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Problem: eXplainable Artificial Intelligence
(XAl) methods not evaluated for performance
In noisy settings

Approach: evaluation pipeline, including
simulated dataset generation and comparing
explanations to ground truth effects

Results: Explainer performance directly tied to
model performance, robust XAl methods

consider many gradients of a robust ML model.

Our Evaluation methodology

Problem & Challenges

m XAl & effect modeling is key for industrial processes (digital surrogates) to
understand the models and the perturbations of the inputs

» Robustness and correctness are not quantified — need to evaluate noise robustness
& correctness of XAl in averse situations

m Ground truth effect w not available in real-world data — simulated datasets
with ground truth!

m Scoring for XAl methods difficult — evaluate using custom methods!

m Different kinds of XAl methods

= effects: Gradient, SG, ALE-kNN
= attribution: LIME, SHAP

m Solve scaling & alignment issues

based on data range r;

= Train model f(x)
= Artififcially perturb dataset using noise n; ~ N(0, (I - r;)*) mInfer local interpretations w;

(I)(fv Xi)

m Calculate score s € [0, 1]

perturb
Tij = Tij T 1y

Interpret

train f w, = (f,x;)

scale & normalize — w;

nj ~ N(0,(l-r;)7)

T
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score s &€ |0,1 score
TOY/E'A_‘F > split evaluation /train evaluation set X; | N d | _] N2 > 0.1
Simulation i s=1-— Wzizl ijl (wz’j — wi]-) s € (0,1]
evaluation set Xx; T
ground truth in- > scale & normalize — w;
terpretation w;
Toy dataset: polynomial generator
Generate 1000 samples
Calculate ground truth w* using automatic differentiation
Score s on toy data with varying levels of noise on the different combinations of explainers and Machine Learning (ML) models.
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Electric Arc Furnace (EAF) simulation

Relevancy: sustainable alternative to blast furnaces, well-researched chemical & electrical problem
Chemical simulation for different input parameters; observed auxiliary parameters & target value (carbon in tapped steel)
Calculate ground truth w* using automatic differentiation through whole simulation

Score s on EAF data with varying levels of noise on the different combinations of explainers and ML models.
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