x 448 resolution. For cross-task, we select a
CNN-based and a ViT-based model for each task of semantic segmentation (SS) and object detection
(OD), whose pre-trained weights are openly accessible as with the ImageNet-1K pre-trained weights.
Specifically, we test against DeepLabV3+ Chen et al. (2018) and SegFormer Xie et al. (2021) for
SS and Faster R-CNN Girshick (2015) on detectron2 and DETR Carion et al. (2020) for OD.
We validate on Cityscapes Cordts et al. (2016) and COCO’17 Lin et al. (2014) for SS and OD tasks,
respectively.

Against robust models. We tested our attack against robust models, i.e. adversarially trained
Inception-V3 Kurakin et al. (2016), ViT Dosovitskiy et al. (2021) and ConvNeXt Singh et al. (2023)
models, and robust input processing methods such as JPEG (75%) Guo et al. (2017a), bit reduction
(BDR; 4-bit) Xu et al. (2018) and randomization (R&P) Xie et al. (2018) in Table 4.

E.3 IMPLEMENTATION DETAILS
Throughout the experiments, we train the perturbation generator with e = 10 using data from

ImageNet-1K Russakovsky et al. (2015) containing 1.2 M natural images of 224 x224 resolution,
following Poursaeed et al. (2018); Naseer et al. (2019); Nakka & Salzmann (2021); Zhang et al.
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Table S4: Sources of victim models used to evaluate the attack performance, grouped by task.

Task Victim Model Source
(a) ResNet50 He et al. (2016) TorchVision Marcel & Rodriguez (2010)
(b) ResNet152 He et al. (2016) TorchVision Marcel & Rodriguez (2010)
(c) Densel121 Huang et al. (2017) TorchVision Marcel & Rodriguez (2010)
(e) Dense169 Huang et al. (2017) TorchVision Marcel & Rodriguez (2010)
(f) InceptionV3 Szegedy et al. (2016) TorchVision Marcel & Rodriguez (2010)
(g) RegNetY Radosavovic et al. (2020) TorchVision Marcel & Rodriguez (2010)
(h) MNAsNet Tan et al. (2019) TorchVision Marcel & Rodriguez (2010)
g (i) SqueezeNet landola et al. (2016) TorchVision Marcel & Rodriguez (2010)
g (j) EfficientV2 Tan & Le TorchVision Marcel & Rodriguez (2010)
&2 (k) ConvNeXt-B Liu et al. (2022 TorchVision Marcel & Rodriguez (2010)
Z (1) ResNeXt Xie et al. (2017) TorchVision Marcel & Rodriguez (2010)
o) (m) ViT-B/16 Dosovitskiy et al. (2021) TorchVision Marcel & Rodriguez (2010)
o (n) VIT-L/16 Dosovitskiy et al. (2021) TorchVision Marcel & Rodriguez (2010)
g (0) Swin-B/16 Liu et al. (2021) TorchVision Marcel & Rodriguez (2010)
— (p) DeiT-B Touvron et al. (2021) Timm Wightman
(q) BEIiT-B Bao et al. (2021) Timm Wightman
(r) EfficientViT Cai et al. (2022) Timm Wightman
(s) MLP-Mixer-B Tolstikhin et al. (2021) Timm Wightman
(t) ConvMixer-B Trockman & Kolter (2022) Timm Wightman
(u) Vision Mamba-B Zhu et al. (2024) https://github.com/hustvl/Vim
(v) MambaVision-B Hatamizadeh & Kautz (2025) https://github.com/NVIlabs/MambaVision
. . DeepLabV3+ Chen et al. (2018) https://github.com/VainF/DeepLabV3Plus-Pytorch
Semantic Segmentation (SS) Segllgormer Xic et al. (2021) httgs://iithub.com/NVlabs/Sevaormer g
. . Faster R-CNN Girshick (2015) https://github.com/facebookresearch/detectron2
Object Detection (OD) - yprR Carion et al. (2020) httgs://iithub.com/facebookresearch/detr

(2022b); Aich et al. (2022); Yang et al. (2024a;b), for one epoch using the Adam Kingma & Ba
(2015) optimizer 3 = (0.5,0.99). We set the learning rate Ir = 2¢~*. We also use the mid-level
layer feature at k = 16 (Maxpooling.3) of VGG-16 surrogate for our baseline Zhang et al. (2022b).
We set Acons. = 0.7 throughout our experiments for stable generator training at the feature level,
and the EMA update parameter 7 = 0.999 following Tarvainen & Valpola (2017). We selected
Leariy = {1,2} for matching the first and second intermediate residual blocks within the generator.
We compare our attacks against the state-of-the-art baselines that rely on the same ResNet-based
generator to craft adversarial examples, i.e. CDA Naseer et al. (2019), LTP Nakka & Salzmann
(2021), BIA Zhang et al. (2022b), GAMA Aich et al. (2022), FACL-Attack Yang et al. (2024a), and
PDCL-Attack Yang et al. (2024b).

Dataset statistics. We describe the statistics of the datasets used for training and evaluation in
Table S5. Note that we do not use the training sets from CUB-200-2011 Wah et al. (2011), Stanford
Cars Krause et al. (2013), or FGVC Aircraft Maji et al. (2013) for the strict black-box cross-domain.

Table S5: Training and evaluation dataset statistics.

ImageNet-1K CUB-200-2011 Stanford Cars FGVC Aircraft
Dataset Russakovsky et al. (2015) Wah et al. (2011) Krause et al. (2013) Maji et al. (2013)
Train 1.2M
Val. 50,000 5,794 8,041 3,333
# Classes 1,000 200 196 100
Resolution 224%224 448x448 448%448 448x448

Computational costs. Since our approach only involves computational overheads during the
training of the perturbation generator, there is no inference time overhead. During training, we
describe in the table on the right that the time for a single forward pass with a batch size of 1 incurs
an additional +12.18 (ms) compared to the baseline Zhang et al. (2022b) time of 44.72 (ms), and an
additional +28.31 (MB) in memory compared to that for the baseline of 1,404.13 (MB), which are
averaged over 1,000 iterations (See Tables S6, S7).

These slight increases owe to added computations for the forward (no backward) pass overhead on
the teacher generator, Gy (+), in addition to the student,Gy(+), and are significantly minor relative to
the baseline costs. We note that the training was performed on a single NVIDIA RTX A6000 GPU.

E.4 ADDITIONAL QUANTITATIVE RESULTS

Results with different surrogate models. While we performed experiments against the VGG-
16 surrogate model for fair comparison with previous works, we also provide, in Tables S9 and
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Table S6: Total training compute for the baseline and w/ Ours.

Method Train time (hh:mm) Peak memory (MB) GPU type Train batch size
Baseline 5:00 1,384.62
w/ Ours 540 144223 NVIDIA RTX A6000 (1x) 48

Table S7: Average per-train-step compute over 10k steps with a batch size of 1.

Method Student fwd (ms) Teacher fwd (ms) Backward (ms) Total (ms) Backward cost (GFLOPs) Backward CUDA time (ms)

Baseline 7.1 - 25.6 32.7 0.0012 19.714
w/ Ours 6.8 39 28.4 39.1 0.0044 20.192

S10, our improvements when trained against other surrogate models such as VGG-19, ResNet-152,
and DenseNet-169 as practiced in Zhang et al. (2022b); Yang et al. (2024a;b). Ours added to the
baseline trained against all three surrogate models across models and domains, except for cross-
model against Dense169, consistently enhances the attack transferability. As with our results against
VGG-16 in Tables 1 and 2, our method effectively boosts the attack capacity regardless of the type
of surrogate model used for training the generator. We believe the slight increase in cross-model
average when using DenseNet-169 as the surrogate model is driven mainly by pronounced gains on
a few architectures (e.g. MNASNet and DeiT) while most other models also benefited, albeit to a
lesser extent. In the cross-domain evaluation, adversarial examples generated with DenseNet-169
consistently deliver a substantial average performance boost, underscoring its effectiveness across
differing data distributions.

In qualitative comparisons across  Table S8: Comparison of cross-task attack strength with ours added
different surrogate models in to each baseline. Ours further enhances the transferability consistently
Fig. S3, our Grad-CAM Sel- across semantic segmentation and object detection tasks. Boldface means
varaju et al. (2017) visualizations ~ better results.

reveal activation patterns that de-

Lo = Task
part significantly from the base- CrossTtask — (‘fw) D AR
. . . . emantic Segmentation (mlo AVg jec ietection (m. o AVg
line. Rathel" thap hlghl'lghtlng DeepLabV3+  SegFormer Faster RCNN  DETR
only the main object region, our Benign 7621 71.89 7405 6101 6236 61.69
method further ampliﬁes those CDA Naseer et al. (2019) 25.63 20.16 2290 3278 2629  29.54
¢ ddr ¢ addi- w/ Ours 25.16 2026 271 3198 2568  28.83
F)p respgnses an' ( 'aWS outa LTP Nakka & Salzmann (2021) ~ 23.71 26.97 2534 2939 2241 2590
tional high-sensitivity areas that w/ Ours 22.27 26.68 2448  26.85 2218 24.52
; ; BIA Zhang et al. (2022b) 23.89 25.60 2475 2843 2001 2472
the baseline misses. When we w/ Ours 22.05 2475 2340 2834 2070 2452
step through the stages of adver- GAMA Aich et al. (2022) 24.10 2753 2582 2801 2071 2436
sarial noise generation, we see w/ Ours 23.67 25.59 2463 27.60 2079 2420
. FACL Yang et al. (20242 2375 26.40 2508 2794 2091 2443
that our approach consistently wl Ours eom 23.38 25.01 2420 27.64 2029 2397
places perturbations along object PDCL Yang ctal. (20246) 2442 2605 2524 2848 2138 2493
w/ Ours 2251 25.88 2420 2766 2073 2420

edges and contours. By focusing
noise on these shared, model-agnostic features instead of scattering it elsewhere, our method not only
seeks to align the generated adversarial noise with the most semantically meaningful regions but also
achieves stronger transferability.

Cross-task evaluations. Cross-task results in Ta-

ble S8 show only minor differences among exist- ™
ing generative attack methods, with all approaches 60
achieving similarly low attack success rates in this
setting. These uniformly modest outcomes highlight
the difficulty of transferring adversarial examples
crafted on an image classification—oriented surrogate
model to tasks with different objectives, since the per-
turbations fail to align with the target task’s feature

NN

S S S S s

50

40

30

Cross-domain / Cross-model
Cross-Task (SS / OD)

20

representations. Nevertheless, integrating our early- — * 5
block semantic consistency into each baseline yields 0 : /\ .
small but consistent improvements, demonstrating it level Layer of Sotagate Model °

that preserving coarse semantic cues still provides a (= Crossdoman o o model 727 CrossToo (55 o Cross sk 00
performance boost even under the strict black-box Figure S4: Ablation study on the mid-level layer
evaluation. of the VGG-16 surrogate model.
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Table S9: Quantitative cross-model transferability results. We report the average improvements (A %p)
of our method relative to each baseline, with better results marked in a darker color. For VGG-19, Res152,
Dense169 surrogate, (a-d) correspond to {Res50, Res152, Densel121, Densel69}, {VGG16, VGG19, Densel21,
Densel69}, and { VGG16,VGG19,Res50,Res152}, respectively, as black-box models.

Cross-model CNN Transformer Mixer Mamba
Method ~ Metric @ ® © @ @ O @ h h @G K O m O © @E @ O ¢ O () Avg
Benign Acc. (%) | 74.6077.3374.2275.74 76.19 77.9566.5055.9179.12 81.4975.42 80.67 79.28 81.19 80.48 79.10 57.91 69.90 66.53 66.53 73.21 73.77

Surrogate model: VGG19
Acc. (A%p) | -1.49 +0.88 -1.70 -3.49 -4.04 -1.07 +1.06-2.31 +0.46-4.40 +0.39-0.23 -0.17 -1.14 +0.04 -0.40 +0.22-0.46 +0.11 -0.12 -0.02 -0.85
BIA ASR (A%p) 1+1.93-1.1242.17+4.43 +5.18 +1.34 -1.43 +3.98 -0.65 +5.18 -0.44 +0.35+0.16+1.19 -0.06 +0.48 -0.35 +0.65 -0.15 40.17+0.11 +1.10
w/ Ours FR (A%p) T +1.72-0.89 +1.97+3.95 +4.68 +1.24 -1.19 +2.89 -0.55 +4.77 -0.37 +0.51+0.07 +1.26 -0.14 +0.27 -0.56 +0.69 -0.27 +0.13+0.10+0.97
ACR (A%p) 1. -0.23 +0.11 -0.35 -0.56 -0.41 -0.13 +0.34-0.18 -0.20 -0.82 +0.24+0.28 -0.19 -0.92 -0.02 -0.10 +0.02 -0.04 +0.03 -0.02 +0.23 -0.14

Method Metric () () (© @ (@ O @ ®W GO @ &K @O m m © @E @ O O v Ave
Benign Acc. (%) | 70.1570.9574.2275.74 76.19 77.9566.5055.9179.12 81.49 75.42 80.67 79.28 81.19 80.48 79.10 57.91 69.90 66.53 66.53 73.21 73.26

Surrogate model: Res152
Acc. (A%p) | +0.38-0.87 -2.96 -0.38 -5.13 -7.36 -5.35 -0.71 -3.87 -6.17 -3.75 -0.34 -0.57 -0.37 +0.00 -0.38 -0.59 -3.77 -2.27 -0.23 -0.70 -2.16
BIA ASR (A%p) 1-0.52 +1.2243.76+0.39 +6.36 +9.09+7.37+1.32+4.75+7.16+4.70+0.41 +0.83+0.51+0.08 -0.97 +0.47+6.42+2.02+1.66+9.36 +2.74
w/ Ours FR (A%p) 1 -0.49 +0.95+3.23+0.27 +5.70 +8.14+6.29+0.97+4.37 -1.23 +7.24 -1.22 -0.45 -0.94 +0.30 -0.86 +0.57+5.38 +1.60+1.42+8.78 +3.22
ACR (A%p) | -0.46 -0.74 -0.73 -1.65 -2.64 -1.19 -0.31 -0.78 -1.47 -0.40 -1.75 -0.10 +0.07+0.67+0.53 -0.19 +0.28 -0.86 -0.45 -0.25 -2.93 -0.74

Method ~ Metric @ ® © @O @ O @ h O ¢ & O m o © @ @ ©® 6 O () Ag

Benign Acc. (%) | 70.1570.9574.6077.33 76.19 77.9566.5055.9179.1281.4975.4280.67 79.28 81.19 80.48 79.10 57.91 69.90 66.53 66.53 73.21 73.35
Surrogate model: Dense169

Acc. (A%p) | -1.63 -3.00 -2.25 -7.65 -12.99 -4.66 -0.13 -3.01 -7.68 +1.19-6.71 +1.00+0.36+0.91-0.10 +0.74-0.16 -4.74 -1.50 -1.19 -7.63 -2.90

BIA ASR (A%p) 1+2.1343.9242.77+9.41 +16.23+5.64+0.04+4.7749.32 -1 .55 +#8.22 -1 26 -0.47 -0.96 +0.24 -0.97 +0.47+6.42+2.02+1.66+9.36 +3.69

w/ Ours FR (A%p) T +1.79+3.27+2.41 +8.48+13.97+4.98+0.14+3.42+8.66 - 1.23 +7.24 -1.22 -0.45 -0.94 +0.30 -0.86 +0.57+5.38 +1.60+1.42+8.78 +3.22
ACR (A%p) | -0.46 -0.74 -0.73 -1.65 -2.64 -1.19 -0.31 -0.78 -1.47 -0.40 -1.75 -0.10 +0.07+0.67+0.53 -0.19 +0.28 -0.86 -0.45 -0.25 -2.93 -0.74

Table S10: Additional quantitative cross-domain transferability results. We report the average improvement
margins of our method added to each baseline, averaged over three models for each domain using different
surrogate models (VGG-19, Res152, Dense169). We report the improvements (A %p) with ours relative to the
baseline Zhang et al. (2022b). Better averaged results are marked in boldface.

Cross—domain CUB-200-2011 Stanford Cars FGVC Aircraft Avg, SemSeg (SS) Avg. ObjDet(OD)  Avg.
Method Acc ] ASRT FRT ACR | Acc] ASRT FRT ACR | Acc | ASRT FRT ACR ] ACC (%)DeepLabV3+ SegFormer MU | Faster R-CNN DETR MAPS0 |
Benign 86.01 93.56 92.07 9085 | 7621 7189 7405 6101 6236 61.69

Surrogate model: VGG19

BIA Zhang et al. (2022b) (%) 52.47 41.08 45.63 9.77 71.09 25.16 27.32 17.15 52.28 44.14 46.96 11.03 58.61 28.11 2586 26.99 28.85 21.77 2531
w/ Ours (A%p) -10.05+11.20 +10.39 -2.26 -11.48+12.04+11.73 -2.91 -10.87 +11.56 +11.04 -2.79 -10.80 -2.59 -0.69 -1.64 +0.46 +0.12 +0.29

Surrogate model: Res152

BIA Zhang et al. (2022b) (%) 49.52 44.51 48.53 9.96 50.71 46.60 48.44 12.81 40.43 56.83 59.14 9.01 46.89 32.34 31.63  31.98 33.02 2602 29.52
w/ Ours (A%p) -6.27 +7.07 +6.62 -0.82 +0.09 -0.15 -0.20 -0.43 -7.17 +7.72 +7.07 -0.87 -4.45 +2.44 +2.55 4250 -0.39 +0.99  +0.30
Surrogate model: Dense169
BIA Zhang et al. (2022b) (%) 30.01 66.46 68.97 6.73 34.08 64.13 6534 9.29 2323 75.24 574 76.44 29.11 27.70 3031 29.01 31.53 26.89 29.21
w/ Ours (A%p) -3.68 +4.04 +3.92 -1.20 -8.54 +8.99 +8.66 -2.32 -11.60+12.32+11.62 -3.36 -7.94 +0.08 -2.74 -1.33 -0.37 -0.76  -0.56
Surrogate Model: VGG-19 Surrogate Model: ResNet-152 Surrogate Model: DenseNet-169

Grad-CAM Baseline  w/ Ours. Spaghetti Squash Grad-CAM Baseline  w/ Ours 8 Grad-CAM Baseline  w/ Ours

X

Baseline Benign

Ours

Figure S3: Comparison of the crafted AEs, Grad-CAMs, intermediate feature activation maps from the baseline,
and with ours (columns 1-4, respectively). We present the qualitative results from training against other surrogate
models: VGG-19 (Left), ResNet-152 (Center), and DenseNet-169 (Right) as commonly compared in existing
generative attacks Zhang et al. (2022b); Aich et al. (2022); Yang et al. (2024a;b). The correct label and attacked
prediction results are marked in green and white, respectively.

Mid-level layer variations. To further verify that

our proposed method is compatible with the baseline Zhang et al. (2022b) shown to perform best
at the selected mid-level layer of the VGG-16 surrogate model (i.e. Maxpooling.3), we conducted
an ablation study of the mid-level layer in Fig. S4. For reference, Maxpooling.1-5 have resolutions
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of 1122, 562, 282, 142, and 72, respectively. Across domain, model, and two tasks (SS and OD), we
observe that our method added to the baseline still maintains the best strength of the attack at the
selected mid-level layer, Maxpooling.3, compared to the other early or late layers.

Ablation study on the hyperparameter 7. To assess the sensitivity of 7 in Eq. 2, we conducted a
sweep of hyperparameter values in Fig. S5. Across the range of values from 0 to 1, we find that our
optimal value of 7 = 0.6 best balances the strength of the attack across all four cross-settings.

Slight improvements in perceptual quality. In Table S6, we compare PSNR, SSIM, and LPIPS
scores for each baseline alone versus the same baseline augmented with our early-block semantic
consistency mechanism. Across all baselines, adding our method results in a slight PSNR increase
while SSIM and LPIPS remain effectively unchanged. These minimal or positive changes confirm that
our approach does not introduce any perceptual degradation. Instead, it preserves, and in some cases
slightly enhances, the visual fidelity of adversarial examples even as it strengthens their transferability.

50 W Figure S6: Comparison of cross-setting performance and image
10 .
perceptual quality of AEs.
4 ®4413
Method Cross-setting (Avg.) Perceptual Quality
2 40 —e— Cross-domain (Acc.) Domain (Acc.) Model (Acc.) Task (SS; mloU) Task (OD; mAPS0)| PSNR+  SSIMt LPIPS |
g L e ) CDA 69.94 5027 22.90 29.54 20911 078 043
g3 4 CrossTask (OD; mAPS0) w/Ours 5482 43.38 2271 28.83 29.17 coow 0780 0.43
LTP 2991 1833 2534 25.90 29.11 076 047
w/Ours  40.76 41.99 2448 24.52 29.26 015 0.77 oo 0.49 wooy
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Figure S5: Sensitivity of 7.

E.5 ADDITIONAL QUALITATIVE RESULTS

In these additional qualitative results in Fig. S7, we observe two clear patterns in the adversarial
masks. First, straight lines trace the edges of objects, reinforcing the primary structural cues. Second,
circular ring shapes appear in the background, helping to disperse noise across non-object regions.
Grad-CAM visualizations on the right show that our method also drives adversarial activations to
much higher levels than those seen in the benign image and boosts areas that exhibited only modest
responses under baseline attacks. By combining precise noise along the boundaries with amplified
feature activations, our approach anchors noise to the most meaningful contours while strengthening
weaker signals, producing stronger and more transferable adversarial examples.

We also provide additional qualitative results on the cross-task (SS and OD) settings. In our additional
segmentation examples in Fig. S8, we observe that our method does not just blur or hide parts of the
road, but it actually makes the model stop recognizing entire road areas and even small objects like
pedestrians or cars. The baseline attack might only erase a few isolated pixels or blend edges, but ours
turns whole stretches of road into “ignore,” wiping out those predictions in one go. In other words,
our method uniformly removes both large surfaces and tiny details, so the segmented map ends up
missing key pieces of the scene that the baseline leaves untouched. Similarly, in our additional object
detection examples in Fig. S9, our attack causes the model to stop predicting any localized boxes
around objects (Rol), completely removing every predicted region of interest, whereas the baseline
often leaves boxes in place or only shifts them slightly.

Feature difference map analysis. Going further from the investigation of the difference map in
the existing work in block3 only, which is the input to the residual blocks, we expanded the
analysis into all the blocks, paying particular attention to the intermediate blocks (resblocks). To
this end, we compare each baseline to ours and visualized block-wise feature difference in Fig. S10.
We observed that our method further boosts the object-centric regions (foreground) towards the
early intermediate blocks (reblocks), and gradually induces perturbation to be generated towards
background, or regions away from the objects directly.
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Figure S7: Additional qualitative results. Our semantic structure-aware attack successfully guides the generator
to focus perturbations particularly on the semantically salient regions, effectively fooling the victim classifier.
Left: (a) benign input image, (b) generated perturbation (normalized for visual purposes only), (c) unbounded
adversarial image, and (d) bounded adversarial image. The label on top (green) and bottom (orange) denote
the correct label and prediction after the attack, respectively. Right: We highlight that our method induces
Grad-CAM Selvaraju et al. (2017) to focus on drastically different regions in our adversarial examples compared
to both the benign image and the adversarial examples crafted by the baseline Zhang et al. (2022b). Moreover,
our approach noticeably spreads and reduces the high activation regions observed in the benign and baseline
cases, enhancing the transferability of our adversarial perturbations.

CDA w/ Ours GT LTP w/ Ours GT BIA w/ Ours GT

GAMA w/ Ours GT FACL w/ Ours GT PDCL w/ Ours GT

Figure S8: Additional cross-task (SS) qualitative results.

Applicability to state-of-the-art generator-based targeted attacks. We conduct state-of-the-art
targeted black-box attack experiments following M3D Zhao et al. (2023) and CGNC Fang et al.
(2024) on ImageNet for a single training epoch, using the same VGG-family models as surrogates.
Perturbations are bounded by /., with ¢ = 16/255. Higher TSR indicates a stronger targeted attack.
For M3D, TSR is averaged over target classes {24, 99, 245, 344,471, 555,661,701, 802, 919}. For
CGNC, TSR is averaged over target classes {150,426, 843,715,952, 507,590, 62} in the normal
mode.

Table S11: Target success rate (TSR, %) for CLIP-guided CGNC attack (surrogate: VGG19). Higher TSR
indicates a stronger targeted attack. TSR is averaged over target classes {150, 426, 843, 715,952, 507, 590, 62}
in normal mode. All experiments use ImageNet, VGG-family surrogates, and ¢ perturbations with e = 16/255.

Victim model

Avg.
Method VGGI16 GoogleNet Inc-v3 Resl52 Densel2l Inc-v4 IncRes-v2
CGNC 14.71 2.03 2.77 2.68 8.31 241 0.96 4.84
w/Ours  47.50 7.90 10.96 12.24 31.29 13.36 3.98 18.18

Key observations.

* Large average gain. Our method improves the average TSR from 4.84% — 18.18 %, achieving a
3.7 relative increase, despite the single-epoch training constraint.
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CDA w/ Ours GT LTP w/ Ours GT BIA w/ Ours GT

GAMA w/ Ours GT

Figure S9: Additional cross-task (OD) qualitative results.

* Consistent gains across victim architectures. Every victim model benefits, with especially
strong improvements on DenseNet121 (+22.98 %) and Inception-v4 (+10.95%), indicating that
generator-internal semantic consistency remains effective even under CLIP guidance.

Table S12: Target success rate (TSR, %) for M3D attack (surrogate: VGG19). Higher TSR indicates a stronger
targeted attack. TSR is averaged over target classes {24, 99, 245, 344,471, 555, 661, 701, 802, 919}. All models
are trained for one epoch on ImageNet with VGG-family surrogates and € = 16/255.

Target class
Victim Method 24 99 245 344 471 555 661 701 802 919

Densel21  M3D 357 69 371 93 450 231 209 309 112 373 273
w/Ours 536 709 332 703 902 684 437 569 519 519 519

ResNet50 M3D 304 63 232 245 367 370 183 409 423 535 319
w/Ours 50.7 723 719 731 536 703 21.0 623 450 623 535

ResNetl152 M3D 169 482 21.1 427 233 106 305 196 21.1 267 26.7
w/Ours 304 399 287 57.1 219 212 270 593 29.1 541 371

WRN-50-2 M3D 346 40.8 237 372 417 304 182 187 187 262 299
w/Ours 500 51.1 274 542 347 178 203 682 284 528 403

Avg.

Key observations.

* Consistent gains on a strong targeted attack. The overall average TSR across all four victims
increases from 24.64% — 31.80%, with absolute gains of +14.6% (DenseNetl121), +14.9%
(ResNet50), +10.4% (ResNet152), and +14.1% (WRN-50-2).

* Across-target robustness. Improvements are observed across a randomized set of 10 target classes,
not just “easy” ones. For example, on ResNet50, class 701 improves from 33.0% — 81.3%, showing
that generator-centric regularization effectively steers features toward diverse target semantics even
under tight training.

Attack robustness against purification defense. Further looking into how robust our attack
performs against purification methods such as NRP Naseer et al. (2020), we report the improvements
with Ours in Table S16. On most of the baselines, our method addition maintains lower Accuracy,
ASR and FR scores than the baseline alone, while on the recent advanced methods (e.g. FACL Yang
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et al. (2024a) and PDCL Yang et al. (2024b)), our method very slightly maintains similar scores with
those of the baseline alone on the three metrics. On the other hand, on the more challenging ACR
metric, we observe that our method slightly improves from the baseline, entailing that our generative
feature-level tuning further reduces the number of inadvertently corrected samples.

Running DiffPure on ImageNet is computationally intensive and the cost grows with the number
of samples, so within the rebuttal time frame, we conducted preliminary experiments on a random
subset of 1k validation images. We plan to extend to the full 50k val set given sufficient time.

Our framework is designed to improve adversarial transferability on undefended models, following
standard protocols in CDA, LTP, BIA, GAMA, FACL, and PDCL, rather than to construct an adaptive
attack specifically tailored to circumvent purification defenses.

Under DiffPure with ¢ = 10/255 and ¢ = 150, incorporating our method yields robust accuracies
that remain comparable to the baselines on both victims. Fluctuations are small in magnitude and are
plausibly explained by the stochastic diffusion process and the limited 1k sample size, rather than by
a systematic loss of robustness.

Table S13: Preliminary robustness evaluations against DiffPure (¢ = 10/255, ¢ = 150) on 1k samples (Cls.
Acc., %).

Victim CDA w/Ours LTP w/ Ours BIA w/ Ours GAMA w/ Ours FACL w/ Ours PDCL w/Ours

Res152 67.7 66.3 66.1 68.0 66.1 66.8 65.8 66.6 65.4 66.2 65.3 65.2
Densel2l  62.0 60.5 62.9 64.0 62.1 61.4 62.0 61.6 61.8 62.1 61.5 61.4

Key observations:

* On ResNet152, accuracies with Ours stay close to the baselines, with modest increases (e.g., LTP,
BIA, GAMA, FACL) and modest decreases (e.g., CDA), all within a narrow band.

* On DenseNet121, deviations are similarly small, and several pairs (e.g., LTP, FACL) show slight
improvements.

 Overall, these preliminary results indicate that our method remains largely compatible with strong
diffusion based purification. The semantic consistency enforced during generation improves transfer
on standard models without causing a significant loss of robustness under DiffPure compared to
the original baselines.

Additional results on baselines and w/ Ours against against input processing methods. In
addition to the results in Table 4 against robustly trained models, we further report the results on the
other baselines that are left out due to page limitations in Table S14.

Additional results on input processing defense. Beyond the main experiments, we further evaluate
our method under standard input-processing defenses. Rotation (deg) applies small random rotations
sampled from a bounded angle range to preserve semantic content while perturbing pixel-level
alignment Guo et al. (2017b); Xie et al. (2018). Smoothing uses standard spatial smoothing filters
(Gaussian, median, and mean) to attenuate small high-frequency adversarial perturbations while
largely preserving coarse structure, at the cost of some local blurring Guo et al. (2017b); Xu et al.
(2018). Total variation minimization (TVM) performs TV-based denoising by approximately minimiz-
ing a reconstruction loss with a total-variation regularizer, yielding a piecewise-smooth reconstruction
that preserves major edges while suppressing small oscillatory perturbations Guo et al. (2017b);
Rudin et al. (1992). Pixel deflection (PD) randomly selects a subset of pixels and replaces each
with the value of a randomly chosen neighbor within a local window to stochastically disrupt finely
tuned adversarial patterns without destroying global semantics Prakash et al. (2018). Taken together,
JPEG-style compression (JPEG), bit-depth reduction (BDR), random resizing—padding (R&P), and
smoothing, as well as the transformations reported in the additional table, correspond to the standard
family of input-processing defenses widely used in prior work on transferable attacks, including
our baselines and recent studies such as TransferAttackEval Zhao et al. (2025) and CGNC Fang
et al. (2024). TVM and pixel deflection can be regarded as stronger, yet conceptually similar, input
transformations in this family. Evaluating under this common protocol makes our results directly
comparable to existing attacks, and across these defenses we observe that adding our generator-side
regularizer consistently lowers accuracy and increases FR/ASR relative to each underlying baseline,
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Table S14: Defense evaluation comparisons against other baselines.

Method Adv.IncV3 Adv.ViT Adv.ComNeXt JPEG BDR R&P Avg
Ace. (%) 6671 4574 53.76 59027 4108 37.60 50.69
GAMA ASR (%) 1 1727 11.65 10.50 2566 4901 5334 2791
FR (%) 2637 2570 19.68 3351 5542 5942 36.68
ACR (%) | 1506 5.00 3.50 1107 938 862 879
Acc. (%) 6637 45.50 53.81 5899 39.07 3600 49.96
ASR (%) 1 1776 11.78 10.45 2607 5149 5536 28.82
GAMA+Ours  pp g0 + 26.78 2534 19.61 3386 57.63 6118 37.40
ACR (%) 1519 474 3.56 1119 8838 836 8.65
Acc. (%) | 6568 4517 53.12 4725 3836 3331 47.15
EACL ASR (%) 1 18.68 12.44 11.70 4108 5243 5878 3252
FR (%) | 2775 2624 2119 4799 5830 6416 4095
ACR (%) | 1522 473 3.66 990 891 803 841
Acc. (%) | 6549 44.89 53.14 4793 3324 2864 4556
EACLsOurs  ASR(@)T 1888 12.74 11.58 4025 5885 6460 34.48
FR (%) 1 27.90 2612 20,88 4728 6403 6919 4257
ACR (%) 1507 4.46 3.54 1010 794 700 801
Acc. (%) | 67.57 4524 53.61 5310 39.84 3701 5023
PDCL ASR (%) 1 1620 12.10 10.74 2715 5056 5409 28.47
FR (%) 1 2529 2543 19.84 3492 5677 5998 37.04
ACR (%) | 1524 4.55 347 1091 912 854 8.64
Acc.(%)| 6153 45.13 5348 5763 3953 3567 49.83
PDCLsours  ASR(@)T 1624 12.38 10.88 2782 5106 5578 29.03
FR (%) 1 25.27 25.69 19.92 3554 57209 6150 37.54
ACR (%) | 1516 4.59 3.36 1109 942 831 866

indicating that our method enhances attack effectiveness against the standard input pre-processing
defenses.

Attack robustness on zero-shot image classification. We also evaluated our method on the zero-
shot image classification task with the well-known CLIP Radford et al. (2021) vision-language model
in Table S17. Here, we observe that, except for BIA Zhang et al. (2022b) and FACL Yang et al.
(2024a), we observe boosted attacked accuracy when we add our method to the baselines Naseer
et al. (2019); Nakka & Salzmann (2021); Aich et al. (2022); Yang et al. (2024b). We conjecture that
the slight attack strength degradation owes to the baseline method that has already been well-fitted
to generate adversarial examples effective for the zero-shot setting based on the relatively lower
accuracy scores than the rest. We posit that the respective well-trained generator is already adept
enough that our method may interfere with the learned generator weights negatively, and there may
exist a maximum capacity at which AEs from generative model-based attacks can attack victim
models.

Random trials for Baseline Zhang et al. (2022b) with Ours. In Table S19, we further show that
our method exhibits stable training results (mean=+std.dev.) as shown from multiple random seed
trials evaluated on all four cross-settings.

Attack robustness against real-world systems. In order to be on the path to the paradigm of
commercial models that are currently being actively deployed, we tested our attack strategy against
multi-modal large language models on zero-shot image classification and image captioning in
Tables S17 and S18, respectively. For the zero-shot image classification task with the well-known
CLIP Radford et al. (2021) vision language model, we observe that, except for BIA Zhang et al.
(2022b) and FACL Yang et al. (2024a), we observe improved attacked accuracy when we add our
method to the baselines Naseer et al. (2019); Nakka & Salzmann (2021); Aich et al. (2022); Yang et al.
(2024b). We conjecture that the slight attack strength degradation owes to the baseline method that has
already been well-fitted to generate adversarial examples effective for the zero-shot setting based on
the relatively lower accuracy scores than the rest. We posit that the respective well-trained generator
is already adept enough that our method may interfere with the learned generator weights negatively,
and there may exist a maximum capacity at which AEs from generative model-based attacks can
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Table S15: Additional input processing defenses.
Random Rotation (deg) Smoothing (Kernel) Total Var. Min. Random Pixel

Avg. 30 50 70 90 Gaussian Median Mean TVM PD

Acc. (%) | 37.08 33.59 29.20 26.27 24.92 58.75  54.27 59.06 41.17 41.62

BIA ASR (%) 1 53.95 58.38 63.86 67.52 69.26 26.66 32.44 26.15 49.05 48.48
FR (%) 1T 59.56 63.89 68.66 71.81 73.34 34381 40.36 34.46 55.38 54.98

ACR (%) ] 836 791 697 640 631 1194 11.77 11.76 9.87 9.96

Acc. (%) | 34.05 28.61 28.43 2227 21.18 5555 49.61 57.20 37.42 38.15

BIA w/ Ours ASR (%) 1 57.75 64.52 64.79 72.44 73.86 30.84 3844 28.63 53.61 52.77
FR (%) 1T 63.01 69.32 69.50 76.14 77.43 38.88 4582 36.70 59.60 58.86

ACR (%) 7.80 6.62 6.76 5.36 534 12.01 11.37 11.88 8.76 9.09

Acc. (%) | 31.66 26.10 26.25 20.18 19.10 5247  45.53 54.05 35.08 35.78

GAMA ASR (%) T 60.67 67.59 67.48 75.03 76.46 34.61 4345 32.55 56.41 55.52
FR (%) 1T 65.60 71.93 71.88 78.35 79.57 42.41 50.40 40.47 62.00 61.17

ACR (%) 7.12 590 6.19 488 4.88 11.15 10.32 11.18 7.88 7.97

Acc. (%) | 30.30 25.31 21.75 19.41 1841 52.09 43.89 5391 32.60 33.61

GAMA w/ Ours ASR (%) 1 62.37 68.63 73.06 76.01 77.29 35.09 4546 32.76 59.55 58.28
FR (%) 1T 67.08 72.92 76.65 79.26 80.33 42.71 52.09 40.62 64.77 63.66

ACR (%) ] 6.86 593 516 477 4.65 11.09 9.80 11.25 7.48 7.68

Acc. (%) ] 27.12 22.00 18.64 16.68 1584 45091 36.29 48.38 32.40 33.11

FACL ASR (%) 1 66.41 72.75 77.08 79.49 80.59 4291 55.01 39.73 59.88 59.00
FR (%) 1T 70.66 76.42 80.21 82.20 83.13 49.88  60.58 46.97 64.60 64.31

ACR (%) 644 522 495 443 442 10.14 8.46 10.34 7.74 7.89

Acc. (%) | 25.30 19.68 1691 15.20 14.61 43.08 33.43 46.18 30.56 31.32

FACL w/ Ours ASR (%) 1 68.69 75.78 79.19 81.35 82.13 46.35  58.54 42.50 62.15 61.28
FR (%) 1T 72.68 79.02 81.99 83.83 84.49 5295 63.78 49.47 67.02 66.33

ACR (%) 6.08 5.15 447 415 4.6 9.29 797  9.97 7.25 7.66

Acc. (%) | 31.34 26.04 22.50 21.84 19.02 52.68  45.87 56.05 32.97 34.40

PDCL ASR (%) 1 60.87 67.76 72.16 73.00 76.50 31.79  43.04 29.95 59.06 57.78
FR (%) 1T 65.75 72.10 7591 76.60 79.65 39.75  50.02 38.04 64.29 63.17

ACR (%) ] 7.09 620 539 535 4.67 1142 1041 11.30 7.46 7.87

Acc. (%) ] 30.80 2520 21.84 19.58 18.63 53.77 4534 55.29 32.64 33.71

PDCL w/ Ours ASR (%) 1 61.76 68.80 73.00 75.85 77.04 32.87 43.68 30.98 59.54 58.26
FR (%) 1T 66.54 73.03 76.60 79.06 80.16 40.66  50.63 38.92 64.34 63.74

ACR (%) 7.02 6.00 535 497 480 11.03 10.22 11.39 7.63 8.06

attack victim models. Against LLaVA 1.5-7B Liu et al. (2023a), our attack on the image captioning
task, compared with the baseline, shows competitive attack potential. Although our attack is crafted
using an image-only CNN surrogate model and its impact on similar architectures is most notable, we
observe that attacking the image branch of the concurrent multi-modal models can also be a viable
option for adversarial attacks. We defer this to future exploration along with the text-side attacks. Our
method thus well demonstrates the potential to further impair the recognition capabilities of large,
deployed multimodal models, including vision-language systems such as LLaVA and GPT-4o.

Spectral energy comparison by band. We emphasize that the spectral ratios in Table 6 and the
band-wise t-SNE Maaten & Hinton (2008) visualizations of generator intermediate features (after
resblock3) in Fig. S11 are obtained in two different but complementary ways. For Table 6, we
work purely in the frequency domain: for each generator output, we compute the 2D FFT, partition
the spectrum into a low band (p < 0.2) and its complement (p > 0.2) based on the normalized
radial distance p from the DC component, and then integrate the power over each band. The reported
numbers are therefore scalar ratios of Fourier-domain energy between low and the remaining higher
frequencies. In contrast, for Fig. S11 we first apply radial masks to the FFT of the intermediate feature
maps after resblock3, isolate either the low band (p < 0.2) or an extreme high band (p > 0.8),
and then perform an inverse FFT. This yields band-limited reconstructions back in the image space of
the features, which we average over the validation set. The visualization then shows the spatial low-
and extreme-high-frequency content, rather than showing raw power spectrum of each band.

The qualitative effects in Fig. S11 are consistent with the quantitative trends in Table 6. Across
baselines, SCGA increases the low-band energy ratio and decreases the high-band ratio in Table 6. In
the visualization, this appears as low-band reconstructions with brighter and more compact regions for
SCGA, compared to the more diffuse patterns of the baselines. These bright areas indicate that a larger
fraction of feature variance is carried by smoothly varying, semantically aligned components in the
low band, which explains the higher low-band energy ratios. In contrast, the high-band reconstructions
with SCGA are less peaky and more spatially dispersed, with fewer intensely bright spots. This
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Table S16: Adversarial transferability results with our
method against purification method tested on Inc-V3
victim model, and random seed testing. Better results
in boldface.

Purification

Method Metric NRP  NRPResNet &  Table S17: Real-world system evaluations (400 ran-
Benign Acc. % 76.19 dom images).
Acc. (%) | 71.14 67.04 69.09
ASR 10.2! 15.94 13.11
CDA F?Q (EZI)J)TT ](7) 42 22 (9)0 28 73 Task Zero-Shot Cls. (Acc. %)
G - - . Data subset ImageNet-R ImageNet-1K
ACR (%) | 11.73 12.53 12.13 Model GPTdommin: P o mini P
Acc. (%)} 70.90 66.16 68.53 oce —o-min o -
Benign 2725 34125 17.50
Wom AT IE 70 IBRU Baseline 6.75 5.00 3.00
FR(%)1  18.15 25.25 21.70 o i e K]
ACR (%) | 12.11 12.51 12.31
Acc. (%) | 72.19 67.65 69.92
ASR (%)t 8.82 15.22 1202 Table S18: Multi-modal large language model
LTp FR(%)1  15.59 2315 19.37 luati th . )
ARG [ 1142 583 - o ualtlons with a prompt Pr’ov1de a short
Acc. (%) 7178 6551 6865 caption for this image’.
ASR (%) 1 9.45 17.97 13.71
/ Ours
W FR (%) t 16.34 25.98 21.16 Task Tmage Captioning (MS COCO) on LLaVA 1.5-7B
ACR (%) | 11.69 12.63 12.16 Metric ~ BLEU-4  METEOR  ROUGE-L  CIDEr _ SPICE
Acc. (%) 1 73.84 71.93 72.89 Benign 349 29.1 58.0 1227 229
BIA I%SRR(‘(’/W;)TT 16276 196;2305 174721 BIA 350 286 574 124.9 227
o . . . w/ Ours 345 284 57.0 123.1 222
ACR (%) | 19.51 11.53 11.02
Acc. (%) | 73.85 71.40 72.63 .
/6 ASR (%) 1 6.36 10.00 818  Table S19: Random trials for Ours added to the base-
WIRUS T FR (%) 12.63 17.31 1497 line Zhang et al. (2022b).
ACR (%)} 1052 11.89 1121
Acc. (%) | 74.42 72.30 73.36 T C - T ASRT =T AR
ral Toss- ccuracy
GAMA  ASR(W)T 535 8.53 6.94
FR (%) 1 10.96 15.35 13.16 Domain 47.99 48.14 50.81 10.24
ACR (%) | 9.67 10.96 1032 | Model 46.12 42.67 48.69 8.34
Acc. (%) 1 74.31 71.78 73.05 Task (OD) 24.51 (MAP50)
w/ Ours ASR (%) 1 5.65 9.32 7.49 Task (SS) 23.02 (mloU)
ER (%) 1 11.60 16.32 13.96 Domain 4195 48.19 50.86 1031
ACR (%) |  10.17 11.29 10.73 ,  Model 46.26 42.53 48.49 8.32
Acc. (%) 7423 71.95 73.09 Task (OD) 24.52 (MAP50)
FACL ASR (%) 1 5.68 9.07 7.38 Task (SS) 24.33 (mloU)
FR (%) 1 11.57 15.94 13.76 Domain 47.10 49.02 51.66 9.66
ACR (%) | 9.94 11.22 10.58 N Model 45.86 43.04 49.00 8.28
Acc (%)) 7421 72.00 73.11 Task (OD) 24.52 (mAPS0)
w/ Ours ASR (%) © 5.69 8.98 7.34 Task (SS) 23.20 (mloU)
:(?R((@)T 191'9%2 }??i iggi Domain  47.58 £ 0.41 48.45+0.40 51.11+039 10.07 +0.29
(%) | : c b Model ~ 46.08 £0.17 4275+£022 4873 £021 831 +003
Acc. (%)} 7404 71.55 72.80 Avg. Tk OD) 2057 00T mAPSD)
PDCL /}SRR(EZ;)TT 162 1266 1966832 &95(:‘ Task (SS) 23.52 + 058 (mloU)
‘0 N B o
ACR (%) ] 10.66 11.34 11.00
Acc. (%) 7417 71.76 72.97
/0 ASR (%) 1 5.92 9.32 7.62
wrurs FR (%) 1 11.91 16.43 14.17
ACR (%)} 1045 11.20 10.83

visual pattern matches the reduced and less concentrated high-frequency energy in Table 6 and
suggests that sharp surrogate-specific artifacts are attenuated and spread out. The PDCL case is a
mild exception. Table 6 still reports a net shift of energy toward the low band, but in Fig. S11 the
remaining extreme-high-frequency content becomes slightly more localized, which is consistent with
the relatively modest gains of PDCL+SCGA in the transferability results.

Side-by-side visualization with the baseline. To directly compare our method against the baseline
qualitatively, we visualize them in Fig. S12. Here, we observe that the predictions after each attack are
highly similar, yet the object-aligned patterns in the perturbations are vastly different. Our perturbation
demonstrates more vivid perturbations concentrate on the foreground regions without blurs in the
noise pattern, suggesting that our intended object-aligned perturbations improved compared to those
of the baseline.

E.6 LIMITATIONS AND BROADER SOCIETAL IMPACTS
Our method exposes vulnerabilities in generative attack pipelines, yet its transferability gains re-

main bounded by the underlying generator architecture. By revealing these constraints in publicly
available generative models, we contribute to exposing safety vulnerabilities of neural networks.
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The demonstrated transferability of generator internal semantic-aware perturbations underscores
the need for adversarial robustness and motivates integrating safety measures, such as early-block
regularization or semantic-consistency checks, into future network designs. Moreover, our approach
targeting the adversarial perturbation process directly differs in principle from those that explicitly
target benign-adversarial divergence in the surrogate model level. Therefore, our method stands as a
compatible method to enhance those methods further, not to be assessed on the same grounds.

REFERENCES

Abhishek Aich, Calvin-Khang Ta, Akash Gupta, Chengyu Song, Srikanth Krishnamurthy, Salman
Asif, and Amit Roy-Chowdhury. Gama: Generative adversarial multi-object scene attacks. Ad-
vances in Neural Information Processing Systems, 35:36914-36930, 2022. 1,2,4,7, 10, 11, 12,
13,18

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
arXiv preprint arXiv:2106.08254,2021. 10, 11

Han Cai, Junyan Li, Muyan Hu, Chuang Gan, and Song Han. Efficientvit: Multi-scale linear attention
for high-resolution dense prediction. arXiv preprint arXiv:2205.14756,2022. 10, 11

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European conference on computer
vision, pp. 213-229. Springer, 2020. 3, 10, 11

Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris Tsipras,
Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarial robustness.
arXiv preprint arXiv:1902.06705, 2019. 1

Jianqi Chen, Hao Chen, Keyan Chen, Yilan Zhang, Zhengxia Zou, and Zhenwei Shi. Diffusion models
for imperceptible and transferable adversarial attack. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024. 3

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the
European conference on computer vision (ECCV), pp. 801-818, 2018. 3, 10, 11

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3213-3223, 2016. 10

Xuelong Dai, Kaisheng Liang, and Bin Xiao. Advdiff: Generating unrestricted adversarial examples
using diffusion models. In European Conference on Computer Vision, pp. 93—109. Springer, 2024.
3

Simon D’ Alfonso. On quantifying semantic information. Information, 2(1):61-101, 2011. 7

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boosting
adversarial attacks with momentum. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 9185-9193, 2018. 2

Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Evading defenses to transferable adversarial ex-
amples by translation-invariant attacks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4312-4321,2019. 1,2

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
ICLR, 2021. 10, 11

Hao Fang, Jiawei Kong, Bin Chen, Tao Dai, Hao Wu, and Shu-Tao Xia. Clip-guided generative
networks for transferable targeted adversarial attacks. In European Conference on Computer
Vision, pp. 1-19. Springer, 2024. 1, 15, 17

21



Luciano Floridi. What is the philosophy of information? Metaphilosophy, 33(1-2):123-145, 2002. 7

Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.
Born again neural networks. In International conference on machine learning, pp. 1607-1616.
PMLR, 2018. 2

Shanghua Gao, Zhong-Yu Li, Ming-Hsuan Yang, Ming-Ming Cheng, Junwei Han, and Philip Torr.
Large-scale unsupervised semantic segmentation. 2022. 7

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision,
pp.- 1440-1448, 2015. 3, 10, 11

Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens Van Der Maaten. Countering adversarial
images using input transformations. arXiv preprint arXiv:1711.00117,2017a. 10

Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens Van Der Maaten. Countering adversarial
images using input transformations. arXiv preprint arXiv:1711.00117,2017b. 17

Ali Hatamizadeh and Jan Kautz. Mambavision: A hybrid mamba-transformer vision backbone. In
Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 25261-25270, 2025.
10, 11

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016. 2, 10, 11

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132-7141, 2018. 10

Chihan Huang and Xiaobo Shen. Huang: A robust diffusion model-based targeted adversarial attack
against deep hashing retrieval. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 3626-3634, 2025. 3

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In CVPR, 2017. 10, 11

Qian Huang, Isay Katsman, Horace He, Zeqi Gu, Serge Belongie, and Ser-Nam Lim. Enhancing
adversarial example transferability with an intermediate level attack. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 4733-4742, 2019. 4

Forrest N Tandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016. 10, 11

Kyungyul Kim, ByeongMoon Ji, Doyoung Yoon, and Sangheum Hwang. Self-knowledge distillation
with progressive refinement of targets. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 6567-6576, 2021. 2

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In /CLR, 2015. 11

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 4015-4026, 2023. 8

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In 2013 IEEE International Conference on Computer Vision Workshops, pp.
554-561, 2013. doi: 10.1109/ICCVW.2013.77. 10, 11

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016. 1, 10

Chun Tong Lei, Zhongliang Guo, Hon Chung Lee, Minh Quoc Duong, and Chun Pong Lau. Towards

more transferable adversarial attack in black-box manner. arXiv preprint arXiv:2505.18097, 2025.
3

22



Maosen Li, Cheng Deng, Tengjiao Li, Junchi Yan, Xinbo Gao, and Heng Huang. Towards transferable
targeted attack. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 641-649, 2020a. 1

Qizhang Li, Yiwen Guo, and Hao Chen. Yet another intermediate-level attack. In European
Conference on Computer Vision, pp. 241-257. Springer, 2020b. 4

Qizhang Li, Yiwen Guo, Wangmeng Zuo, and Hao Chen. Improving adversarial transferability via
intermediate-level perturbation decay. Advances in Neural Information Processing Systems, 36:
32900-32912, 2023. 4

Zheng Li, Xiang Li, Lingfeng Yang, Renjie Song, Jian Yang, and Zhigeng Pan. Dual teachers for
self-knowledge distillation. Pattern Recognition, 151:110422, 2024. 2

Feng Liang, Bichen Wu, Xiaoliang Dai, Kunpeng Li, Yinan Zhao, Hang Zhang, Peizhao Zhang,
Peter Vajda, and Diana Marculescu. Open-vocabulary semantic segmentation with mask-adapted
clip. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
7061-7070, 2023. 8

Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, and John E Hopcroft. Nesterov accelerated
gradient and scale invariance for adversarial attacks. arXiv preprint arXiv:1908.06281, 2019. 1

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollér, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer vision—
ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, proceedings,
partv 13, pp. 740-755. Springer, 2014. 10

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023a. 19

Jiayang Liu, Siyu Zhu, Siyuan Liang, Jie Zhang, Han Fang, Weiming Zhang, and Ee-Chien Chang.
Improving adversarial transferability by stable diffusion. arXiv preprint arXiv:2311.11017, 2023b.
3

Renyang Liu, Wei Zhou, Tianwei Zhang, Kangjie Chen, Jun Zhao, and Kwok-Yan Lam. Boosting
black-box attack to deep neural networks with conditional diffusion models. IEEE Transactions
on Information Forensics and Security, 19:5207-5219, 2024. 3

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012-10022, 2021. 10, 11

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976-11986, 2022. 11

Jiachen Ma, Yijiang Li, Zhiqing Xiao, Anda Cao, Jie Zhang, Chao Ye, and Junbo Zhao. Jailbreak-
ing prompt attack: A controllable adversarial attack against diffusion models. arXiv preprint
arXiv:2404.02928, 2024. 3

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579-2605, 2008. 19

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017. 1,2

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew B. Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. ArXiv, abs/1306.5151,2013. URL https://api.semantic
scholar.org/CorpusID:2118703. 10, 11

Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of torch. In
Proceedings of the 18th ACM international conference on Multimedia, pp. 1485-1488, 2010. 10,
11

23


https://api.semanticscholar.org/CorpusID:2118703
https://api.semanticscholar.org/CorpusID:2118703

Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey
Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, et al. Simple
open-vocabulary object detection. In European conference on computer vision, pp. 728-755.
Springer, 2022. 8

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1765-1773, 2017. 2

Krishna Nakka and Mathieu Salzmann. Learning transferable adversarial perturbations. In A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=sIDvIyR5I1R.
1,2,4,10, 11, 12, 18

Krishna Kanth Nakka and Alexandre Alahi. Nat: Learning to attack neurons for enhanced adversarial
transferability. In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
pp- 7593-7604. IEEE, 2025. 1, 2, 10

Muhammad Muzammal Naseer, Salman H Khan, Muhammad Haris Khan, Fahad Shahbaz Khan,
and Fatih Porikli. Cross-domain transferability of adversarial perturbations. Advances in Neural
Information Processing Systems, 32,2019. 1,2,4, 10, 11, 12, 18

Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli. A
self-supervised approach for adversarial robustness. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 262-271, 2020. 16

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023. 8

Jinjia Peng, Zeze Tao, Huibing Wang, Meng Wang, and Yang Wang. Boosting adversarial transfer-
ability via residual perturbation attack. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 1261-1270, 2025. 1

Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge Belongie. Generative adversarial pertur-
bations. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
4422-4431,2018. 1,2, 3,4, 10

Aaditya Prakash, Nick Moran, Solomon Garber, Antonella DiLillo, and James Storer. Deflecting
adversarial attacks with pixel deflection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 8571-8580, 2018. 17

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PMLR, 2021. 1,7, 18

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dolldr. Designing
network design spaces. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10428-10436, 2020. 10, 11

Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang, Jie Zhou,
and Jiwen Lu. Denseclip: Language-guided dense prediction with context-aware prompting.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
18082-18091, 2022. 9

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention—-MICCAI
2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part I11
18, pp. 234-241. Springer, 2015. 2

Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: nonlinear phenomena, 60(1-4):259-268, 1992. 17

24


https://openreview.net/forum?id=sIDvIyR5I1R

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Fei-Fei Li.
Imagenet large scale visual recognition challenge. 1IJCV, 2015. 10, 11

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localiza-
tion. In Proceedings of the IEEE international conference on computer vision, pp. 618-626, 2017.
12, 15

Gyungin Shin, Samuel Albanie, and Weidi Xie. Unsupervised salient object detection with spectral
cluster voting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3971-3980, 2022. 9

Naman D Singh, Francesco Croce, and Matthias Hein. Revisiting adversarial training for imagenet:
Architectures, training and generalization across threat models. In NeurIPS, 2023. 10

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In CVPR, 2016. 10, 11

Mingxing Tan and QV Le. Efficientnetv2: Smaller models and faster training. arxiv 2021. arXiv
preprint arXiv:2104.00298. 10, 11

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 2820-2828, 2019. 10, 11

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results. Advances in neural information processing
systems, 30, 2017. 2, 11

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in neural information processing systems, 34:24261—
24272,2021. 10, 11

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
conference on machine learning, pp. 10347-10357. PMLR, 2021. 10, 11

Asher Trockman and J Zico Kolter. Patches are all you need? arXiv preprint arXiv:2201.09792, 2022.
10, 11

Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao
Li. Maxvit: Multi-axis vision transformer. In European conference on computer vision, pp.
459-479. Springer, 2022. 10

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011
Dataset. Technical report, California Institute of Technology, 2011. 10, 11

Rui Wang, Zuxuan Wu, Zejia Weng, Jingjing Chen, Guo-Jun Qi, and Yu-Gang Jiang. Cross-domain
contrastive learning for unsupervised domain adaptation. /[EEE Transactions on Multimedia, 2022.
1,4

Xiaosen Wang, Xuanran He, Jingdong Wang, and Kun He. Admix: Enhancing the transferability
of adversarial attacks. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 16158-16167, 2021. 1

Zhibo Wang, Hongshan Yang, Yunhe Feng, Peng Sun, Hengchang Guo, Zhifei Zhang, and Kui Ren.
Towards transferable targeted adversarial examples. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 20534-20543, 2023. 1

Ross Wightman. PyTorch Image Models. URL https://github.com/huggingface/pyt
orch—-image-models. 10, 11

25


https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models

Shangbo Wu, Yu-an Tan, Ruinan Ma, Wencong Ma, Dehua Zhu, and Yuanzhang Li. Boosting
generative adversarial transferability with self-supervised vision transformer features. arXiv
preprint arXiv:2506.21046, 2025. 1

Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song. Generating adversarial
examples with adversarial networks. arXiv preprint arXiv:1801.02610, 2018. 2

Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating adversarial effects
through randomization. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=Sk9yuqgl0z. 10, 17

Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan L Yuille.
Improving transferability of adversarial examples with input diversity. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 2730-2739, 2019. 1, 2

Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Segformer:
Simple and efficient design for semantic segmentation with transformers. Advances in neural
information processing systems, 34:12077-12090, 2021. 3, 10, 11

Saining Xie, Ross Girshick, Piotr Dolldr, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1492-1500, 2017. 11

Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial examples in
deep neural networks. In NDSS, 2018. doi: 10.14722/ndss.2018.23295. URL https:
//www.ndss—symposium.org/ndss—paper/feature-squeezing—-detecting
—adversarial-examples—in—-deep—-neural-networks/. 10,17

Haotian Xue and Yongxin Chen. Rethinking adversarial attacks as protection against diffusion-based
mimicry. In Proceedings of the NeurlPS 2024 Workshop on Safe Generative Al, 2024. URL
https://neurips.cc/virtual/2024/106308. Poster. 3

Hunmin Yang, Jongoh Jeong, and Kuk-Jin Yoon. Facl-attack: Frequency-aware contrastive learn-
ing for transferable adversarial attacks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 6494-6502, 2024a. 1, 2,4, 10, 11, 12, 13, 16, 18

Hunmin Yang, Jongoh Jeong, and Kuk-Jin Yoon. Prompt-driven contrastive learning for transferable
adversarial attacks. In European Conference on Computer Vision, pp. 36-53. Springer, 2024b. 1,
2,4,7,10, 11,12, 13,17, 18

Sukmin Yun, Jongjin Park, Kimin Lee, and Jinwoo Shin. Regularizing class-wise predictions via self-
knowledge distillation. In The IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020. 2

Bowen Zhang, Zhi Tian, Quan Tang, Xiangxiang Chu, Xiaolin Wei, Chunhua Shen, et al. Segvit:
Semantic segmentation with plain vision transformers. Advances in Neural Information Processing
Systems, 35:4971-4982, 2022a. 9

Chaoning Zhang, Adil Karjauv, Philipp Benz, Soomin Ham, Gyusang Cho, Chan-Hyun Youn, and
In So Kweon. Is fgsm optimal or necessary for loo adversarial attack? In Workshop on Adversarial
Machine Learning in Real-World Computer Vision Systems and Online Challenges (AML-CV).
Computer Vision Foundation (CVF), IEEE Computer Society, 2021. 2

Qilong Zhang, Xiaodan Li, Yuefeng Chen, Jingkuan Song, Lianli Gao, Yuan He, and Hui Xue. Beyond
imagenet attack: Towards crafting adversarial examples for black-box domains. In International
Conference on Learning Representations, 2022b. 1,2,4,5,6,9, 10, 11, 12, 13, 15, 18, 20

Ying Zhang, Tao Xiang, Timothy M Hospedales, and Huchuan Lu. Deep mutual learning. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4320-4328,
2018. 2

Angqi Zhao, Tong Chu, Yahao Liu, Wen Li, Jingjing Li, and Lixin Duan. Minimizing maximum
model discrepancy for transferable black-box targeted attacks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 8153-8162, 2023. 1, 15

26


https://openreview.net/forum?id=Sk9yuql0Z
https://www.ndss-symposium.org/ndss-paper/feature-squeezing-detecting-adversarial-examples-in-deep-neural-networks/
https://www.ndss-symposium.org/ndss-paper/feature-squeezing-detecting-adversarial-examples-in-deep-neural-networks/
https://www.ndss-symposium.org/ndss-paper/feature-squeezing-detecting-adversarial-examples-in-deep-neural-networks/
https://neurips.cc/virtual/2024/106308

Zhengyu Zhao, Hanwei Zhang, Renjue Li, Ronan Sicre, Laurent Amsaleg, Michael Backes, Qi Li,
Qian Wang, and Chao Shen. Revisiting transferable adversarial images: Systemization, evaluation,
and new insights. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025. 17

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot: Image
bert pre-training with online tokenizer. International Conference on Learning Representations
(ICLR), 2022. 8

Wen Zhou, Xin Hou, Yongjun Chen, Mengyun Tang, Xiangqi Huang, Xiang Gan, and Yong Yang.
Transferable adversarial perturbations. In Proceedings of the European conference on computer
vision (ECCV), pp. 452-467,2018. 4

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
mamba: Efficient visual representation learning with bidirectional state space model. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/f
orum?id=YbHCqgn4qgF4. 10, 11

Song-Chun Zhu, David Mumford, et al. A stochastic grammar of images. Foundations and Trends®
in Computer Graphics and Vision, 2(4):259-362, 2007. 7

Xueyan Zou, Jianwei Yang, Hao Zhang, Feng Li, Linjie Li, Jianfeng Wang, Lijuan Wang, Jianfeng
Gao, and Yong Jae Lee. Segment everything everywhere all at once. Advances in neural information
processing systems, 36:19769-19782, 2023. 8

27


https://openreview.net/forum?id=YbHCqn4qF4
https://openreview.net/forum?id=YbHCqn4qF4

blockl block2 block3 resblockl resblock2 resblock3 resblockd. resblocks resblocks upsampll upsampl2 blockf

blockl block2 block3 resblockl resblock2 resblock3 resblockd. resblocks resblocks upsampll upsampl2 blockf

CDA vs. w/ Ours

blockl block2 block3 resblockl resblock2 resblock3 resblockd resblocks resblocks upsampll upsampl2 blockf

resblockl resblock2 resblock3 resblockd. resblocks resblocks upsampll upsampi2 blockf

blockl block2 block3 resblockl resblock2 resblock3 resblockd resblocks resblocké upsampll upsampl2 blockt

LTP vs. w/ Ours

BIA vs. w/ Ours

DiockL oiockz resiock resoiocko upsampiL upsampiz oiockr
e ’
block1 block2 block3 resblockl resblock2 blocks blocks blocks resblocks upsampil upsampi2 block

blockl block2 block3 resblockl resblock2 resblock3 resblockd resblocks resblocks upsampl1 upsampl2 blockf

b

blockl block2 block3 resblockl resblock2 resblock3 resblockd resblocks resblocké upsampll upsampl2 blockf

blockl block2 block3 resblockl resblock2 resblock3 resblockd resblocks resblocké upsampll upsampl2 blockf

GAMA vs. w/ Ours

FACL vs. w/ Ours

oca oo bocs | reokt | resda | restodks | resvaced e
ﬂ [ ; i
docktbloc2 bocks resbocki  resbock2 resbodd rescki restocks resbocks  upsompl upsomp2 bkl

i
METEEEEGEEEE

Figure S10: Feature difference map comparisons. Our method noticeably adds noise to object-salient regions
in the generator intermediate features, as visible by the distinctive difference from each baseline. For each input
on the leftmost column, we visualize the output feature map of each block in the generator in each column
(left—right): thresholded (7 = 0.6) binary mask (row I) after min-max normalization and feature activation
difference maps (row 2). In the in the resblocks in particular, our method further guides perturbations around
the object semantic structure, enhancing transferable noise generation.

PDCL vs. w/ Ours

28



'CDA_OURS

= s& ‘7 DA

e

50 BIA] FACL_OURS' _d
P.OURS
s v

P
E) 160

Low

tsnE2

High

BIA BIA GAMA GAMA FACL FACL PDCL PDCL
w/ Ours w/ Ours w/ Ours w/ Ours

o [
tShEL

Figure S11: Left: t-SNE visualization of the intermediate generator features after resblock3 for all methods,
showing how the additions of Ours (SCGA) shift the internal feature geometry. The largest displacement appears
for our primary baseline, BIA. Right: Low- and extreme high-band components of the same intermediate
features, reconstructed in the image space by applying radial masks to their 2-D FFTs (p < 0.2 and p > 0.8) and
averaging over the validation set. For each baseline and its SCGA-augmented variant, SCGA yields low-band
reconstructions with brighter and more compact regions and high-band reconstructions that are less peaky
and more spatially dispersed. This joint behavior agrees with the spectral ratios in Table 6 and indicates a
redistribution of energy toward semantically aligned low frequencies together with attenuation of sharp surrogate-
specific high-frequency artifacts.
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Figure S12: Side-by-side visualization of results on CUB-200-2011, Stanford Cars, FGVC Aircraft, and Ima-
geNet. The attacked predictions are similar, yet the perturbation patterns are visibly different.
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