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1 Proof of C1 and C2 in Section 4.1

First we show that the reference is mapped to the origin, i.e., νθ0 = 0.

νθ0 = F−1
µθ0
◦ Fµθ0 − id = id− id = 0,

where we used Monge map formulation in (7) and the CDT definition in (8). Now, we have

‖νθi − νθj ‖µθ0,2 = ‖fθi − fθj ‖µθ0,2

=
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which completes the proof of C2. Finally, given C2 and the fact that νθ0 = 0, we can write

‖νθi ‖µθ0,2 = ‖νθi − νθ0‖µθ0,2 =W2(ν
θ
i , ν

θ
0 ),

which completes the proof of C1.

∗Work done while at HRL Laboratories, LLC.
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2 Implementation Details

2.1 License

The CAD models in ModelNet40 [1] were downloaded from the Internet and labeled using Amazon
Mechanical Turk (MTurk). The original authors hold the copyright of the CAD models. The TUD
graph datasets [2] can be used under a Creative Commons Attribution-ShareAlike License. The
NWPU-RESISC45 dataset [3] is available for use in accordance to the fair use exception to copyright
infringement. The Places-Extra69 dataset [4] can be used under the Creative Common License, and
the copyright of all the images belongs to the corresponding image owners. None of the datasets that
we use for evaluation contains personally identifiable information or offensive content

2.2 Pooling Methods

We use a single-layer linear mapping as the slicer for all PSWE experiments (as opposed to a
generalized non-linear slicer mechanism). For a fair comparison, we set the number of attention
heads of Pooling by Multi-head Attention (PMA) [5] to 1. For experiments where the cardinalities of
all sets are equal (i.e., point cloud and image experiments), we use that as the size of the reference set
in PSWE and the number of seeds in PMA. On the other hand, for graph experiments, we set the size
of the reference set in PSWE and the number of seeds in PMA to the average number of graph nodes
in the training dataset.

2.3 Point Cloud Processing

For the training objects, we first sample 2048 points uniformly at random from each object, and then
randomly take 1024 of those samples in each training epoch, while we fix the set of 1024 samples for
each of the test objects. We use random scaling (chosen uniformly at random from [ 23 ,

3
2 ]), random

translation (chosen uniformly at random from [−0.2, 0.2]), and random rotation in the x-y plane
(chosen uniformly at random from [−30◦, 30◦]) as augmentations for point clouds in the training
dataset.

We use two types of backbones:

• MLP: We consider a multi-layer perceptron (MLP) with two 256-dim hidden layers, and a
256-dim output layer, which independently maps the initial three features of each element in
the point cloud to a 256-dim embedding. We use rectified linear unit (ReLU) non-linearity
after each of the two hidden layers.

• ISAB: We consider the induced set attention block (ISAB) backbone [5], consisting of two
256-dim ISAB layers, each with 4 attention heads and 16 inducing points. Through this
backbone, the elements within each point cloud set perform attention-based message passing
to map their initial three features to 256-dim embeddings.

We set the batch size to 32, and train each configuration, i.e., (backbone, pooling) pair, using Adam
optimizer for 200 epochs. We set the initial learning rate to 10−3 and decay it by 0.5 every 50 epochs.
We run all experiments with 10 different random seeds and report the mean and standard deviation of
the test accuracies across those seeds in Table 1.

2.4 Graph Classification

For the bio-informatics datasets (i.e., ENZYMES, PROTEINS), we use the provided node attributes
as the initial node features. Moreover, for the social network datasets (i.e., IMDB-B, IMDB-M,
REDDIT-B), we respectively use 300-dim, 300-dim, and 500-dim one-hot encoded node degrees as
the initial node features, and clip the node degrees if they are beyond the aforementioned dimensions.

As for the backbones, we consider three different GNN backbones, namely Graph Convolutional
Network (GCN) [6], Graph Attention Network (GAT) [7], and Graph Isomorphism Network (GIN) [8],
where each backbone has a distinct type of message passing mechanism among the graph nodes over
the graph edges. We consider three 256-dim GNN layers (two hidden and one output) for each GNN
type, where a ReLU non-linearity is used after each GNN layer except for the output layer. For GAT,
we consider a single attention head, and for GIN, the neural network at each layer is set to an MLP
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Phase Backbone GAP PMA FSPool
PSWE

L = 1 L = 4 L = 16 L = 64 L = 256 L = 1024

Training
MLP 21.35 ± 0.09 26.58 ± 0.12 22.82 ± 0.06 21.89 ± 0.02 21.91 ± 0.02 21.95 ± 0.02 22.33 ± 0.02 23.79 ± 0.09 30.17 ± 0.24

ISAB 26.27 ± 0.03 30.50 ± 0.11 27.31 ± 0.03 26.71 ± 0.02 26.74 ± 0.02 26.76 ± 0.02 27.03 ± 0.03 28.06 ± 0.04 33.99 ± 0.05

Inference
MLP 0.16 ± 0.00 0.60 ± 0.00 0.40 ± 0.00 0.17 ± 0.00 0.17 ± 0.00 0.19 ± 0.00 0.27 ± 0.00 0.54 ± 0.00 1.68 ± 0.00

ISAB 0.51 ± 0.00 0.97 ± 0.00 0.76 ± 0.00 0.52 ± 0.00 0.53 ± 0.00 0.54 ± 0.00 0.62 ± 0.00 0.89 ± 0.00 2.04 ± 0.01

Table 1: Comparison of per-epoch training and inference wall-clock times (in seconds) between
PSWE and the baseline pooling methods on the ModelNet40 dataset.

with a single hidden layer and ReLU non-linearity, where the size of the hidden layer equals the sum
of the input and output dimensions.

We set the batch size to 32, and train each configuration, i.e., (backbone, pooling, dataset) tuple, using
Adam optimizer for 20 epochs. We fix the learning rate at 10−3. Following [8, 9, 10], we perform
10-fold cross-validation and report the mean and standard deviation of the validation accuracies
across the 10 folds in Table 2.

2.5 Image Recognition

We consider two backbone types:

• 16× 16 Patches + MLP: We use random resized crop to map each input image to 256×256
pixels, and then partition the image to 16× 16 patches, each of size 16× 16 pixels. We then
flatten the patches and pass each of them through a shared MLP. The MLP has two 256-dim
hidden layers, each with batch-norm and Leaky-ReLU non-linearity, and a linear 256-dim
output layer. At the MLP output, we add Fourier-based positional encoding [11] to derive
the final 256-dim patch embeddings.

• ResNet18: We use random resized crop to map each input image to 224× 224 pixels, and
then pass the image through a ResNet18 architecture [12] to derive a 7×7×512-dimensional
tensor at its output, which we treat as a set of 49 elements, each containing 512 features.
This implies that the average pooling module and the fully-connected layer at the end of the
ResNet18 architecture are entirely removed.

Regardless of the backbone type, for the NWPU-RESISC45 dataset, we consider a sequence of
random horizontal flip, random vertical flip, and random cutout as training augmentations, while
for the Places-Extra69 dataset, we augment training images via a sequence of random horizontal
flip and random cutout. We set the batch size to 32, and train each configuration, i.e., (backbone,
pooling, dataset) tuple, using Adam optimizer for 100 epochs. We set the learning rate to 0.025, run
all experiments with 3 different random seeds and report the mean and standard deviation of the test
accuracies across those seeds in Table 3.

2.6 Hardware

We run our experiments on an internal cluster containing 18 nodes, each equipped with one of the
following three CPU/GPU configurations:

(i) 2.40 GHz Intel® Xeon® E5-2680 v4 CPU and two 16 GB NVIDIA® Tesla® P100 GPUs.

(ii) 2.40 GHz Intel® Xeon® E5-2680 v4 CPU and four 16 GB NVIDIA® Tesla® P100 GPUs.

(iii) 2.90 GHz Intel® Xeon® Gold 6226R CPU and two 32 GB NVIDIA® Tesla® V100S GPUs.

3 Wall-Clock Time Comparison

Table 1 shows the per-epoch training and inference times of different pooling approaches on the Mod-
elNet40 dataset. All experiments were run in isolation on a machine with the hardware configuration
(iii) mentioned in Section 2.6.
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Closest samples to reference
Class "glass_box" Class "glass_box" Class "glass_box" Class "glass_box" Class "glass_box"

(a)

Farthest samples from reference
Class "plant" Class "curtain" Class "curtain" Class "curtain" Class "curtain"

(b)

Figure 1: Training samples that are (a) closest to, and (b) farthest from the trained reference, after an
ISAB backbone and a PSWE pooling module with L = 1024 are trained on the ModelNet40 dataset.

Classes with highest variance in distance to reference

Closest to reference

Class "curtain"

Farthest from reference

Class "lamp" Class "stairs" Class "desk" Class "plant"

Figure 2: Visualization of samples from five classes in the ModelNet40 training dataset with the
largest variance in the distance to the reference, after an ISAB backbone and a PSWE pooling module
with L = 1024 are trained on the ModelNet40 dataset. Each column shows a specific class. The
samples on the top row are the ones closest to the reference within the corresponding classes (with
the most typical shapes), as opposed to the samples on the bottom row, which are the farthest samples
from the reference in the corresponding classes (with the most atypical shapes).

4 Visualizing Closest and Farthest Samples to the Trained Reference

For the ModelNet40 dataset with an ISAB backbone and PSWE (L = 1024) pooling, we seek to
visualize the closest and farthest training samples to/from the reference (after slicing) once training
is complete. As shown in Figure 1, the closest samples to the reference all look like regular cubes
and belong to the class “glass_box,” while the farthest samples from the reference have very atypical
shapes (e.g., “plants” with long branches). Moreover, Figure 2 illustrates a range of samples belonging
to five classes which exhibited the largest variance in distances of their samples to the reference. As
the figure shows, for a given class, as we get farther from the reference, the samples go from typical,
prototype-like samples to the most atypical ones.
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