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ABSTRACT

Multi-task trade-offs in machine learning can be addressed via Pareto Front Learn-
ing (PFL) methods that parameterize the Pareto Front (PF) with a single model.
PFL permits to select the desired operational point during inference, contrary
to traditional Multi-Task Learning (MTL) that optimizes for a single trade-off
decided prior to training. However, recent PFL methodologies suffer from limited
scalability, slow convergence, and excessive memory requirements, while ex-
hibiting inconsistent mappings from preference to objective space. We introduce
PaLoRA, a novel parameter-efficient method that addresses these limitations in
two ways. First, we augment any neural network architecture with task-specific
low-rank adapters and continuously parameterize the PF in their convex hull. Our
approach steers the original model and the adapters towards learning general and
task-specific features, respectively. Second, we propose a deterministic sampling
schedule of preference vectors that reinforces this division of labor, enabling
faster convergence and strengthening the validity of the mapping from preference
to objective space throughout training. Our experiments show that PaLoRA
outperforms state-of-the-art MTL and PFL baselines across various datasets,
scales to large networks, reducing the memory overhead 23.8 − 31.7 times
compared with competing PFL baselines in scene understanding benchmarks.

1 INTRODUCTION

Building machine learning models with multi-task capabilities is becoming increasingly prevalent
(Ruder, 2017; Crawshaw, 2020), pursuing the advantages of a shared representation coupled with
the practical benefits of a single model, in terms of memory requirements and inference times.
However, the construction of generalist agents (Reed et al., 2022) by solving simultaneously multiple
tasks introduces conflicts and there often does not exist a single optimal solution. Multi-objective
optimization (MOO) problems rather have a set of optimal solutions, formally known as the Pareto
Front (PF), each corresponding to a different trade-off among the objectives.

Multi-Task Learning (MTL) algorithms optimize for a single trade-off, delivering one point in the
PF (Mahapatra & Rajan, 2020; Lin et al., 2019a; Cipolla et al., 2018; Chen et al., 2018; Sener
& Koltun, 2018; Navon et al., 2022), but lack the flexibility of dynamic adaptation to unseen
preferences during inference. In recommender systems, for instance, objectives such as semantic
relevance and revenue or content quality introduce trade-offs (Lin et al., 2019b). Similar competing
objectives can arise in autonomous self-driving (Wang et al., 2018), multi-objective image or
protein generation (Yao et al., 2024), and aligning LLMs to multiple preferences (Zhong et al.,
2024). Pareto Front Learning (PFL) methodologies (Navon et al., 2021; Ruchte & Grabocka, 2021;
Dimitriadis et al., 2023) address the inherent scalability issues of the MTL discrete solution set by
directly parameterizing the entire PF. They learn a conditional model, where providing the desired
preference as input generates the weights of a neural network satisfying that trade-off.

Despite these advancements, the practical application of PFL methods remains constrained by
several challenges, including high memory consumption and unreliable preference-to-objective
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Figure 1: Conceptual illustration of the architecture. Each layer consists of the base network’s
weight matrix W and 3 low-rank adapters {(At,Bt)}3t=1. During training, we sample preference
λ = [λ1, λ2, λ3] ∼ ∆3, each layer’s weights are formed by the weighted sum of the original matrix
and the tasks’ low-rank adapters. The overall loss uses the same λ to weigh the task losses, steering
each adapter to learn task-specific features and the shared backbone to learn a general representation.

mappings. Specifically, current methods rely on training a conditional model by sampling prefer-
ences from a Dirichlet distribution, and using these preferences to weigh the objective losses. While
this approach theoretically enables coverage of the entire PF, it introduces significant inefficiencies
for PFL approaches compared to MTL ones. First, the weight-generating mechanism often requires
parameters far exceeding those of the target network, leading to substantial memory overheads
(Navon et al., 2021; Dimitriadis et al., 2023). Second, the reliance on extensive training periods
and complex learning rate schedules results in slower convergence (Navon et al., 2021; Ruchte &
Grabocka, 2021). Finally, the inherent randomness in preference sampling reduces control over the
optimization process and compounds on these issues. The stochasticity can lead to inconsistent map-
pings, where adjusting the preference towards a particular task may not yield improved performance
in that task. Overall, these limitations hinder both the efficiency and the reliability of PFL models.

In this paper, we introduce Pareto Low-Rank Adaptors (PaLoRA), a novel PFL algorithm that tackles
these limitations through two complementary strategies. First, we equip neural networks with task-
specific low-rank adapters (Hu et al., 2022) and establish a Pareto Set within their convex hull, as in
Figure 1. The core network parameters learn a general representation beneficial for all objectives,
whereas the adapters acquire specialized features. Second, we propose to replace the random pref-
erence sampling with a deterministic procedure, presented in Figure 2, that reinforces this division
of labor. Initially, the focus lies on building general features and towards the latest stages of training
on specialization, by selecting preferences in the middle and edges of the simplex, respectively.

PaLoRA significantly reduces memory overhead by a structured division of labor within the model,
while the core neural network parameters remain fixed, responsible for learning shared representa-
tions, only the participation of the lightweight low-rank adapters varies. The deterministic sampling
schedule mirrors the natural learning process observed in neural networks: early training phases
prioritize learning general features, followed by specialization to task-specific features—a strategy
akin to curriculum learning (Soviany et al., 2022). By focusing on the center of the preference
simplex during early training and progressively exploring its edges, PaLoRA achieves a functionally
diverse PF without sacrificing convergence speed. Finally, PaLoRA is inspired by pareameter-
efficient fine-tuning methods (Hu et al., 2022) and, therefore, inherently supports Pareto expansion
(Ma et al., 2020), i.e., enabling the method to serve as a fine-tuning mechanism for extending the PF
in the vicinity of pre-trained solutions. This opens up opportunities to leverage the representations
learned by foundation models, making PaLoRA highly adaptable and scalable across tasks.
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Our experimental results demonstrate that PaLoRA significantly outperforms other PFL methods
across multiple benchmarks using very small ranks (r ≤ 4), has better Pareto alignment and requires
fewer parameters. For instance, when training occurs from scratch for CityScapes, PaLoRA re-
quires a 4.2% memory overhead compared to MTL baselines, a 23.8× overhead reduction compared
to PaMaL (Dimitriadis et al., 2023), while showing superior performance. When applied as a fine-
tuning mechanism, the proposed method is able to quickly align the adapters towards continuously
modeling the PF locally, offering a flexible Pareto expansion mechanism.

Our contributions are as follows:

• We present PaLoRA, a novel PFL method that augments any architecture with task-specific
per layer low-rank adapters and discovers a Pareto Set in the their convex hull.

• PaLoRA uses annealed deterministic preference sampling to guide PFL training, and we
show that it improves on training stability and the PF functional diversity.

• Our experiments on multiple benchmarks and across model sizes show that PaLoRA out-
performs PFL baselines, achieving higher hypervolume while incurring orders of magni-
tude less memory overhead. For CityScapes and NYUv2, PaLoRA introduces an over-
head of 4.2% and 6.3%, respectively, marking a 23.8× and 31.7× reduction compared Pa-
MaL (Dimitriadis et al., 2023), while staying competitive or outperforming MTL baselines.

• We show that the proposed method can be easily adapted to a fine-tuning mechanism to
expand the PF continuously in the neighborhood of a pretrained checkpoint.

2 RELATED WORK

Paremeter-Efficient Fine-Tuning (PEFT) strategies (Lester et al., 2021; Li & Liang, 2021;
Houlsby et al., 2019) have advanced the adaptation of pre-trained models to specific tasks without
extensive re-training. Fine-tuning pre-trained models occurs in low-dimensional subspaces (Agha-
janyan et al., 2021), and Hu et al. (2022) proposed fine-tuning only a low-rank decomposition
of each layer’s weight matrix, reducing computational and memory costs and sparking a series
of subsequent methodologies (Huang et al., 2023; Valipour et al., 2023; Kopiczko et al., 2024;
Hyeon-Woo et al., 2022; Yeh et al., 2023; Liu et al., 2024b; Tian et al., 2024; Wu et al., 2024).
Low rank adapters have also been studied from a multi-task perspective, Feng et al. (2024) use a
routing mechanism after fine-tuning several LoRAs, while Zhao et al. (2024) adaptively retrieve
and compose multiple LoRAs depending on the input prompts. Compared to these works, we
employ low-rank adapters throughout training and not just as a fine-tuning mechanism and towards
approximating the PF instead of optimizing over a single static objective.

Multi-Task Learning. The pursuit of learning multiple tasks within a single model has deep
roots in machine learning (Caruana, 1997; Argyriou et al., 2008; Ruder, 2017; Crawshaw, 2020),
evolving in the deep learning era through architectural innovations (Misra et al., 2016; Ma et al.,
2018; Ruder et al., 2019) and optimization techniques (Cipolla et al., 2018; Chen et al., 2018; Yu
et al., 2020; Liu et al., 2020). The methodologies focus on combining the task contributions, either
directly on the loss level (Cipolla et al., 2018; Lin et al., 2022), or on the gradient level (Chen et al.,
2018; Liu et al., 2022; 2021; Chen et al., 2020). However, these methods only produce a single
point in the Pareto Front and do not offer users control during inference.

Pareto Front Learning methods parameterize the Pareto Front, allowing the construction of a
model satisfying a user’s trade-off at inference and at no cost. Sener & Koltun (2018) scale Multiple
Gradient Descent Algorithm (Désidéri, 2012) to deep learning settings. Lin et al. (2019a) introduce
constraints encoding trade-offs to steer solutions along the Pareto Front (Fliege & Svaiter, 2000), but
require separate training runs per solution. Navon et al. (2021); Lin et al. (2021); Hoang et al. (2023)
use HyperNetworks (Ha et al., 2017) to continuously approximate the Pareto Front, but even with
chunking to reduce memory, they still double the GPU memory requirements due to simultaneous
deployment with the target network. Ruchte & Grabocka (2021) offer a memory-efficient approach
via input augmentation, though network conditioning issues remain. Dimitriadis et al. (2023) use
weight ensembles but require a copy of the model for each task, leading to excessive memory
overhead. In contrast, our approach maintains a stable core network for general features while
aligning task-specific adapters to improve convergence. We finally note that a concurrent work
(Chen & Kwok, 2024) also employed LoRAs (Hu et al., 2022) towards approximating the Pareto
Front. Beyond the architectural component, we also propose a deterministic preference schedule to
improve on the validity of the final Pareto Front and convergence.
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Algorithm 1: PaLoRA

Input: neural network f , multi-task loss function L,
training dataset Dtrain

1 Function Preference(τ , M , Q):
2 Distribute evenly in the T -dimensional simplex

M points λ(1), . . . ,λ(M)

3 Anneal the rays with temperature Q via
Equation 3 for timestep τ

4 return λ(1), . . . ,λ(M)

// τ parameterizes the ray preference

distribution

5 τ ← 0

6 for batch (x,y) ∈ Dtrain do
7 Ltotal ← 0

8 λ(1), . . . ,λ(M) ← Preference(τ,M,Q)

9 for λ ∈ {λ(1), . . . ,λ(M)} do
// form parameters via Equation 1

10 θ ←
{
W (ℓ) + α

r

∑T
t=1 λtA

(ℓ)
t B

(ℓ)
t

}L

ℓ=1

11 Ltotal ← Ltotal + λ⊤L (f(x;θ),y)
12 Update θW ,θA,θB via backpropagation
13 τ ← τ + 1

3 MULTI-OBJECTIVE OPTIMIZATION AND PARETO FRONT LEARNING

Consider a dataset D = {(x(i),y(i))}Ni=1 for samples x(i) ∈ X and labels y(i) ∈ Y and T tasks.
Each task t ∈ [T ] is associated with a loss Lt : Yt × Yt → R+. The overall goal corresponds to the
multi-objective optimization problem of minimizing the vector loss L = [L1, . . . ,LT ].

We assume a general multi-task architecture comprising of an encoder g(x,θenc) : X ×Θenc → Z ,
mapping to embedding space Z and multiple decoders ft(z,θt) : Z × Θt → Yt, t ∈ [T ],
where θ(·) represents network parameters. Multi-Task Learning focuses on learning a model
f : X × Θ → Y that performs well on all tasks. However, in the setting of vector optimization
(Boyd & Vandenberghe, 2004), no single solution θ can be optimal for all tasks simultaneously. In
contrast, optimality is sought in the Pareto sense, i.e., a solution θ∗ is Pareto optimal if there is no
other solution θ′ that is better for all tasks. Formally:
Definition 1 (Pareto Optimality). Let Lt(Yt, f(Xt,θ)) = Lt(θ). Assume two solutions θ,θ′ ∈ Θ
in parameter space. A point θ dominates a point θ′ if Lt(θ) ≤ Lt(θ

′) ∀t ∈ [T ] and L(θ) ̸= L(θ′).
Then, a point θ is called Pareto optimal if there exists no θ′ that dominates it. The set of Pareto opti-
mal points forms the Pareto Set PS and its image in objective space is known as the Pareto Front PF .

Let ∆T = {λ ∈ RT
+ :

∑T
t=1 λt = 1} be the T -dimensional simplex representing the set of all

possible user preferences and ℓ : Θ → RT
+ a mapping from weight to objective space, i.e., the

vector loss ℓ(θ) = [L1(θ), . . . ,LT (θ)]. For a given preference vector λ ∈ ∆T as input, the overall
objective of PFL is a weight generating mechanism h : ∆T → Θ such that PS = h(∆T ) and the
function ℓ◦h is monotonic, i.e., increasing the importance of one task leads to its loss decrease. Our
goal is discovering a Pareto Subspace (Dimitriadis et al., 2023), i.e., a low-dimensional subspace
that approximates the PF in a single training run.

4 PALORA: PARETO LOW-RANK ADAPTERS

PFL methodologies have two components: the conditional model h mapping from preference space
to the Pareto Set and the distribution used during training to sample preferences. We improve on both
of these axes in Section 4.1 and Section 4.2, respectively, and present them jointly in algorithm 1.

4.1 WEIGHT GENERATING MECHANISM OF PALORA

Consider the case of a single layer parameterized by W ∈ Rn×m. We omit bias terms for simplicity.
The output of the layer is y = Wx for x ∈ Rm. Inspired by the weight ensembling approach of
PaMaL (Dimitriadis et al., 2023), we propose that each task t ∈ [T ] augments the set of learnable
parameters by introducing a copy of the model:

y′ =

(
W +

T∑
t=1

λtWt

)
x (1)

for preference λ in the T -dimensional simplex, i.e., λ = [λ1, . . . , λT ]
⊤ ∈ ∆T . Given the similarity

among ensemble members (Dimitriadis et al., 2023), the full-rank duplicates can be replaced with
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Time 0.0 λ 1.0

(a) Random (M = 1)

Time 0.0 λ 1.0

(b) Random (M = 5)

Time 0.0 λ 1.0

(c) Fixed (M = 5)

Time 0.0 λ 1.0

(d) Annealed (M = 5)

Figure 2: Random vs deterministic preference schedules for two tasks as a function of time. Each
dashed line corresponds to a different batch, bottom is beginning of training and top end of training.
For each batch, preferences λ = [λ, 1−λ] are drawn; we only show λ. Randomly sampling (a) M =
1 ray per batch or (b) multiple (M > 1) rays (Dimitriadis et al., 2023) can lead to poor mappings
from preference to objective space due to lack of exploration and tightly clustered sampled rays. In-
stead, our (c) proposed deterministic schedule resolves these issues and (d) our temperature anneal-
ing, focusing progressively more to learning task-specific features, can lead to wider Pareto Fronts.

low-rank matrices At ∈ Rn×r,Bt ∈ Rr×m, t ∈ [T ] and r ≪ min{n,m}:

Wt = AtBt =⇒ y′ =

(
W +

α

r

T∑
t=1

λtAtBt

)
x (2)

where α a scaling factor that tunes the emphasis on the low-rank residuals (Huh et al., 2024). Besides
the above LoRA (Hu et al., 2022) formulation, the task-specific weights Wt can be constructed by
any approaches in the low-rank family (Yeh et al., 2023; Zhang et al., 2023; Kopiczko et al., 2024).

During each training iteration, preferences λ are drawn, and a direct link between each task and its
corresponding adapter is formed by defining the total loss as λ⊤L =

∑T
t=1 λtLt. This alignment

ensures that the contribution of each adapter matches the loss weight of the corresponding task.
Figure 1 illustrates the method in the case of three tasks. PaLoRA establishes a clear division of
labor between the base network and the task-specific adapters. The former’s involvement in the
weight generation mechanism of Equation 2 is not a function of the drawn preference λ but always
present, helping convergence by keeping the major part of the representation steady. Following the
Dimitriadis et al. (2023, Theorem 4.2), Theoreom 2 shows that PaLoRA can approximate the PF due
to the universal approximation theorem (Cybenko, 1989). The proof is provided in the appendix.
Theorem 2. Let ft : X × Θ 7→ Y be a family of continuous mappings, where t = 1, . . . , T , and
X ⊂ RD is compact. Then, ∀ϵ > 0, there exists a ReLU multi-layer perceptron f with three different
weight parameterizations θ0,θ1,θ2 ∈ Θ, such that ∀t ∈ [T ], ∃α ∈ [0, 1], ∀x ∈ X :

|ft(x)− f (x;θ0 + αθ1 + (1− α)θ2)| ≤ ϵ.

PaLoRA is based on parameter-efficient approaches (Lester et al., 2021; Houlsby et al., 2019; Ma-
habadi et al., 2021; Ben Zaken et al., 2022; Hu et al., 2022) and is, therefore, by design compatible
with pre-trained models and able to take advantage of the knowledge embedded in foundation
models (Bommasani et al., 2021). In contrast, previous PFL solutions, e.g., hypernetworks, are not
easily adaptable to such settings and do not scale to the size of such large models. As a consequence,
our method can be launched as a second phase of training, similar to the setting studied by Ma et al.
(2020), where once a multi-task solution has been attained, e.g., using NashMTL (Navon et al.,
2022) or linear scalarization, a second phase expands the PF in the neighborhood of the solution.

Memory Complexity For a linear layer with mn parameters, the PaLoRA layer requires
mn + Tr(m + n). Modulating the rank r controls the layer’s expressivity and number of
parameters, allowing for task-specific features to be steered to the main backbone or the adapters.

4.2 IMPROVED CONVERGENCE AND FUNCTIONAL DIVERSITY WITH DETERMINISTIC
PREFERENCE SCHEDULE

Pareto Front Learning methods lead to an increase of trainable parameters and lower convergence
rates compared to MTL approaches. The preference distribution dictates the construction of the
models during training, e.g., via Equation 2 in the case of PaLoRA or as an input to a hypernet-
work (Navon et al., 2021) or as mixing coefficients of a weight ensemble (Dimitriadis et al., 2023).
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Figure 3: Experimental results. (a) PaLoRA outperforms MTL baselines and achieves higher
Hypervolume while requiring less memory vs other PFL algorithms, (b) constructs a wide Pareto
Front for benchmarks with two classification and one regression tasks. (c) Even for 7 tasks, PaLoRA
showcases fast convergence while PaMaL is slow due to 7× increase in parameter count.

However, previous works assume the distribution to be (uniform) Dirichlet and suffer from slow
convergence rates and inconsistent mappings from preference to objective space. Consider the case
of drawing a single random weighting λ on every batch as in Figure 2a. In the case of two tasks, for
instance, where the ray is (λ, 1−λ) for λ ∈ [0, 1], two consecutive rays can be λ1 = (1−ϵ1, ϵ1) and,
λ2 = (1− ϵ2, ϵ2) or λ′

2 = (ϵ′2, 1− ϵ′2) for ϵ1, ϵ2, ϵ′2 ≈ 0. In the former case (λ1 → λ2), starvation
occurs for the second task and the representation drifts towards accommodating the first, while in the
latter case (λ1 → λ′

2) the representation abruptly changes leading to instability. The lack of control
introduces variance in the gradient updates, since λ determines both the model’s representation and
the overall scalarized objective. Performing multiple forward passes (Dimitriadis et al., 2023) with
different rays, as in Figure 2b, can decrease the variance of the updates but the lack of exploration
can still lead to invalid mappings from preference space to weight space and, finally, objective space.
Specifically, sampled rays from a tightly clustered region of the probability space result in similar
weight configurations, e.g. via Equation 2, and given the non-convexity of the loss landscape their
small differences may not correspond to vector loss objectives that satisfy the Pareto properties de-
fined in Definition 1. Overall, stochasticity in the updates can lead to decrease in loss but may violate
the premise of Pareto Front Learning in creating a valid mapping from preference to objective space.

We therefore propose to replace random sampling with a deterministic schedule. Assuming a
budget of M forward passes and T tasks, we sample preferences {λ̃m}Mm=1 evenly spaced in
the simplex ∆T , as in Figure 2c. Given that neural networks initially learn general features and
specialize during the later training stages (Zeiler & Fergus, 2014; Kalimeris et al., 2019; Valeriani
et al., 2023), we propose to sample multiple preference vectors per batch with a schedule mimicking
the training dynamics. For time τ ∈ [0, 1], where τ = 0 and τ = 1 correspond to the beginning and
end of training, respectively, we anneal the preferences {λ̃m}Mm=1 as follows:

λm(τ) = gτ,Q(λ̃) :=
λ̃τ ′

m∑T
t=1 λ̃

τ ′
m,t

for τ ′ =
τ

Q
(3)

where Q controls the temperature of the annealing. In the initial training stages, the preferences are
concentrated in the center and progressively more to the faces of the simplex, as shown in Figure 2d
for 2 dimensions and in Figure 11 for 3 dimensions. The schedule is deterministic in order to
minimize the effect of pernicious updates due to potential imbalanced samplings and therefore
we do not consider regularization terms (Dimitriadis et al., 2023; Ruchte & Grabocka, 2021), also
eliminating their associated hyperparameters.

5 EXPERIMENTS

We evaluate PaLoRA on a variety of tasks and datasets, ranging from multi-label classification
to complex scene understanding benchmarks in CityScapes and NYUv2. We include datasets
ranging from 2 to 7 tasks and architectures from LeNet to SegNet (Badrinarayanan et al., 2017).
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Table 1: CityScapes: Test performance averaged over 3 seeds, ∆p is the parameter count increase
w.r.t. the MTL model. We highlight the best and second best results per task. PaLoRA outperforms
PFL and MTL methods, while slightly increasing parameter count and allowing for user control.

Segmentation Depth ∆p% ↓ Controllable

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓
STL 70.96 92.12 0.0141 38.6435 0% ✗

M
T

L

LS (Caruana, 1997) 70.12 91.90 0.0192 124.0615 0% ✗

UW (Cipolla et al., 2018) 70.20 91.93 0.0189 125.9433 0% ✗

MGDA (Sener & Koltun, 2018) 66.45 90.79 0.0141 53.1376 0% ✗

DWA (Liu et al., 2019) 70.10 91.89 0.0192 127.6589 0% ✗

PCGrad (Yu et al., 2020) 70.02 91.84 0.0188 126.2551 0% ✗

IMTL (Liu et al., 2020) 70.77 92.12 0.0151 74.2300 0% ✗

CAGrad (Liu et al., 2021) 69.23 91.61 0.0168 110.1387 0% ✗

Nash-MTL (Navon et al., 2022) 71.13 92.23 0.0157 78.4993 0% ✗

RLW (Lin et al., 2022) 68.79 91.52 0.0213 126.9423 0% ✗

Graddrop (Chen et al., 2020) 70.07 91.93 0.0189 127.1464 0% ✗

RotoGrad (Javaloy & Valera, 2022) 69.92 91.85 0.0193 127.2806 0% ✗

Auto-λ (Liu et al., 2022) 70.47 92.01 0.0177 116.9594 0% ✗

PF
L

COSMOS (Ruchte & Grabocka, 2021) 69.78 91.79 0.0539 136.614 ≪ 1% ✓
PaMaL (Dimitriadis et al., 2023) 70.35 91.99 0.0141 54.520 100% ✓
PaLoRA [ours] 71.11 92.21 0.0140 51.2672 4.2% ✓

Baselines. We compare against a diverse set of algorithms, including Single-Task Learning (STL),
MTL methodologies based on loss balancing (Caruana, 1997; Cipolla et al., 2018; Liu et al., 2019;
Lin et al., 2022) and gradient balancing (Sener & Koltun, 2018; Yu et al., 2020; Liu et al., 2020;
Chen et al., 2020; Liu et al., 2021; Navon et al., 2022; Liu et al., 2022; Javaloy & Valera, 2022). We
consider PFL baselines in Pareto HyperNetwork (Navon et al., 2021, PHN), COSMOS (Ruchte &
Grabocka, 2021) and Pareto Manifold Learning (Dimitriadis et al., 2023, PaMaL). For PFL methods,
evaluation is performed on a grid of K evenly spaced points spanning the T -dimensional simplex.

5.1 MULTI-LABEL CLASSIFICATION

First, we test the effectiveness of PaLoRA on MultiMNIST, a digit classification dataset based
on MNIST and use a LeNet architecture (Lecun et al., 1998), trained for 10 epochs, and present the
results in Figure 3a. Compared to standard MTL approaches that result in a single point in objective
space, PFL methodologies discover a subspace of solutions, parameterized by the user preference
λ in Equation 2. We use rank r = 1, resulting in 12.5% additional trainable parameters compared
to the base multi-task model, i.e., the scatter points in the plot. In contrast, PaMaL (Dimitriadis
et al., 2023) doubles the trainable parameters, PHN (Navon et al., 2021) requires ×100 memory
overhead and COSMOS (Ruchte & Grabocka, 2021) has low hypervolume. Overall, our method
achieves superior performance compared to other PFL methods, while requiring far less parameters,
and showing that even a rank of r = 1 suffices to cover the Pareto Front.

5.2 SCALING UP THE NUMBER OF TASKS

We explore benchmarks beyond two tasks and present the results in Figure 3 qualitatively for 3 tasks
and in Figure 3c quantitatively for 7 tasks. We consider UTKFace (Zhang et al., 2017), a dataset
with images and three tasks of gender and ethnicity classification and age regression, and we use a
ResNet (He et al., 2016) backbone following prior work (Dimitriadis et al., 2023). We observe in
Figure 3b that our proposed method is effective at discovering a valid Pareto Front. Similarly, we
include in the appendix results on MultiMNIST-3 (Dimitriadis et al., 2023), a generalization of
the previous dataset with three objectives, where PaLoRA is able to discover a wide and functionally
diverse Pareto Front. Finally, we explore SARCOS (Vijayakumar & Schaal, 2000), a robotic dataset
with T = 7 regression tasks that predict joint torques based on joint positions, velocities, and accel-
erations. Figure 3c shows that PaLoRA converges faster than Linear Scalarization, a MTL method
used as control, and considerably faster compared to state-of-the-art PaMaL (Dimitriadis et al.,
2023), due to the latter requiring the joint optimization of T = 7 copies of the model. In contrast, we
use rank r = 4, leading to a parameter increase of 62%. Overall, PaLoRA scales to a larger number
of tasks compared to PaMaL, showcasing superior performance and lower memory requirements.
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Table 2: NYUv2: Test performance averaged over 3 seeds. ∆p is the parameter count increase w.r.t.
the multi-task model. We highlight the best and second best results per task. PaLoRA is superior to
PaMaL (Dimitriadis et al., 2023) while requiring 31.7× less parameters.

Segmentation Depth Surface Normal ∆p% ↓ Controllable

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓ Angle Distance ↓ Within t◦ ↑
Mean Median 11.25 22.5 30

STL 36.58 62.62 0.6958 0.2737 25.27 18.25 32.33 59.09 70.00 0% ✗

M
T

L

LS (Caruana, 1997) 36.33 62.98 0.5507 0.2224 27.71 21.84 26.44 51.72 63.90 0% ✗

UW (Cipolla et al., 2018) 31.68 60.11 0.5509 0.2242 28.30 22.59 25.74 50.33 62.49 0% ✗

MGDA (Sener & Koltun, 2018) 31.19 60.22 0.5745 0.2267 24.84 18.30 32.45 59.04 70.28 0% ✗

DWA (Liu et al., 2019) 37.09 63.69 0.5463 0.2225 27.57 21.79 26.55 51.78 64.02 0% ✗

PCGrad (Yu et al., 2020) 36.83 63.43 0.5504 0.2182 27.44 21.57 26.90 52.25 64.40 0% ✗

IMTL (Liu et al., 2020) 36.43 63.96 0.5437 0.2203 25.87 19.63 30.02 56.19 67.95 0% ✗

Nash-MTL (Navon et al., 2022) 37.66 64.75 0.5279 0.2109 25.56 19.30 30.59 56.90 68.55 0% ✗

RLW (Lin et al., 2022) 33.86 61.49 0.5692 0.2271 29.06 23.68 24.06 48.27 60.67 0% ✗

Graddrop (Chen et al., 2020) 36.98 63.31 0.5423 0.2204 27.64 21.89 26.38 51.64 63.93 0% ✗

PF
L PaMaL (Dimitriadis et al., 2023) 33.94 62.55 0.5592 0.2188 26.60 20.33 29.09 54.61 66.35 200% ✓

PaLoRA [ours] 38.27 64.79 0.5370 0.2150 25.66 19.34 30.47 56.90 68.56 6.3% ✓

5.3 SCENE UNDERSTANDING

We now evaluate PaLoRA on large scale datasets of scene understanding. An example of input and
label combinations is given in Figure 1. Our experimental setup is based on previous MTL works
(Liu et al., 2019; Yu et al., 2020; Liu et al., 2021; Navon et al., 2022; Dimitriadis et al., 2023).

CityScapes (Cordts et al., 2016) contains high-resolution urban street images and we focus on
the tasks of semantic segmentation and depth regression. We train a SegNet (Badrinarayanan et al.,
2017) for 100 epochs, using Adam optimizer (Kingma & Ba, 2015) with learning rate 10−4 that is
halved after 75 epochs. The results are presented in Table 1 for rank r = 4 and M = 5. In terms of
PFL baselines, while COSMOS (Ruchte & Grabocka, 2021) increases slightly the number of train-
able parameters, its poor performance on the task of depth estimation renders it non-competitive.
We note that we do not consider PHN (Navon et al., 2021), since it requires the ad hoc definition of
a hypernetwork architecture with chunking for the weight generating mechanism, introducing many
hyperparameters. Additionally, the hypernetwork requires at least as many parameters as the target
network to match its expressiveness, effectively doubling the memory requirements. For this reason,
Navon et al. (2021) only consider ENet (Paszke et al., 2016), a network of only 0.37M parameters
compared to > 25M of the SegNet architecture. Compared to PaMaL (Dimitriadis et al., 2023), our
method leads to improvements across tasks while reducing the memory overhead ∼ 23.8 times.

NYUv2 Similar to previous MTL works, we consider the NYUv2 dataset (Silberman et al., 2012)
for the tasks of semantic segmentation, depth estimation, and surface normal prediction, and report
the results in Table 2. We reserve 95 images for validation and use a setup similar to CityScapes
but train for 200 epochs. The full experimental details are provided in the appendix. To the best of
our knowledge, and due to scalability, PaLoRA is the first PFL method to explore benchmarks as
challenging as NYUv2. Additionally to PHN (Navon et al., 2021), we omit the COSMOS baseline
(Ruchte & Grabocka, 2021) due to its poor performance on CityScapes. PaLoRA scales to the
complexity of the benchmark without incurring large memory costs, while PaMaL (Dimitriadis et al.,
2023) requires 3 times the memory of the original model, PaLoRA needs 6.3% more parameters.

5.4 CONTINUOUS PARETO EXPANSION

While previous sections focused on training models from scratch, PaLoRA can also be used as
a second-stage fine-tuning approach, similar to the original use of low-rank adapters (Hu et al.,
2022). Following Ma et al. (2020), we expand the Pareto Front locally around a pre-trained model
θ0, using checkpoints trained with linear scalarization. Only adapters are fine-tuned, matching
the final stage’s learning rate, with training lasting 4 epochs for MultiMNIST and 5 epochs for
CityScapes, consuming just 40% and 5% of the original training budgets. Results in Figure 4
show PaLoRA effectively expands the Pareto Front, enhancing initial model performance. The
scaling factor α controls the spread, while the middle plot of Figure 4 shows that the annealed
deterministic sampling gradually increases functional diversity. Unlike the costly checkpoint
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Figure 4: Pareto Front Expansion. Given a checkpoint θ0, marked as •, PaLoRA expands locally
the Pareto Front in its neighborhood N (θ0). (Left) The scaling α of Equation 2 determines the
functional diversity of the final MultiMNIST Front. (Middle) The epoch-by-epoch progression of
the MultiMNIST Pareto Front expansion. (Right) The final CityScapes Pareto Front.
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Figure 5: PaLoRA satisfies both PFL goals: high controllability coupled with superior performance.
PaLoRA converges faster than state-of-the-art PFL method in PaMaL and on par or better to MTL
methods. It is also more consistent in terms of the validity of the Pareto Front across epochs, while
the number of points in the Pareto Front in PaMaL varies a lot.

storage of Ma et al. (2020), PaLoRA incurs only a 4.2% memory overhead, forming a continuous
linear segment in weight space that maps to the Pareto Front.

6 DISCUSSION

6.1 DETERMINISTIC SCHEDULE IMPROVES CONVERGENCE AND PARETO DIVERSITY

We evaluate the effect of the sampling procedure as a function of the number of samples M ∈ N,
whether they are drawn from a random distribution or deterministically and the effect of annealed
schedule. Specifically, we consider the following distributions over preference rays:

Λτ =
[
λ
(1)
τ , . . . ,λ

(M)
τ

]
for λ(m)

τ ∼


Dirichlet(p1), Random, M = 1 (Navon et al., 2021)
Dirichlet(p1), Random, M > 1 (Dimitriadis et al., 2023)
g1,Q(λ̃m), Deterministic [ours]
gτ,Q(λ̃m), Deterministic Annealed [ours]

As τ increases the sampled weightings shift focus from the center of the simplex towards the edges.
We consider the setting outlined in Section 5.1 for the MultiMNIST dataset and compare our
proposed method with PaMaL (Dimitriadis et al., 2023) and Linear Scalarization (LS), a Multi-Task
Learning method used as control. We present the results in Figure 5 in terms of two metrics; the
progression of the training loss captures how fast each method reaches a neighborhood of low loss,
while the number of points* in the validation Pareto Front measures the degree of Pareto alignment
of said neighborhood. We observe that PaLoRA outperforms PaMaL in both metrics. Specifically,
PaMaL has slower convergence since it has to simultaneously optimize two copies of the model,
while the low-rank adapters of our proposed method are lightweight and efficient. PaLoRA also
has faster convergence compared to a single-point algorithm in LS, since sampling multiple rays

*We sample 11 points in total {(λ, 1− λ) for λ = 0, 0.1, . . . , 0.9, 1}.
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Figure 6: Adapters contain task-specific information. While selecting rays λ ∈ ∆2 used in
training maintains high performance on both tasks, pseudopreferences λ /∈ ∆2 reveal that adapters
are task-specific: negating the contribution of one leads to forgetting the associated task.

acts as a regularization effect (Izmailov et al., 2018; Foret et al., 2021). More importantly, the
deterministic schedule of the proposed method maintains a valid Pareto Front throughout training,
as indicated in Figure 5b. In contrast, both PaMaL and low rank adapters without the proposed
deterministic schedule fluctuate in the number of validation points in the Pareto Front, highlighting
that stochasticity undermines the control desideratum of Pareto Front Learning.

We also conduct a larger scale search on the effectiveness of deterministic sampling in constructing
valid Pareto Fronts in Appendix D where we consider the cases of M ∈ {3, 5, 7, 9}, deterministic
and Dirichlet sampling, fixed or annealed schedule and several temperatures for each sampling
category and compare the HyperVolume (Zitzler & Thiele, 1999), which measures solutions
quality, and the number of points in the Pareto Front. The results indicate that random sampling
introduces instability: while it can achieve high HyperVolume, it often leads to a dominated Pareto
Front. In contrast, deterministic sampling offers a well-distributed Pareto Front, is more robust
to hyperparameter variations, and enables effective performance with lower M , reducing memory
overhead from multiple forward passes.

6.2 DIVISION OF LABOR BETWEEN CORE NEURAL NETWORK AND ADAPTERS

We investigate if the low-rank adapters contain task-specific information. While the rays used
during training lie in simplex ∆T , we examine the impact of escaping the simplex to highlight
the separation of feature building objectives among the adapters. We evaluate pseudopreferences
λ ∈ {(0, 0), (1,−1), (−1, 1)} ̸⊂ ∆2, corresponding to models with general features, and those
forgetting the second and first tasks, respectively. For comparison, we also evaluated actual prefer-
ences λ ∈ {(1, 0), (0, 1), (0.5, 0.5)} ⊂ ∆2, with results shown in Figure 6 for the MultiMNIST
benchmark. The findings reveal the specialized roles of adapters: removing the first task’s
contribution in λ = (−1, 1) notably impairs its performance, while the second task is less affected.
The core network without adapter contributions for λ = (0, 0) lacks discriminative features, and
λ = (−1,−1) results in random predictions. This aligns with task arithmetic evaluations (Ilharco
et al., 2023; Ortiz-Jimenez et al., 2023; Yadav et al., 2023; Wang et al., 2024), where negating task
contributions leads to forgetting. However, unlike independently trained models, our jointly trained
adapters still allow knowledge transfer, avoiding a complete separation of task-specific knowledge.

7 CONCLUSION AND LIMITATIONS

In conclusion, PaLoRA addresses the limitations of existing PFL methodologies by introducing a
parameter-efficient approach that augments the original model with task-specific low-rank adapters
coupled with a deterministic preference sampling to guide PFL training. Our proposed method
effectively separates the learning of general and task-specific features, facilitated by a carefully
designed sampling schedule. Our extensive experimental results demonstrate that PaLoRA not only
surpasses PFL baselines across benchmarks but also achieves scalability to larger networks with
limited memory overhead. By providing a continuous parameterization of the Pareto Front and
ensuring efficient use of memory, PaLoRA offers a promising solution for real-world applications.
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A ADDITIONAL RESULTS

A.1 SARCOS

We further explore the setting for SARCOS dataset, presented in Section 5.2. The experimental
setting remains the same except the number of epochs, which have been increased from 100 to
500. The results are presented in Figure 7 and show that PaLoRA converges faster to a higher
HyperVolume compared to PaMaL (Dimitriadis et al., 2023).
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Figure 7: Comparison between PaMaL and PaLoRA on the SARCOS dataset for longer training
times.

A.2 ABLATION ON RANK r

Table 3 presents an ablation on the LoRA rank r for CityScapes. Specifically, we consider ranks
r ∈ {1, 2, 4, 8}. We also explore the axis of the number of forward passes M . We use 3 seeds per
combination and report the mean.

Table 3: Ablation on rank r for CityScapes.

r M Segmentation Depth

mIOU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓
1 3 71.56 92.35 0.0139 52.4928
1 5 71.55 92.32 0.0139 48.7060
2 3 71.44 92.37 0.0144 45.5715
2 5 71.47 92.26 0.0139 49.1715
4 3 71.58 92.37 0.0141 43.2215
4 5 71.44 92.29 0.0141 41.2195
8 3 71.44 92.41 0.0144 49.9970
8 5 71.64 92.38 0.0147 48.9209

A.3 DETAILED RESULTS FOR MULTIMNIST AND NYUV2

Table 4 and Table 5 present the results for the MultiMNIST and NYUv2 benchmarks, respectively,
including standard deviations. Three seeds are used for each method in both benchmarks.
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Table 4: Detailed results for MultiMNIST

Top-Left Bottom-Right

LS 95.47±0.08 94.45±0.43

UW 95.70±0.34 94.51±0.32

MGDA 95.57±0.11 94.33±0.13

DWA 95.52±0.07 94.48±0.36

PCGrad 95.51±0.07 94.56±0.37

IMTL 95.78±0.17 94.40±0.16

CAGrad 95.55±0.12 94.17±0.47

NashMTL 95.84±0.16 94.78±0.27

RLW 95.41±0.19 94.06±0.24

GradDrop 95.40±0.14 94.24±0.34

AutoL 95.94±0.39 94.57±0.43

RotoGrad 95.92±0.25 94.48±0.44

PHN 96.04±0.20 94.91±0.46

COSMOS 94.08±0.50 93.90±0.35

PAMAL 96.17±0.27 95.32±0.15

PaLoRA 96.55±0.13 95.39±0.24

Table 5: Detailed results for NYUv2.

Segmentation Depth Surface Normal

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓ Angle Distance ↓ Within t◦ ↑
Mean Median 11.25 22.5 30

STL 36.58±0.57 62.62±0.11 0.6958±0.0402 0.2737±0.0039 25.27±0.17 18.25±0.33 32.33±0.52 59.09±0.67 70.0±0.51

M
T

L

LS 36.33±2.43 62.98±0.86 0.5507±0.0055 0.2224±0.0102 27.71±0.73 21.84±0.86 26.44±1.25 51.72±1.68 63.9±1.58

UW 31.68±3.37 60.11±2.07 0.5509±0.0225 0.2242±0.0092 28.3±0.82 22.59±1.09 25.74±1.5 50.33±2.07 62.49±1.92

MGDA 31.19±0.76 60.22±1.06 0.5745±0.0303 0.2267±0.0078 24.84±0.37 18.3±0.51 32.45±1.18 59.04±1.03 70.28±0.74

DWA 37.09±2.83 63.69±1.88 0.5463±0.0093 0.2225±0.0105 27.57±0.65 21.79±0.76 26.55±1.1 51.78±1.49 64.02±1.39

PCGrad 36.83±1.36 63.43±0.76 0.5504±0.0009 0.2182±0.0036 27.44±0.41 21.57±0.43 26.9±0.73 52.25±0.87 64.4±0.81

IMTL 36.43±2.03 63.96±0.89 0.5437±0.0196 0.2203±0.0053 25.87±0.28 19.63±0.3 30.02±0.64 56.19±0.67 67.95±0.59

NashMTL 37.66±2.02 64.75±0.85 0.5279±0.0131 0.2109±0.0037 25.56±0.26 19.3±0.3 30.59±0.71 56.9±0.62 68.55±0.52

RLW 33.86±0.67 61.49±1.5 0.5692±0.0159 0.2271±0.0085 29.06±0.54 23.68±0.59 24.06±0.65 48.27±1.02 60.67±1.19

GradDrop 36.98±1.92 63.31±1.14 0.5423±0.0125 0.2204±0.008 27.64±0.71 21.89±0.74 26.38±0.95 51.64±1.49 63.93±1.46

PF
L PaMaL 33.94±1.29 62.55±0.85 0.5592±0.0035 0.2188±0.0024 26.6±0.13 20.33±0.21 29.09±0.24 54.61±0.47 66.34±0.45

PaLoRA 38.27±0.8 64.79±0.55 0.537±0.0065 0.215±0.0047 25.66±0.18 19.34±0.23 30.47±0.19 56.9±0.43 68.56±0.42
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Figure 8: Qualitative results on MultiMNIST-3, measuring accuracy on three digit classification
tasks. PaLoRA is able to cover the entire Pareto Front.
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B EXPERIMENTAL DETAILS

All experiments are conducted with PyTorch(Paszke et al., 2019) in Tesla V100-SXM2-32GB
GPUs. We use three seeds per method. Our source code extends the codebases of previous works
(Dimitriadis et al., 2023; Navon et al., 2022; Liu et al., 2019). We use the MultiMNIST variant
from Dimitriadis et al. (2023). For CityScapes and NYUv2, we use the variants from Liu et al.
(2019), which are also explored in Navon et al. (2022); Liu et al. (2021; 2024a; 2022).

B.1 FULL TRAINING

MultiMNIST We use the same settings as Dimitriadis et al. (2023). For all experiments the rank
is set to r = 1. We perform a grid search on the scaling α ∈ {1, 2, 5, 10} and annealing temperature
T and report the results in Figure 9 and Figure 10 in terms of validation accuracy and loss. We use 3
seeds per configuration and report the results that achieve the highest average hypervolume (Zitzler
& Thiele, 1999). Training lasts 10 epochs.

MultiMNIST-3 The experimental settings are the same as MultiMNIST, apart from the num-
ber of epochs that has been increased from 10 to 20.

UTKFace We use the same settings as Dimitriadis et al. (2023).

SARCOS We follow the experimental protocol presented by Navon et al. (2021).

CityScapes We use the same settings as (Dimitriadis et al., 2023). A modified version of the
same experiment was also presented in (Liu et al., 2019; Yu et al., 2020; Liu et al., 2021; Navon
et al., 2022); the difference is the existence of a validation set and training lasts 100 epochs. We use
the SegNet architecture (Badrinarayanan et al., 2017), not the MTAN (Liu et al., 2019) variant for
computational reasons. We train for 100 epochs.

NYUv2 We use the experimental settings from Navon et al. (2022). We use a SegNet architecture
(Badrinarayanan et al., 2017), not the MTAN (Liu et al., 2019) variant for computational reasons.
We use 95 out of 795 training images for validation. We train for 200 epochs.

B.2 RUNTIME

The runtime depends on the number of forward passes, denoted as M . We also perform evaluation
on a held-out dataset every k epochs. Evaluation for PFL is expensive since we evaluate the perfor-
mance for models formed for various preferences λ ∈ ∆T . Hence, evaluation time scales linearly
with the number of sampled points. For instance, for two tasks, we use 11 evenly spaced points
in [0,1]. For M = 1, the experiments on MultiMNIST, CityScapes, NYUv2 take ∼ 1 min,
∼ 90 mins and ∼ 4.5 hours. For the scene understanding benchmarks, we use a gradient balancing
algorithm similar to (Chen et al., 2018) and used in (Dimitriadis et al., 2023), since the results were
superior. Gradient balancing algorithms have longer runtimes compared to loss-balancing ones, e.g.,
(Caruana, 1997; Cipolla et al., 2018). The above runtime numbers refer to gradient balancing.

B.3 PARETO EXPANSION

We use exactly the same settings as in full training, the only difference is the number of epochs.
For MultiMNIST we use 4 epochs and for CityScapes 5 epochs. In both cases, the initial
checkpoint, denoted as θ0 in the main text, corresponds to the first seed of the Linear Scalarization
(Caruana, 1997) baseline.
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Figure 9: Ablation on the scaling parameter α, defined in Equation 2, and the annealing temperature
T for the validation set of MultiMNIST. We omit PFL baselines to reduce visual clutter and present
3 seeds for each configuration. We observe that higher temperatures and scales leads to larger Pareto
Fronts. Figure 3a presents the test results for the configuration with the highest mean hypervolume.

20



Published as a conference paper at ICLR 2025

Loss Top Left

0.14

0.16

0.18

0.20

0.22

0.24

0.26

L
os

s
B

ot
to

m
R

ig
ht

α = 1, T = 1

Loss Top Left

L
os

s
B

ot
to

m
R

ig
ht

α = 1, T = 2

Loss Top Left

L
os

s
B

ot
to

m
R

ig
ht

α = 1, T = 5

Loss Top Left

0.14

0.16

0.18

0.20

0.22

0.24

0.26

L
os

s
B

ot
to

m
R

ig
ht

α = 2, T = 1

Loss Top Left

L
os

s
B

ot
to

m
R

ig
ht

α = 2, T = 2

Loss Top Left

L
os

s
B

ot
to

m
R

ig
ht

α = 2, T = 5

Loss Top Left

0.14

0.16

0.18

0.20

0.22

0.24

0.26

L
os

s
B

ot
to

m
R

ig
ht

α = 5, T = 1

Loss Top Left

L
os

s
B

ot
to

m
R

ig
ht

α = 5, T = 2

Loss Top Left

L
os

s
B

ot
to

m
R

ig
ht

α = 5, T = 5

0.100 0.125 0.150 0.175 0.200 0.225

Loss Top Left

0.14

0.16

0.18

0.20

0.22

0.24

0.26

L
os

s
B

ot
to

m
R

ig
ht

α = 10, T = 1

0.100 0.125 0.150 0.175 0.200 0.225

Loss Top Left

L
os

s
B

ot
to

m
R

ig
ht

α = 10, T = 2

0.100 0.125 0.150 0.175 0.200 0.225

Loss Top Left

L
os

s
B

ot
to

m
R

ig
ht

α = 10, T = 5

LS

UW

MGDA

DWA

PCGrad

IMTL

CAGrad

Nash-MTL

RLW

Graddrop

Auto-λ

RotoGrad

PaLoRA (seed=2)

PaLoRA (seed=0)

PaLoRA (seed=1)

Figure 10: Validation losses for the setting outlined in Figure 9.
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t=0.2 t=0.4 t=0.6 t=0.8

Figure 11: Examples of annealing in the case of 3 tasks for m = 10 points. Similar to the 2d case,
the points are initially set in the center of the simplex and gradually towards the edges.

C DETERMINISTIC SCHEDULE

Section 4.2 discusses the deterministic sampling mechanism. In Equation 3, the preference vectors
for a given timestep τ ∈ [0, 1] are a function of the base preferences {λ(m)

0 }Mm=1. For two tasks,
we use torch.linspace(0, 1, M) to produce λ in [0, 1]. The vector preference is then λ =
[λ, 1 − λ]. For 3 tasks, we use the meshzoo library to produce the initial evenly distributed set in
the simplex. Example for the 2d case are provided in Figure 2, while Figure 11 shows the case for
three tasks.

D DETAILS OF THE ABLATION STUDY ON PREFERENCE SAMPLING

This section describes in greater detail the settings of the ablation study of Section 6.1. We ablate
on the following dimensions:

1. number of forward pass M ∈ {3, 5, 7, 9},
2. scaling α ∈ {1, 2, 5, 10}, defined in Equation 2,
3. the following sampling schedules:

(a) Deterministic sampling with annealing, defined in Equation 3. We explore tempera-
ture parameters Q ∈ {1, 2, 5},

(b) Deterministic sampling without annealing, defined in Equation 3 if τ = 1 regardless
of training iteration. We explore temperature parameters Q ∈ {1, 2, 5},

(c) Random sampling with annealing using the Dirichlet distribution Dirichlet(p(1−τ)1)
for p ∈ {1, 2, 5},

(d) Random sampling without annealing using the Dirichlet distribution Dirichlet(p1) for
p ∈ {1, 2, 5}.

Prior works used solely schedule (a). We use 3 seeds per configuration and present the results as
a scatter plot in Figure 12. Figure 12 shows the results focusing on the sampling mechanism only.
Figure 13 and Figure 14 are supplementary to Section 6.1 of the main text, showing the effect of
other hyperparameters as well.
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Figure 12: Ablation Study on the choice of preference vector sampling. Each scatter point corre-
sponds to a different combination of scaling α and number of forward passes M ∈ N. Deterministic
schedules result in lower Spearman correlation reflecting more functionally diverse Pareto Fronts.
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Figure 13: [Complement to Figure 12]: Ablation Study on the choice of preference vector sampling
(in color) and the effect of scaling α (marker size) and number of forward passes M ∈ N (marker
shape). Deterministic schedules result in lower Spearman correlation reflecting more functionally
diverse Pareto Fronts.

0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79
Hypervolume

2

4

6

8

10

N
um

b
er

of
no

nd
im

in
at

ed
p
oi

nt
s

(o
ut

of
11

)

n = 3

n = 5

n = 7

n = 9

Annealing + Fixed

Fixed

Annealing + Random

Random

Æ = 1

Æ = 2

Æ = 5

Æ = 10

Optimal

Figure 14: [Complement to Figure 13]: The y-axis changes to the number of nondiminated points.
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E PROOF OF THEOREM 2

Theorem 3. Let ft : X × Θ 7→ Y be a family of continuous mappings, where t = 1, . . . , T , and
X ⊂ RD is compact. Then, ∀ϵ > 0, there exists a ReLU multi-layer perceptron f with three different
weight parameterizations θ0,θ1,θ2 ∈ Θ, such that ∀t ∈ [T ], ∃α ∈ [0, 1], ∀x ∈ X :

|ft(x)− f (x;θ0 + αθ1 + (1− α)θ2)| ≤ ϵ.

The following proof is based on the proof provided by Dimitriadis et al. (2023).

Proof. Following the universal representation theorem, there exists Q ∈ N,M ∈ R(D+1)×Q,B ∈
RQ,M ′ ∈ RQ×D′

such that for a single hidden layer perceptron with non-linearity σ such that:

g : A× [0, 1] → RD′

z 7→ M ′σ(Mz +B),

∀x ∈ A,∀n ∈ {1, . . . , N},
∣∣∣∣fn(x)− g

(
x1, . . . , xD,

n− 1

N − 1

)∣∣∣∣ ≤ ϵ.

For matrices

[R]ij =


1 i = 2j − 1

−1 i = 2j

0 otherwise

[S]ij =


1 j = 2i− 1

−1 j = 2i

0 otherwise

[Uk]i =

{
0 i ≤ 2D

k i = 2D + 1

For x ∈ RD, we have

∀α ≥ 0, Sσ(Rx+U0 + αU1 + (1− α)U2) = (x1, . . . , xD, α).

For θ = (R,U ,MS,B,M ′), θ0 = (R,U0,MS,B,M ′) and θ1 = (R,U1,MS,B,M ′)

f(x; r, u,m, b,m′) = m′σ(mσ(rx+ u) + b),

then

f(x;θ0 + αθ1 + (1− α)θ2) = f(x;R,U0 + αU1 + (1− α)U2,MS,B,M ′)

= M ′σ(MSσ(Rx+U0 + αU1 + (1− α)U2) +B)

= g(Sσ(Rx+U0 + αU1 + (1− α)U2))

= g(x1, . . . , xD, α)
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