
Under review as a conference paper at ICLR 2024

ELASTIC LOAD BALANCING FOR DYNAMIC LLMS
SUPPLEMENTARY MATERIAL

Anonymous authors
Paper under double-blind review

A BUBBLE RATIO IN THE STATIC MODEL

In this Section we describe the theoretical bubble ratio that appears in the static model. The bubble
ratio refers to the ratio of the idle time of devices when different workers (GPUs) stall while waiting
for work to be available. Additional bubbles appear in the pipeline when the model become dynamic;
due to pruning while training. The bubble ratio for the Chimera Li & Hoefler (2021) (2-model
duplicate) pipeline scheme we use in the paper is:(

3
(

P 2

2 − P
)
+ 6P − 2

(
P 2

2 − P
)
/P − 8

)
TC + 2

(
P 2

2 − P
)
TB

(3P 2 − 2P)TC + (2P 2 − 2P)TB + P 2TF
(1)

where S is the number of pipeline stages, B is the number of micro-batches (chunks) in a single
iteration, P is the number of workers used in the pipeline, TF is the time cost for a complete forward
pass (all forward stages added together) divided by P, TB is the time cost for a complete backward
pass (all backward stages added together) divided by P, and TC is the communication time for
moving a from a worker to its neighbor for the un-overlappable portion of communication.

The bubble ratio is derived from the un-overlappable portions of communication TC and forward
pass TB (numerator of Equation 1) from the entire end-to-end span of the pipeline (denominator of
Equation 1), where

(
P 2

2 − P
)

is the gaps/stalls in the pipeline due to lack of components to overlap
after the forward and backward passes of the two duplicate models have been overlapped.

Figure 1 illustrates how the bubbles attributed to the dynamic sparsification adds up to, and is dif-
ferent from, the inherent bubbles that are observed in the pipeline scheme.

B PRUNING, LOAD BALANCING, AND PACKING

B.1 NEURAL NETWORKS PRUNING

There are three main considerations that need to be taken into account when applying network
pruning: criterion, structure, and schedule of the pruning.

Time

1 2 3 4
1 2 3

1 2 4
1 5

Forward Backward

GPU 0

GPU 1

GPU 2

GPU 3

Sync

(b) Pipeline parallel training with Chimera: imbalanced stagesExtra bubbles induced
by dynamicity

(a) Pipeline parallel training with Chimera: balanced stagesInherent bubbles of
pipeline schedule

2
5

6
3
5

5
4
6

6
5 6 6 7 7

5 7 6 8
8 8
7

7 5
5

8 6
3 7 4 8

1
1

1

1

8
7

6
2

2
2

2
8

7 8
3

4

3
4

3
4

4

1 2 3 4
1 2 3

1 2 4
1 5

GPU 0

GPU 1

GPU 2

GPU 3

Sync

2
5

6
3

5
5

4
6

6
5 6 6 7 7

5 7 6 8
8 8

7
7 5

5
8 6

3 7 4 8
1

1
1

1

8
7

6
2

2
2

2
8

7 8
3

4

3
4

3
4

4

3

fw bw inherent bubble
dynamism bubble

Figure 1: Illustration of bubble types in the Chimera Li & Hoefler (2021) pipeline scheme with
8 microbatches (only one of the duplicated models in Chimera is shown for simplicity). Each row
represent a GPU’s pipeline stages over time. Inherent bubbles in the pipeline are shown in gray and
bubbles introduced by dynamicity (e.g. sparsity) are shown in red.

1

Under review as a conference paper at ICLR 2024

Pruning Criterion: Every pruning scheme needs to define a criterion to choose which parameters to
prune. A non-exhaustive list of pruning criteria used in the literature includes: weight magnitude Li
et al. (2016); Renda et al. (2020), gradient magnitude Cun et al. (1990); Mozer & Smolensky (1989),
Bayesian statistics-based criteria Dai et al. (2018); Molchanov et al. (2017), and reinforcement learn-
ing based criteria Lin et al. (2017); He et al. (2018). These criteria can be applied either locally (i.e.
considering each layer’s weights separately) or globally (i.e. considering weights in all layers).

Pruning Structure: Parameters in a model can be removed in a structured or unstructured way.
Structured sparsity Kruschke & Movellan (1991) enforces a pattern to be applied while choosing
the parameters to be pruned. This can range from removing filters in a convolution layer to remov-
ing attention heads in a multi-headed attention layer. On the other hand, unstructured sparsity Han
et al. (2015) is not under the constraint of a pattern (i.e parameters can be freely removed), hence,
offers a finer granularity. Even though unstructured sparsity offers better flexibility, structured spar-
sity is more prevalent since it is difficult to implement efficient kernels for sparse data structures
in unstructured sparsity and deep learning frameworks have limited support for sparse computa-
tions. However, it has been shown that the enforcement of a certain structure for the pruning of
parameters can result in significant degradation in model quality compared to unstructured sparsity
Kalchbrenner et al. (2018); Elsen et al. (2020).

Pruning Schedule: After choosing the criterion and the structure of the pruning, one must decide
when to prune and how often to prune. The most popular schedule in the literature consists of
pruning after training is over, and then fine-tune the model to recover the loss introduced by the
pruning Han et al. (2015). Another effective approach is to remove a certain percentage of weights
progressively during the training until the target sparsity is reached Zhu & Gupta (2017), which
eliminates the fine-tuning process. There are also schedules that enforce a constant rate of sparsity
throughout the training Mocanu et al. (2018).

For a more comprehensive analysis of various sparsification procedures which are applied in deep
learning, we refer the reader to Hoefler et al. (2021).

B.2 GRADUAL GLOBAL MAGNITUDE PRUNING

For our pruning design, we use the gradual pruning schedule proposed in Zhu & Gupta (2017) which
is formulated as:

St = Sf + (Si − Sf)(1−
t− t0
n∆t

)3, t ∈ {t0, t0 +∆t, ..., t+ n∆t} (2)

where Si, Sf , n, t0, and ∆t are initial sparsity, final sparsity, number of pruning steps, initial pruning
step, and pruning frequency, respectively. The aim of this schedule is to prune the model rapidly in
the initial pruning steps since there are many irrelevant connections, then reduce the pruning rate as
the number of parameters in the network gets smaller.

Algorithm 1 Global Pruning Algorithm
Input: model, sparsity, rank
Output: model

1: params← concat params(model)
2: k← num params × (1 - sparsity)
3: local topk, local topk indices← topk(abs(params), k)
4: topk values← gather(local topk)
5: if rank == 0 then
6: global topk indices← topk(abs(topk values), k)
7: end if
8: indices to keep← scatter(global topk indices)
9: model = compress model(model, indices to keep)

10: return model

We employed an unstructured magnitude pruning technique as opposed to a structured one since
unstructured magnitude pruning typically retains better accuracy under high sparsity rates Prasanna
et al. (2020). Unstructured magnitude pruning is applied globally (taking all parameters in the model

2

Under review as a conference paper at ICLR 2024

Algorithm 2 Diffusion-based Load Balancing Algorithm
Input: loads, num ranks, max iters, times, mem info
Output: transfers (list)

1: transfers← []
2: for iter← 0 to max iters do
3: total loads← [sum(t) for t in times]
4: avg load← average(total loads)
5: var← variance(total loads)
6: status← [”Overloaded” if l > avg load
7: else ”Underloaded” for l ∈ loads]
8: for src← 0 to num ranks do
9: if status[src] == ”Overloaded” then

10: dst← get least loaded rank(loads)
11: lyr idx← get least loaded layer(src, times)
12: new loads← update loads(src, dst, lyr idx, loads)
13: new total loads← [sum(l) for l ∈ new loads]
14: new var← variance(new total loads)
15: mem req = sum(mem info[dst]) +
16: mem info[src][lyr idx]
17: if new var < var && mem req ¡ MAX MEM then
18: var← new var
19: loads← new loads
20: update mem info(src, dst, lyr idx, mem info)
21: transfers.append((src, dst, lyr idx))
22: end if
23: end if
24: end for
25: end for
26: return transfers

into account) instead of locally since it has been empirically shown that global pruning yields better
accuracy under high compression ratios Blalock et al. (2020).

To our knowledge, there is no deep learning framework that supports global pruning on a distributed
model at the time of this writing (support is only for undistributed models). Thus we implemented
our own global pruning algorithm as shown in Algorithm 1. The global pruning method takes three
arguments, namely the model, target sparsity, and the rank of the device. Note that each rank1 has
only its own portion of the model. First, each rank finds its own local top-k parameters in terms of
magnitude (line 3). Then, rank 0 gathers the top-k parameters of each rank (line 4). When rank 0
receives all top-k parameters, it calculates the indices of global top-k parameters to keep (line 6),
and sends the indices that belong to each rank (line 8). Finally, after each rank receives its indices
to keep, they prune (discard) parameters with all other indices in their local parameters (line 9).

B.3 LOAD BALANCING

DYNPIPE implements two load balancing algorithms, and can be extended to support other algo-
rithms. The first one is a centralized parameter-based partitioning method that balances partitions
based on the number of parameters. We also implemented a version where the same algorithm is
used for balancing partitions based on the layer execution times instead of the number of parame-
ters. This algorithm with two variants is built on top of DeepSpeed’s load balancing utility functions
for partitioning in model parallelism Smith (2023). The second algorithm is an iterative decentral-
ized diffusion-based algorithm that aims to minimize the variance between the workload of each
rank by attempting to move layers from overloaded ranks to underloaded ranks in an iterative way.
The workload can either be the layer execution times or the parameter counts as in the DeepSpeed-
based algorithms. The number of iterations to decide on the final load distribution is a user-defined
parameter.

1We use one MPI rank per GPU.

3

Under review as a conference paper at ICLR 2024

Algorithm 2 shows the pseudo-code for the diffusion-based load balancing algorithm. After rank 0
gathers the loads (i.e. layer execution times or the number of parameters for each layer) from all
ranks, it discovers all layer transfers between ranks by calling a diffusion re-balance function. The
number of iterations to minimize the variance is an argument that can be tuned according to the
workload. For each iteration of balancing, the total load of each rank, variance, and average load
are calculated (lines 3-5). Then, each rank is assigned a status: overloaded or underloaded (lines
6-7). After the status of each rank is assigned, each overloaded rank attempts to send its least loaded
layer to the least loaded rank (lines 7-24). Every time an overloaded rank attempts to send a layer
to an underloaded rank, new loads and variance are calculated (lines 12-14). If the new variance
is smaller than the current variance and it satisfies the memory constraints of the destination rank,
the transfer is accepted and added to the transfers list in the format of (source, destination, layer id)
(lines 17-22). When rank 0 discovers all layer transfers from source ranks to destination ranks, it
distributes the information to other ranks and the sparse format data structures, CSR, of the layers
to be transferred are sent to their new destinations.

We now demonstrate that the two load balancing schemes (used in Algorithm 2) meet the goals for
optimal load balancing by using the following lemmas. Detailed proofs on the lemmas are presented
in the supplementary material.

Lemma 1 A centralized load balancer Lc over N workers satisfies maximum reduction in the im-
balance Ni if and only if Ni reduces the bubble ratio to minimum.

Lemma 2 An iterative decentralized diffusion based load balancer Ld over N workers satisfies
maximum reduction in the imbalance Ni if and only if Ni reduces the bubble ratio to minimum. Also
the load balancer is guaranteed to converge to the maximum reduction in imbalance in the following
number of rounds

O

(
min

{
N2log

(
SN

γ

)
log N,

SN log N

γ

})
where γ ∈ R>0 is the convergence factor and S ∈ R>0 is the total number of stages in the pipeline.

B.3.1 PROOF OF LEMMA 1

Lemma 1. A centralized load balancer Lc over N workers satisfies maximum reduction in the
imbalance Ni if and only if Ni reduces the bubble ratio to minimum.

Proof. We will prove by contradiction. Suppose a centralized load balancer Lc over N workers sat-
isfies maximum reduction in the imbalance Ni when Ni has a bubble ratio higher then the minimum.
By the definition of maximum reduction in load balance, Lc must preserve maximum differential
between the loads of workers Ni and Nj , which Ni and Nj have the minimum load and maximum
loads in N , respectively. Consequently, increasing the bubble ratio of Nj changes the difference
of loads between Ni and Nj . This is in contradictory of Lc achieving the maximum reduction on
imbalance.

B.3.2 PROOF OF LEMMA 2

Lemma 2. An iterative decentralized diffusion based load balancer Ld over N workers satisfies
maximum reduction in the imbalance Ni if and only if Ni reduces the bubble ratio to minimum. Also
the load balancer is guaranteed to converge to the maximum reduction in imbalance in the following
number of rounds

O

(
min

{
N2log

(
SN

γ

)
log N,

SN log N

γ

})
where γ ∈ R>0 is the convergence factor and ∈ R>0 is the total number of stages in the pipeline.

4

Under review as a conference paper at ICLR 2024

Proof. We leverages core ideas from Lyapunov optimization. We first define a potential function, ϕ,
that measures at each round the total magnitude of workload gaps in the system:

∀r ≥ 0 : ϕ(r) =
∑

u,v∈V

|xu(r)− xv(r)|

Similar to a Lyapunov function, ϕ maps the system state (in this case, a vector of workloads for
N workers) at any given round to a non-negative scalar value that describes the desirability of the
current system state. As ϕ decreases toward 0, the system state becomes more desirable; i.e. the
workload is balanced across N . As in a standard Lyapunov optimization, we show below that the
modifications to a system state caused by executing a single round of our max neighbor algorithm
will drift the value of ϕ toward zero in a non-decreasing manner. We establish a probabilistic lower
bound for the amount of drift in a given round to obtain our time bounds.

For a given round r ≥ 0 and node pair u, v ∈ V , we define du,v(r) = |xu(r)− xv(r)| to describe
the gap between u and v’s workload at the end of that round. For each such r, we also define:
{{u, v} |u and v connected and averaged their workloads in round r}, i.e., the set of node pairs that
connect and average in r, and Dr =

∑
u,v∈Ar

du,v(r − 1), i.e., the sum of gaps averaged in r.
Finally, we define tmax(r) = maxu,v∈V {du,v(r)} to describe the largest gap between any two
nodes at the end of round r. From the above analysis that ϕ(r) decreases by at least Dr in each
round r, we proceed to prove the converge time complexity bound.

For a maximum number of rounds to converge to the minimum imbalance:

O

(
min

{
N2log

(
SN

γ

)
log N,

SN log N

γ

})
Note that these two bounds essentially coincide at Õ(N2) with γ = Θ(S/n), where the notation Õ
hides logarithmic factors. In other words, if we want all nodes to have the same workload up to a
constant factor, the max neighbor strategy uses Õ(N2) rounds. We first note that if we arrive at a
round r in which ϕ(r) ≤ γ, then the system ends this round γ-converged, i.e. the sum of the gaps is
at most γ, and thus clearly any individual gap is at most γ. Since ϕ is monotonically non-increasing,
it follows that every round r′ ≥ r is also γ-converged. So we just need to show that with high
probability, ϕ will decrease to γ in the time bound stated by the theorem statement.

For each r ≥ 1, we call r “good” if and only if ϕ(r − 1) − ϕ(r) ≥ smax(r − 1)/(60 ln(2n)). We
next calculate how many good rounds guarantee that ϕ falls below γ. To do so, we first note that,
non-good rounds cannot increase ϕ, so we are safe to focus only on reductions generated by good
rounds in calculating our bound.

By the definition of ϕ, for each r ≥ 1 we know that ϕ(r) < smax(r)n
2. It follows that if r is a good

round, then it decreases ϕ(r − 1) by a multiplicative factor less than (1 − 1
60n2ln(2n)). Finally, we

also observe that smax(0) ≤ S and therefore ϕ(0) < Sn2. Leveraging these observations, to find
the number of good rounds needed to decrease ϕ below γ, we just need to find the minimum s time
steps such that

Sn2

(
1− 1

60n2ln(2n)

)
≤ γ

A simple calculation implies that scon = 60n2ln(2n)ln(Sn2γ−1) is sufficient to satisfy this in-
equality. We have now established that after scon good rounds the system will be γ-converged for
all future rounds. We are left to bound the number of rounds required to generate scon good rounds
with high probability.

For each round r, let Xr be the random indicator variable that evaluates to 1 if round r is good and
otherwise evaluates to 0. We know a given round r is good with probability at least 1/N , regardless
of the history of the execution through the round r − 1. We cannot, however, directly leverage this
observation to calculate (and concentrate) the expected sum of X variables for a given execution
length, as the distribution determining a given Xr might depend in part on the outcome of previous
experiments. To overcome this issue, we define for each round r, a trivial random indicator variable
X̂r that evaluates to 1 with independent probability 1/N and otherwise evaluates to 0. Note that for
each r, Xr stochastically dominates X̂r, and therefore for each s > 0, Ys =

∑s
r=1 Xr stochastically

5

Under review as a conference paper at ICLR 2024

Algorithm 3 Re-pack Layers into Fewer Workers
Input: active gpus, mem usage
Input: target num gpus, num layers
Output: transfers (list)

1: transfers← []
2: for src in range(num ranks) do
3: for dst in range(src + 1, num ranks) do
4: if mem usage[src] + mem usage[dst] ¡ MAX MEM
5: && sum(active gpus) ¿ target num gpus then
6: active gpus[src] = 0
7: for lyr idx in range(num layers[src]) do
8: transfers.append((src, dst, lyr idx))
9: end for

10: mem usage[dst] += mem usage[src]
11: num layers[dst] += num layers[src]
12: end if
13: end for
14: end for
15: return transfers

dominates s > 0, Ŷs =
∑s

r=1 X̂r. It follows for any s > 0, if Ŷs ≥ scon with some probability p
then Ys ≥ scon with probability at least p.

A Chernoff bound applied to Ŷs, for s = c.scon (where c ≥ 1 is a sufficiently large constant
defined with respect to the constants in scon and the constants in the Chernoff form used), provides
that Ŷs ≥ scon with high probability, and therefore so is Ys. To conclude the proof, we note that
c.scon ∈ O

(
N2log(SN

γ)logN
)

, as required by the theorem γ statement.

B.4 RE-PACKING DYNAMIC MODELS TO FEWER WORKERS

Workload re-packing is the process of merging the total workload into a smaller number of worker
(GPUs) with the purpose of using the available resources more efficiently, i.e. unused resources
can be released. This can be achieved with simple algorithms (in small scale) such as first-fit, best-
fit, and round-robin as well as complex optimization problems (for large scale) such as ant colony
optimization Dorigo et al. (2006) or genetic algorithms Dasgupta et al. (2013). Workload packing
aims to increase GPU utilization and reduce the overall number of GPUs employed to continue the
training process. For long training schedules that are common in LLM training, workload packing
can result in substantial cost savings. It may also provide improved performance due to reduction in
the number of cross-GPU communication calls, and smaller pipeline bubbles.

Algorithm 3 shows a first-fit algorithm that we used for workload consolidation. We iterate over all
the available GPUs (lines 2-3) and check if the combined memory usage of the two GPUs is less
than the maximum memory capacity of a single GPU, and the number of active GPUs is greater than
the target number of GPUs target num gpus for packing (lines 4-5). If that is the case, we transfer
all layers of the source GPU to the destination GPU (lines 7-8). Then, it updates the memory
usage and the number of layers on the destination GPU accordingly. This process continues until
all the available GPUs have been checked and processed. The goal of this algorithm is to reduce
the number of active GPUs to the target num gpus, while also ensuring that the total memory usage
remains within device limits.

C IMPLEMENTATION

The DYNPIPE load balancing system was developed on top of Megatron-LM v3.0 2. Each com-
ponent of DYNPIPE, namely pruning, load balancing, and re-packing is implemented in a separate
package for ease of use and extension.

2https://github.com/NVIDIA/Megatron-LM/releases/tag/v3.0.2

6

https://github.com/NVIDIA/Megatron-LM/releases/tag/v3.0.2

Under review as a conference paper at ICLR 2024

1

10

100

50% 60% 70% 80% 90%

Ti
m

e
(m

s)

Sparsity

Sputnik cuBLAS cuSPARSE

Figure 2: Sparse (Sputnik Gale et al. (2020) and cuSPARSE) vs Dense (cuBLAS) matrix multipli-
cation performance comparison for M=N=K=4096 on Nvidia A100. Starting at 75% sparsity level,
sparse kernels using Sputnik gives performance advantages over dense kernels.

Unstructured pruning requires a sparse storage format to compactly store, train, and transfer the
pruned model. One of the most commonly used sparse formats is the compressed sparse row (CSR)
format. Using a sparse matrix format requires dense matrix multiplication (DMM) operations to be
converted to sparse counterparts (SpMM). Since PyTorch does not support computing the derivative
of SpMM operations for backpropagation on a CSR tensor, we evaluated CSR-based SpMM imple-
mentations available for use on GPUs, namely cuSPARSE by Nvidia and Sputnik Gale et al. (2020).
Figure 2 shows the performance of cuSPARSE and Sputnik against the dense counterpart (cuBLAS).
The SpMM kernel of Sputnik outperforms cuSPARSE in all sparsity levels. This is mainly because
Sputnik kernels were implemented by specifically considering the deep learning workloads, unlike
cuSPARSE kernels that mainly target the HPC workloads, which often have more than 99% sparsity.
It is also worth noticing that Sputnik starts to outperform cuBLAS after 75% sparsity. Thus, for
sparse operations, we implemented PyTorch bindings for the CUDA kernels of Sputnik 3.

The gather and scatter operations in global pruning were implemented by employing NCCL Peer-to-
Peer (P2P) send-receive operations instead of collective communication operations since the sizes
of the objects to be sent (local topk) and received (indices to keep) from each rank are different and
other ranks do not have this size information to participate in the collective call.

The necessary information for load balancers such as layer execution times and memory usage
comes from the profiling iteration after each pruning iteration. The execution time profiling is im-
plemented by extending the built-in timers of Megatron-LM. The memory consumption of each
pipeline stage is gathered with PyTorch’s memory statistics for CUDA.

D ADDITIONAL RESULTS AND ABLATION

D.1 OVERHEAD OF LOAD BALANCING

The time spent to load balance the model is negligible in deep neural networks since they are typi-
cally trained for days if not months Chowdhery et al. (2022); Hoffmann et al. (2022). Table 1 shows
the time spent while load balancing for different balancers in terms of the number of iterations. The
maximum number of iterations for the diffusion algorithm is set to 5 but our experiments showed
that it usually converges after two iterations. The reported load balancing times include both the
load balancing decision and the actual transfer of the parameters and index data structures (i.e. row
offsets and column indices in CSR format) of the layers to be sent or received. Among all balancers,
Diffusion by Time has the least overhead. Considering the fact that the frequency of pruning is in the
order of 1000s-10000s to recover the accuracy after pruning Gale et al. (2019); Zhu & Gupta (2017),
the load balancing overhead is easily amortized. All our throughput and speedup results include the
load balancing overhead unless specified otherwise.

3The Sputnik bindings are made available at the following link: https://anonymous.4open.
science/r/Torch-Sputnik-E926/README.md.

7

https://anonymous.4open.science/r/Torch-Sputnik-E926/README.md
https://anonymous.4open.science/r/Torch-Sputnik-E926/README.md

Under review as a conference paper at ICLR 2024

Table 1: Load balancing overhead in terms of number of training iterations. Since models train to
10,000 iterations, the overhead is effectively negligible.

of Partition Partition Diffusion Diffusion
Layers by Time by Param by Time by Param

24 25 61 12 18
32 9 55 7 20
40 12 56 11 18
48 13 54 4 13
56 14 59 9 13

Multi-Node End-to-End Training Performance: 720 A100 GPUs
Network Delay injected: 90-way data parallel + 8-way pipeline

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

24 32 40 48 56

To
ke

ns
/s

ec

Number of Layers

Stat ic (Megatron-LM)

Stat ic (DeepSpeed)

DynPipe
(Part ition by Time)
DynPipe
(Part ition by Param)
DynPipe
(Diffusion by Time)
DynPipe
(Diffusion by Param)

Figure 3: Multi-node end-to-end training throughput of GPT models for a network with unstable
bandwidth. We inject network delays up to 4x modeled by a normal distribution (as suggested by
Sukhov et al. Sukhov & Kuznetsova (2009)). The intended delay is achieved by inflating the MPI
message sizes based on the delay model.

D.2 EFFECT OF CHANGE IN NETWORK BANDWIDTH ON LOAD BALANCING

In fact DYNPIPE’s load balancing algorithm is desgined to, indirectly, handle variability/instability
in the network. That is since we define our diffusion load balancing algorithm to consider the gaps
between workers to include the total time until work arrives to node B from neighboring node A, i.e.
we include the amount of time that A spent on work plus the time it takes to transfer the activations
of the layers over the network. In intuitive terms, if worker B is stalling due to delay from neighbor
A (in part due to a slow network connection between A and B), the load balancer would push more
work to worker B until the amount of work in A plus the time it takes to transfer the activations over
the network is roughly equal to the amount of work on B. Figure 3 shows results in a multi-node
setting where we inject up to 4x delay in exchange of layers between neighbor nodes to demonstrate
the robustness of DYNPIPE load balancing w.r.t. fluctuations in the network bandwidth. In fact the
improvement of speedup of DYNPIPE over the baseline static model increases since the static model
suffers from higher stalling when the network bandwidth fluctuates due to contention for instance.

D.3 VERTICAL SCALING

In single-node multi-GPU vertical scaling experiments, the number of layers in the model and the
number of GPUs used in the pipeline are changed. In Table 2, we report throughputs of the static
baseline balancer (Megatron-LM) and the best-performing dynamic load balancers from end-to-end
training experiments (Diffusion by Time and Partition by Time). The dynamic load balancers speed
up the training in various degrees up to 1.39x for different numbers of GPUs.

8

Under review as a conference paper at ICLR 2024

Table 2: Vertical scaling experiments show the throughputs (samples/sec) of baseline Megatron-
LM, and time-based algorithms, namely Diffusion by Time and Partition by Time where the target
sparsity is 90%. The speed is calculated for the best-performing balancer in each case. The benefits
of dynamic load balancing increase as the number of GPUs in the pipeline increases.

Megatron Diff Part Speed
Layers GPUs LM by Time by Time Up

24 2 10.67 12.38 12.88 1.20x
4 20.23 24.86 24.82 1.22x
8 37.253 46.939 45.071 1.26x

32 2 8.28 10.35 10.12 1.25x
4 15.69 19.06 19.76 1.26x
8 30.809 39.899 37.933 1.29x

40 2 7.14 8.84 9.13 1.28x
4 12.84 16.11 16.82 1.31x
8 26.425 35.262 33.296 1.33x

48 2 OOM OOM OOM OOM
4 10.89 14.7 14.54 1.35x
8 23.126 31.724 29.711 1.37x

56 2 OOM OOM OOM OOM
4 OOM OOM OOM OOM
8 19.126 26.724 25.711 1.39x

0

10

20

30

40

50

60

0

2

4

6

8

10

12

8 6 4 2 8 6 4 2 8 6 4 2 8 6 4 2 8 6 4 2

24 Layers 32 Layers 40 Layers 48 Layers 56 Layers Th
ro

ug
hp

ut
 (T

ok
en

s/
Se

c)

Th
ro

ug
hp

ut
 /

G

PU
s

Re-packing Model While Training to Different Number of GPUs

Throughput/# GPUs Throughput (Tokens/Sec)
O

O
M

O
O

M
O

O
M

Re-packing Model While Training to Different Number of GPUs

24 Layers 32 Layers 40 Layers 48 Layers 56 Layers
8

6

4

2

1st itr.

2,300

6,700

8,500

8

6

4

2

1st itr.

3,000

6,900

8,500

8

6

4

2

1st itr.

3,600

6,900

9,000

8

6

4

2

1st itr.

4,400

7,700

N/A

8

6

4

2

1st itr.

5,800

N/A

N/A

Average Number of GPUs Used Over 10,000 Iterations
5.4 5.7 5.9 6.4 7.2

Figure 4: Re-packing the layers of GPT models into fewer GPUs as the model gets smaller due to
gradual pruning. Left Y-axis: throughput/number of GPUs. Right Y-axis: throughput (tokens/sec).
Below: we show the average number of GPUs needed throughout the training at which we dynami-
cally re-pack (total 10,000 iterations).

One important observation is that as the number of GPUs used in the pipeline increases, the speed-
up gained by the usage of a dynamic balancer builds up. This suggests that the importance of load
balancing increases as the pipeline gets deeper because the additional bubbles that are introduced by
the dynamic nature of the model affect the efficiency of the pipeline more. This is important when
considering the fact that the model size of large language models doubles approximately every 3.9
months Zhang et al. (2022) which leads to deeper pipelines.

9

Under review as a conference paper at ICLR 2024

D.4 AVERAGE NUMBER OF GPUS USED IN RE-PACKING

Figure 4 reports the throughput/number of GPUs for each model size where the model is packed
into 6, 4, and 2 GPUs. The 8 GPU setting for each model size serves as a baseline where there is no
packing. At the bottom part of the figure we shows how the average number of GPUs used change
in the course of 10,000 training iterations.

D.5 DYNAMIC MINIBATCH/MICROBATCH SIZE

In cases where the total load of the pipeline decreases such as gradual sparsification and freeze
training, carefully changing the minibatch and microbatch size according to the needs of the new
pipeline after load balancing may increase the efficiency of the training. For instance, GPipe Huang
et al. (2019) suggests the number of micro batches to be greater than four times the number of GPUs
in the pipeline for optimal overlapping. Since the packing decreases the number of GPUs in the
pipeline, adjusting the number of micro batches in the pipeline after packing could be beneficial. In
addition, minibatch size can be increased after the pruning operations since the memory requirement
for execution is less after the pruning. DYNPIPE currently does not support this feature, which if
supported would further improve the speedup gains.

E RELATED WORK

E.1 LOAD BALANCING MODEL-PARALLEL DEEP NEURAL NETWORKS

E.1.1 LAYER-WISE LOAD BALANCING

Layer-wise balancing techniques work on layer granularity instead of operators. DeepSpeed Mi-
crosoft (2023) offers three partitioning methods to balance the workload of stages: parameters,
uniform, and regex. While the parameters method is trying to balance the number of parameters
in each stage, the uniform aims to distribute the layers evenly. Regex only distributes the layers
that match the given regex (e.g. transformer layers). Similar to the parameters method of Deep-
Speed, He et al. He et al. (2021) balance the stages based on the number of parameters in each stage.
Narayanan et al. Narayanan et al. (2021) assign each stage the same number of transformer layers
to balance the load. None of the aforementioned studies use the actual execution time of the layers
to decide on the distribution of layers. DYNPIPE supports DeepSpeed’s partitioning scheme with
both parameters and layer execution times to guide load balancing, as well as a diffusion-based load
balancing algorithm out of the box.

E.1.2 LOAD BALANCING VIA GRAPH PARTITIONING

Graph partitioning-based load balancing schemes find atomic operations in the model and consider
them as nodes in a directed acyclic graph (DAG). Edges in the graph represent the dependencies be-
tween operations. Tanaka et al. Tanaka et al. (2021) partition the DAG in three phases at which they
first find atomic operations, then group these operations into blocks according to their computation
times, and finally, they combine blocks into final partitions by using a dynamic programming-based
algorithm. Qararyah et al. Qararyah et al. (2021) create disjoint clusters from the nodes of the graph
by finding critical paths and mapping these clusters to devices based on a mapping algorithm that
takes both critical-communication minimization and temporal load balancing into account. Both
studies perform profiling before the actual training and partition the graph once.

E.1.3 LOAD BALANCING IN MIXTURE OF EXPERTS MODELS

The mixture of experts (MoE) Jacobs et al. (1991) models contain many sub-networks (experts)
where a router allocates inputs to top-k experts. At scale, experts are distributed across devices.
Lepikhin et al. Lepikhin et al. (2020) defines an expert’s capacity to limit the maximum number of
tokens that can be processed by an expert to achieve workload balance. Fedus et al. Fedus et al.
(2022) route each token to only one expert and use the same expert capacity for restrictions. Lewis
et al. Lewis et al. (2021) employ an auction algorithm Bertsekas (1992) to solve the token-to-expert
assignment problem. This line of work is different from ours in the sense that their aim is to balance

10

Under review as a conference paper at ICLR 2024

workload in the feed-forward network while our work aims to balance all layers of the transformer
model.

E.2 PACKING

In dynamic neural network models, packing the total workload into fewer number accelerators can
provide significant cost-saving benefits. PipeTransformer He et al. (2021) offers an elastic pipelin-
ing system for freeze training where some of the layers of the model are frozen during the training.
PipeTransformer packs the remaining active layers into fewer GPUs and creates pipeline replicas
if possible. When PipeTransformer receives a notification for layer freezing, it attempts to divide
the number of GPUs by 2 subject to the memory capacity constraints. On the other hand, our work
DYNPIPE can pack to an arbitrary number of GPUs specified by the user. Another difference be-
tween the packing mechanism of DYNPIPE and PipeTransformer is that PipeTransformer uses the
parameter size as a proxy to estimate the memory usage while DYNPIPE uses the actual mem-
ory usage from the profiling step before load balancing. Finally, PipeTransformer is only capable
of packing layers to fewer GPUs, and not load balancing. DYNPIPE, on top of being capable of
re-packing when deemed beneficial, it can also redistribute the workload to achieve a better load
balance.

E.3 DYNAMIC PRUNING

Model pruning is a fast-paced research area. Since the optimization problem has many dimensions,
there are many approaches to prune a model. We mainly focus on the schedule of the pruning rather
than the decision of how to prune (e.g. magnitude pruning, variational dropout etc.) and what kind
of structure (e.g. unstructured pruning, structured pruning) to be applied while pruning.

One of the commonly used sparsification technique is sparsification during training (i.e. gradual
pruning) where the pruning starts before the model is trained until convergence. While some stud-
ies Wortsman et al. (2019); Lin et al. (2020) use a binary mask to specify whether a parameter is
pruned, which enables them to apply better weight regrowth or selection, others Gale et al. (2020)
delete the pruned parameters to reduce the memory usage and number of operations. There are also
many works on how fast to prune. For instance, Zhu and Gupta Zhu & Gupta (2017) prune the model
rapidly in the first pruning steps when there are many abundant parameters in the model, and then
reduce the pruning ratio as the number of parameters in the model are getting less and less. Dai et
al. Dai et al. (2019) employ a three phase schedule (birth-brain, baby-brain, and adult-brain) similar
to the human brain development. Mostafa et al. Mostafa & Wang (2019) uses magnitude pruning as
criterion to prune the parameters and regrows parameters to comply with the training budget.

REFERENCES

Dimitri P. Bertsekas. Auction algorithms for network flow problems: A tutorial introduction. Com-
putational Optimization and Applications, 1(1):7–66, Oct 1992. doi: 10.1007/BF00247653. URL
https://doi.org/10.1007/BF00247653.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? Proceedings of machine learning and systems, 2:129–146, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Yann Le Cun, John S. Denker, and Sara A. Solla. Optimal Brain Damage, pp. 598–605. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1990. ISBN 1558601007.

Bin Dai, Chen Zhu, Baining Guo, and David Wipf. Compressing neural networks using the varia-
tional information bottleneck. In International Conference on Machine Learning, pp. 1135–1144.
PMLR, 2018.

Xiaoliang Dai, Hongxu Yin, and Niraj K Jha. Nest: A neural network synthesis tool based on a
grow-and-prune paradigm. IEEE Transactions on Computers, 68(10):1487–1497, 2019.

11

https://doi.org/10.1007/BF00247653

Under review as a conference paper at ICLR 2024

Kousik Dasgupta, Brototi Mandal, Paramartha Dutta, Jyotsna Kumar Mandal, and Santanu
Dam. A genetic algorithm (ga) based load balancing strategy for cloud computing. Proce-
dia Technology, 10:340–347, 2013. ISSN 2212-0173. doi: https://doi.org/10.1016/j.protcy.
2013.12.369. URL https://www.sciencedirect.com/science/article/pii/
S2212017313005318. First International Conference on Computational Intelligence: Model-
ing Techniques and Applications (CIMTA) 2013.

Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. IEEE Computational
Intelligence Magazine, 1(4):28–39, 2006. doi: 10.1109/MCI.2006.329691.

Erich Elsen, Marat Dukhan, Trevor Gale, and Karen Simonyan. Fast sparse convnets. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 14629–14638, 2020.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. J. Mach. Learn. Res., 23:120:1–120:39, 2022.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. Sparse gpu kernels for deep learning.
In SC20: International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–14. IEEE, 2020.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman Avestimehr. Pipetransformer: Automated
elastic pipelining for distributed training of transformers. arXiv preprint arXiv:2102.03161, 2021.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European conference on
computer vision (ECCV), pp. 784–800, 2018.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. The Journal
of Machine Learning Research, 22(1):10882–11005, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32,
2019.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande, Edward Lock-
hart, Florian Stimberg, Aaron Oord, Sander Dieleman, and Koray Kavukcuoglu. Efficient neural
audio synthesis. In International Conference on Machine Learning, pp. 2410–2419. PMLR, 2018.

J.K. Kruschke and J.R. Movellan. Benefits of gain: speeded learning and minimal hidden layers
in back-propagation networks. IEEE Transactions on Systems, Man, and Cybernetics, 21(1):
273–280, 1991. doi: 10.1109/21.101159.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers:
Simplifying training of large, sparse models. In International Conference on Machine Learning,
pp. 6265–6274. PMLR, 2021.

12

https://www.sciencedirect.com/science/article/pii/S2212017313005318
https://www.sciencedirect.com/science/article/pii/S2212017313005318

Under review as a conference paper at ICLR 2024

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Shigang Li and Torsten Hoefler. Chimera: efficiently training large-scale neural networks with
bidirectional pipelines. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–14, 2021.

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pruning. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS’17, pp. 2178–2188,
Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Tao Lin, Sebastian U Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. Dynamic model pruning
with feedback. arXiv preprint arXiv:2006.07253, 2020.

Microsoft. Microsoft/deepspeed: A deep learning optimization library that makes distributed
training and inference easy, efficient, and effective., 2023. URL https://github.com/
microsoft/deepspeed.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature communications, 9(1):1–12, 2018.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural
networks. In International Conference on Machine Learning, pp. 2498–2507. PMLR, 2017.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. In International Conference on Machine Learning, pp.
4646–4655. PMLR, 2019.

Michael C. Mozer and Paul Smolensky. Skeletonization: A Technique for Trimming the Fat from a
Network via Relevance Assessment, pp. 107–115. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1989. ISBN 1558600159.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vi-
jay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al.
Efficient large-scale language model training on gpu clusters using megatron-lm. In Proceed-
ings of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–15, 2021.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. When bert plays the lottery, all tickets are win-
ning. arXiv preprint arXiv:2005.00561, 2020.

Fareed Qararyah, Mohamed Wahib, Doğa Dikbayır, Mehmet Esat Belviranli, and Didem Unat. A
computational-graph partitioning method for training memory-constrained dnns. Parallel com-
puting, 104:102792, 2021.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning. arXiv preprint arXiv:2003.02389, 2020.

Shaden Smith. Pipeline parallelism, Jan 2023. URL https://www.deepspeed.ai/
tutorials/pipeline/#load-balancing-pipeline-modules.

A. M. Sukhov and N. Kuznetsova. What type of distribution for packet delay in a global network
should be used in the control theory?, 2009.

Masahiro Tanaka, Kenjiro Taura, Toshihiro Hanawa, and Kentaro Torisawa. Automatic graph par-
titioning for very large-scale deep learning. In 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 1004–1013. IEEE, 2021.

Mitchell Wortsman, Ali Farhadi, and Mohammad Rastegari. Discovering neural wirings. Advances
in Neural Information Processing Systems, 32, 2019.

Hao Zhang, Lianmin Zheng, Zhuohan Li, and Ion Stoica. Welcome to the ”big model” era:
Techniques and systems to train and serve bigger models, 2022. URL https://icml.cc/
virtual/2022/tutorial/18440.

13

https://github.com/microsoft/deepspeed
https://github.com/microsoft/deepspeed
https://www.deepspeed.ai/tutorials/pipeline/#load-balancing-pipeline-modules
https://www.deepspeed.ai/tutorials/pipeline/#load-balancing-pipeline-modules
https://icml.cc/virtual/2022/tutorial/18440
https://icml.cc/virtual/2022/tutorial/18440

Under review as a conference paper at ICLR 2024

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

14

	Bubble Ratio in the Static Model
	Pruning, Load Balancing, and Packing
	Neural Networks Pruning
	Gradual Global Magnitude Pruning
	Load Balancing
	Proof of Lemma 1
	Proof of Lemma 2

	Re-packing Dynamic Models to Fewer Workers

	Implementation
	Additional Results and Ablation
	Overhead of Load Balancing
	Effect of Change in Network Bandwidth on Load Balancing
	Vertical Scaling
	Average Number of GPUs Used in Re-packing
	Dynamic Minibatch/Microbatch Size

	Related Work
	Load Balancing Model-Parallel Deep Neural Networks
	Layer-wise load balancing
	Load balancing via graph partitioning
	Load balancing in Mixture of Experts Models

	Packing
	Dynamic Pruning

