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ABSTRACT

3D Human motion generation, especially textual conditioning motion generation,
is a vital part of computer animation. However, during training, multiple ac-
tions are often coupled within a single textual description, which complicates the
model’s learning of individual actions. Additionally, the motion corresponding to
a given text can be diverse, which makes it difficult for the model learning and for
the user to control the generation of motions that contain a specific pose. Finally,
motions with the same semantics can have various ways of expression in the forms
of texts, which further increases the difficulty of the model’s learning process. To
solve the above challenges, we propose the Pose-Guided Text to Motion (PG-
T2M) with the following designs. Firstly, we propose to divide the sentences into
sub-sentences containing one single verb and make the model learn the specific
mapping from one single action description to its motion. Secondly, we propose
using pose priors from static 2D natural images for each sub-sentence as control
signals, allowing the model to generate more accurate and controllable 3D pose
sequences that align with the sub-action descriptions.Finally, to enable the model
to distinguish which sub-sentences describe similar semantics, we construct a pose
memory storing semantic-similar sub-sentences and the corresponding pose rep-
resentations in groups. These designs together enable our model to retrieve the
pose information for every single action described in the text and use them to
guide motion generation. Our method achieves state-of-the-art performance on
the HumanML3D and KIT datasets.

1 INTRODUCTION

Text-to-motion generation aims to generate human motion sequences given a textual description,
which has a wide range of applications in game design, animation, robotics, and other fields. Re-
cently, there has been rapid development in text-to-motion generation, where the recent methods
typically use text directly as a condition, employing diffusion models to control motion generation.
However, these methods overlook the following three problems.

Firstly, as shown in Figure[ld| the training data usually contains complicated texts including multi-
ple actions, wherein these coupled actions make it challenging for the model to learn the mapping
between individual actions and their corresponding textual segments. For example, multi-action
data accounts for more than 60% in the HumanML3D (Guo et al., 2022} dataset, empirically we ob-
serve that the existing models like MDM (Tevet et al., [2023)) and MotionDiffuse (Zhang et al., 2022)
trained with these data usually coupled with multiple actions has a significant performance drop on
a single action in Figure Secondly, as shown in Figure motions described by the same text
(such as ’kicks’) can be highly diverse. This increases the uncertainty of motion generation, making
it difficult for the user to control the generation of motions that contain a specific pose. Motion is
a sequence of poses and pose information plays a vital role in motion generation. Therefore, we
believe that introducing prior knowledge of the diverse poses corresponding to a single action de-
scription can provide more prior information related to the textual description, making the results
better aligned with the condition. Since the pose-prior is easier to obtain through off-the-shelf text-
to-image and image-to-pose models, we choose to use several static poses rather than a continuous
motion sequence as the guide. Finally, as illustrated in Figure[ld| due to the diversity in natural lan-
guage, motions with the same semantics can have various ways of expression in the forms of texts.
This diversity increases the difficulty of the model’s learning process. If we can assist the model in
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Figure 1: (a)Analysis of data distribution of HumanML3D dataset about texts including multiple
actions. (b)Performance comparison on single-action texts on HumanML3D. (c)The diversity of
motions described by the same text description. (d) Some synonymous texts may describe similar
semantics.

establishing clusters of the action descriptions, that is, informing the model which text semantics are
closer, it could better aid the model’s learning process.

To address the above issues, we propose a Pose-Guided Text to Motion (PG-T2M) model, which
constructs a pose memory that stores mappings between text clusters of semantically similar single
action and their pose information. This enables the model to acquire prior information related to
the pose of all actions within the text when generating motions. Firstly, to facilitate the model in
better learning the correspondence between individual action descriptions in complex text input and
motion, we utilize a sentence parser to break down the complex text into several sub-sentences,
each containing only one action. Then, to acquire the pose information of a single action, we use
the text-to-image diffusion model to acquire the image corresponding to the sub-sentence and use
pose extractors to obtain pose features from the image. Finally, to further aid the model in learning
the semantic-similar texts, we cluster all the sub-sentences in the training set and maintain a pose
memory that stores pose features corresponding to each cluster. As sub-sentences within the same
cluster possess similar semantics, we retain pose features only for a few sub-sentences within each
cluster for efficiency. During training and inference, given a text, we also parse it into sub-sentences
and retrieve the pose features from the pose memory. As we use the static pose feature as prior
information, we also design a temporal encoder to further encode the temporal relationship of those
pose features. These encoded pose features are then utilized alongside text features to control the
generation of motion.

In summary, our contributions are:

e We propose a Pose-Guided Text to Motion (PG-T2M) model, which is the first to introduce
pose information in the text-to-motion generation. We introduce the pose information from
a large-scale text-to-image diffusion model to provide various poses prior related to the
text, thus helping the model generate motions better aligned with the text conditions.

e We propose to parse the complex text prompt into sub-action descriptions to help the model
better learn the correspondence between each sub-action description and the motion. We
leverage text-to-image diffusion models and pose extractors to automatically obtain pose
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representations related to the sub-actions to control motion generation. We also construct
a text-pose pose memory to store different texts describing similar semantics and different
poses from the same texts to help the model learn the mapping between texts and the poses.

e We achieve state-of-the-art performance and validate the effectiveness of the method on
KIT (Plappert et al., 2016) and HumanML3D (Guo et al., [ 2022)) datasets.

2 RELATED WORK

Text to Motion Generation. Recently, widespread attention has been paid to 3D human motion
generation. Some works (Lee et al., 2023} |Athanasiou et al., 2022) have attempted to control the
generation of human motions using atomic action labels as conditions, but these methods struggle to
satisfy the need for generating diverse and complex motion sequences. Thus, an increasing number
of researchers are exploring the use of free-form text as a condition to control motion generation.
For example, TEMOS (Petrovich et al.,2022), T2M-GPT (Zhang et al.,[2023b) and MoMask (Guo
et al., 2023)) propose encoder-decoder or VAE-based pipelines to generate motions. Recently, dif-
fusion model (Ho et al., 2020) have been introduced to text-to-motion generation by MDM (Tevet,
et al.;,2023), MotionDiffuse (Zhang et al., 2022), MLD (Chen et al., 2023)), GraphMotion (Jin et al.,
2023)), etc., due to its outstanding ability in many generative tasks. These methods often directly
encode the features of complex text prompts to control the generation of actions, resulting in the
model’s difficulty in learning the correspondence between individual action descriptions and mo-
tion from complex text prompts. They also overlook the motions described by the same text can
be highly diverse, which increases the uncertainty of motion generation, making it difficult for the
user to control the generation of motions that contain a specific pose. Thus, we propose to divide
the sentence into sub-sentences containing only one single verb and introduce the pose information
of each verb as the additional control signal by constructing a pose memory that stores mappings
between text clusters of semantically similar single action and their pose information. This enables
the model to acquire prior information related to the pose of all sub-actions within the text for gen-
eration. One related work to ours is MAA (Azadi et al., [2023)), which introduces pose information
by simply pre-training the model on text-to-pose datasets and fine-tuning it on text-to-motion data.
However, it failed to establish a connection between the pose caption and the motion description,
resulting in the model still struggling to understand the correspondence between each sub-action
in the motion description and the pose. In our work, we directly utilize the descriptions of each
sub-action to retrieve the most relevant poses from the pose memory, explicitly using these poses as
control signals, allowing the model to generate more precise and controllable action sequences.

Codebook and Memory Bank. Codebook, memory bank, or other memory-based approaches
have been widely used in image classification (He et al.,|2020), multimodal alignment (Duan et al.,
2022)), and generative models (Van Den Oord et al., [2017)). For example, (Cao et al., 2017) used
codebook to speed up image retrieval. However, such a mechanism is yet to be fully explored
in the field of motion generation. We are the first to apply the concept of a memory bank to the
text-to-motion generation, aiming to establish a mapping from text descriptions to corresponding
pose information and enable the model to retrieve pose information to control the generation of
motion. One related work to ours is RemoDiffuse (Zhang et al.,[2023c)), which retrieves real motion
using text from the entire training set to control the motion generation. However, their retrieval
source is limited to the training set and requires the same distribution between training and test
data. Moreover, retrieving the whole motion sequence also neglects fine-grained sub-actions in
motion descriptions. In contrast, our pose information in the memory comes from the open-world
image generation model, which allows the pose memory to obtain knowledge beyond the training
set. In addition, our memory stores the correspondence between the poses of sub-actions and their
descriptions, rather than the complete motion sequences, allowing the model to learn more fine-
grained pose priors for each sub-actions.

3 METHOD

3.1 OVERVIEW

Given a text input, our goal is to generate a motion sequence x'*V that corresponds to the text input,
where N represents the length of the motion.
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The overview of our method is presented in Figure[2} Our pipeline contains three modules: the Pose
Memory Construction module to construct a pose memory storing the pose features of semantic-
similar single actions, the Pose Guided Conditioning to retrieve the pose features from the pose
memory and encode the temporal relations between them as the control signal, and the Motion
Diffusion module to generate the motions based on the conditions using the diffusion model.

Specifically, we adopt Motion Diffusion model MDM (Tevet et al., [2023)) as our baseline, which
encodes the text prompt as a condition and uses the diffusion model to generate motions based
on the conditions. More details of the baseline are described in Section The Pose Memory
Construction described in Section [3.3]constructs a pose memory that stores mappings between text
clusters of semantic similar single actions and their pose information. Firstly, to enable the model
to learn the relationship between a single action description and its motion from complex texts, we
propose to split the texts into sub-sentences that only contain one action. Then, to acquire the pose
information of a single action for a more controllable motion generation, we propose a pipeline
to generate pose representations from sub-sentences using off-the-shelf text-to-image generative
models and pose detectors. Since different sub-sentences may describe similar semantics, we cluster
the sub-sentences in the training set to aid the model in learning the semantic-similar sub-sentences.
We then construct a pose memory that stores the mapping from the clusters to the pose features.
The Pose Guided Conditioning described in Section [3.4] uses the pose information to help the
model with motion generation. Firstly, we retrieve the pose features corresponding to the sub-
sentences from the pose memory. Since there exists a sequential relationship between pose features
corresponding to different sub-sequences, we use a temporal encoder to further encode these pose
features. The encoded features are then utilized alongside text features to control the generation.
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Figure 2: The overall framework. Left: Pose Memory Construction. We split text in the training
set into sub-sentences and cluster them as the keys of the pose memory. Then we synthesize the
images from the sub-sentences and extract the pose from the images, which serves as the values
of the pose memory. Middle: Pose Guided Conditioning. The model first encodes the split sub-
sentences and uses them to retrieve the corresponding pose feature from the pose memory. To
further encode the temporal relationship between pose features, a temporal encoder is involved.
The encoded pose feature and original text feature are added together as guidance. Right: Motion
Diffusion. During inferring, the model is provided with conditions and starts from pure noise to
predict the motions using the diffusion model following MDM. In each step, the model predicts the
final motion sequence#{'™ from input motion sequence =}V guided by the condition.

3.2 MOTION DIFFUSION MODEL (MDM) REVISIT

Diffusion models are a new type of generative model that has an outstanding ability to tackle
image-generation tasks. Recently, it has been proved by several works (Zhang et al., 2022} Tevet
et al.| |2023) that diffusion models also perform well in motion generation. In this paper, we use
MDM (Tevet et al.,[2023)), a diffusion-based model, as our baseline model.
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MDM follows a Markov chain to add Gaussian noise to the original motion sequence x'"V to make

it pure noise in:
q(we|wi—1) :N(\/Oétlrt—h(l —a)l), (D

where o is hyper-parameters, and we use z; to represent 'V for simplicity, which is the motion
sequence after adding noise for ¢ times. Then, we can efficiently obtain x; from z( following (Ho

et al.,[2020) by:
q(]xo) = Varro + V1 — e, 2
where @, = [}, _, am and e ~ N(0,I).

For the reverse process, timestep ¢ is fed into an FFN and added to text features c to obtain the
guidance token z. MDM dose not predict ;1 or noise ¢; from x;. Instead, it directly predicts the
final result o use a transformer encoder F: &y, = F(xy, z), where z is the guidance token. They
use MSE loss to optimize the diffusion model:

L = Eyomqaole),t~,7) 10 — ol13] (3)

In the training process, timestep ¢ is randomly chosen and this reverse process is performed once.
During testing, after obtaining & from xz7, MDM diffuses it back to zp_1, and this process will be
iterated for 7" times and finally obtain Z( from z;, which will be the ultimate output.

3.3 POSE MEMORY CONSTRUCTION

To provide the model with pose priors for each sub-action in the text, enabling more precise and
controllable action generation, we propose to split texts into sub-sentences only containing a single
verb and obtain pose-related priors for each sub-sentence. Due to various descriptions for the same
semantic meaning using natural language, to enhance the model’s learning of semantically similar
sub-sentences, we propose to employ a pose memory to store the mapping from semantic-similar
sub-sentences to their pose features.

Text Splitting. As previous models do not pay enough attention to the inner structure of the input
texts, especially they may include multiple actions that make text-conditional motion generation
more difficult, our proposed text splitting tries to tackle the problem. Specifically, we split the
sentence into shorter texts with only one action to disentangle the multiple verbs in the texts. We
consider the predicate-argument structure of the input sentence to split it into sub-actions. We first
use off-the-shelf SRLBert (Shi & Lin, 2019) to obtain the PropBank-style (Palmer et al., [2005)
semantic role label of the sentences. We split the sentence into sub-actions based on the verb tag
[V]. Each verb has some attached tags, for example, [ARGO] represents Proto-Agent of the verb
and [ARG1] stands for Proto-Patient of the verb. We keep each verb and the attached tags as the
split sub-actions. After splitting, we use a text encoder T(-) to compute the text features of the
sentence and sub-actions.

Pose Feature Generation. As it is hard to obtain a massive text-pose paired dataset from scratch,
we choose to probe knowledge from trained generative models. Stable Diffusion (Rombach et al.,
2021)), which has proved its ability to generate diverse images, is leveraged by us to generate pose-
related images from our text-only data. Specifically, after obtaining the split sub-sentences in the
training set, we use the Stable Diffusion to generate m,, images from each sub-sentence. The images
generated are then fed into PYMAF-X (Zhang et al.| 2023a)), a pre-trained pose extractor, to extract
the SMPL (Loper et al.,|2023) pose annotation from these images. This allows us to obtain 1, pose
annotations for each sub-action. The reason for generating multiple poses is that the same sub-action
can encompass various postures, and we aim to retain this diversity. Note that we use the static pose
feature from synthesized images instead of the dynamic motion feature from synthesized videos
because the text-to-image model typically exhibits higher generalization due to massive training
data and is more efficient than the text-to-video model. To consider the temporal relationship of the
static pose features, we also design a temporal encoder which will be discussed later.

To speed up the training and inferring process, the pose features from texts are generated in an offline
way instead of along with the model, and stored for later use.

Pose Memory Construction.

To obtain the semantic-similar sub-sentences, we use k-means to cluster the split sub-sentences from
the training set into k clusters by their text features. Then, to maintain variety within the text of each
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cluster, m, texts are randomly selected and fed into the text-image-pose pipeline for each cluster.
Thus, the total number of texts is N; = m; X k. To enhance variety, m, images will be generated
from each selected text and the number of poses is N, = m,, X IN;. The text features in each cluster
along with their cluster center serve as the key, and the corresponding poses are the values. So our
key in the pose memory is

Key = T(s1, 52, ..., 5y,) € RNe>dt, 4
where s, $a, ..., Sn, are the sub-sentences in the pose memory, T(+) is the text encoder, and d; is the
dimension of the text feature space. And our value in the pose memory is the corresponding pose
representations Value € RV *9» where d,, stands for the pose dimensions. Note, our pose memory
provides a one-to-multiple mapping for the diversity of pose features, where a single text can be
mapped to m,, x m; poses, and the selection of pose features will be discussed in Section [3.4}

3.4 POSE GUIDED CONDITIONING.

After obtaining the pose memory, we can retrieve the pose feature of the split sub-sentences during
training and inference to guide the motion generation. Since there exists a temporal relationship
between poses (such as the temporal order in which each pose appears), we propose a temporal
encoder to further encode these pose features.

Pose Memory Retrieval. Given a sub-sentence, the text feature of it fyyery € R% is used to
compute the distance between itself and text features fxe,, € R% stored in our pose memory. Then,
the fed-in sub-sentence is classified in one certain cluster. Later, we randomly choose a pose in this
cluster as the corresponding pose representation. Noting that here we select the pose value from the
whole cluster (m; X m,, poses) for variety, instead of selecting from only those corresponding with
that certain key (m,, poses). This design helps enhance the variety of the motion generated.

Temporal Encoder. The pose retrieved from the pose memory is extracted from static images
and there exists a temporal relationship such as sequential relationship between pose features cor-
responding to different sub-sequences. Therefore, we use a transformer encoder as the temporal
encoder to further encode these pose features. We set the max number of sub-sentences to Ng. Sup-
pose that the original sentence is split into ns sub-actions, if ns < Ng, we will repeat the fetched
poses in an interleaving way. For instance, if ng = 2, Ny = 4, we repeat action AB into AABB.
Otherwise, we simply truncate it. These /N, poses are fed into the temporal encoder. Suppose the
pose representations are P € RVsX9» we process it as:

fp =E(P + PE(P)), 4)
where E(-) is the transformer encoder and PE(+) is the positional embedding.

To control the generation of motions with both text and pose features, we add f), to the original text
feature f; of the sentence to get the final hybrid feature:

Shybria = fp @ [, (6)

where @ stands for vector addition. The hybrid feature fjyriq is used to replace the text feature c
in the diffusion part described in Section [3.2as the control signal.

Our training and inferring processes are similar to what is described in Section[3.2] and our objective
function is the same as Equation (3). During inferring, the diffusion process will be iterated for T’
times. The randomness in pose fetching is kept, but the pose fetched in the first iterations will not
be changed between iterations and we do not repeat the retrieval in the later iterations.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

Datasets. In this study, we employ the HumanML3D dataset (Guo et al) 2022)) and the KIT
dataset (Plappert et al [2016) to assess the effectiveness of the proposed approaches in the task
of text-to-motion generation, following (Guo et al., [2022} [Tevet et al., 2023; |[Zhang et al., 2023c).
HumanML3D (Guo et al., 2022)) is a widely-used dataset in the text-to-motion domain recently,
which provides 14616 motions with 44970 text annotations. KIT (Plappert et al., [2016)) is another
widely used dataset including 3911 motions annotated by 6353 textual descriptions.
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Evaluation Metrics. We employ the following four metrics adopted by (Guo et al., [2022; Zhang
et al., 2022; [Tevet et al., 2023). 1) R-precision (R). For each textual prompt and its corresponding
generated motion, 31 other pairs are randomly selected. The matching of them is computed and the
top-k accuracy is obtained. 2) Multi-Modal Distance (MM Dist). Using the pre-trained contrastive
model, we compute the distance between the input text and the generated motion. 3) FID. We use
FID on the features extracted from ground truth and generated motions to measure the distribution
distance. 4) Diversity. We randomly separate the motions generated into pairs and compute the joint
differences of each pair to show the variety of generated motions.

Table 1: Quantitative evaluation results on HumanML3D (Guo et al.,|2022) dataset. + indicates
95% confidence interval. An up-arrow? indicates the performance is better if the value is higher. We
use bold to represent the best result in the table. {: ReMoDiffuse has access to the training set
samples during evaluation. MoMask does not apply diversity as a metric.

Method (t;;%{),r (tcﬁ)q;)T (tol;q;)T FIDJ MM Dist] Diversity -

Ground Truth 51.1F3 70.3%3 79.7%2 0.002F 002 2.974F008 g 503%.065
TEMOS (Petrovich et al.[[2022) 424%7 61257 722F2 373408 3 7(03F 008 g 973+ 07T
T2M-GPT (Zhang et al.[|[2023b) 49.2%3 67982 77552 (1415005 3,121+009 g 799+.082

MLD (Chen et al.|[2023) 48.1%3  ¢7.3%3  77.2%2 (4735013 3196010 9 704+082
+ReMoDiffuse (Zhang et al.|2023¢c)  51.0%° 69.8+6 79.5+4 (1035004 9974+.016 9 (18+075
Fg-T2M (Wang et al.[[2023) 49.2%2 68.3%3 78.3%2 (.243F019  3109+:007 9278+ 072
GraphMotion (Jin et al.|[2023) 50.4%3  69.9%2 78.5%2 (.116+007 3.070%008 9.692+067

MAA (Azadi et al.|[2023) - - 67.6%2  0.774%007 - 8.23+:064
BAD(OAAS) (Hosseyni et al.][2024) 51.7%2 71.3%3 80.8%3 (.0655003 2,901%-008 9 g94+068
BAD(CBS) (Hosseyni et al.|2024]  51.1%2  70.4%2 80.0%2 (.049%003  2.957+:006 g Ggg+-089
BAMM (Pinyoanuntapong et al.[[2024) 52.2+3 71,553 80.8%3 0.055%:002 2.936=077 9,636%009

MDM (Tevet et al.|[2023) 32.0%5 49.8+4 61.1F7T  (0.544%F 04 55661027 9.559+.086

Ours with MDM 33.8%4 53.8%7 64.5%7 (0.689F042 5.355%028 g G7g8+-096

MotionDiffuse (Zhang et al.|[2022) ~ 49.1%1 68.1%1 78.2%1 (.630%001  3.113%:001 9 410%049

Ours with MotionDiffuse 51.0%°% 70.0%3  79.6%4 (.151%008 2977007 g 401+-155
MoMask (Guo et al.|[2023) 52.1%2  71.3%2 80.7F2 0.045-002 2 g58+:008 -
Ours with MoMask 53.1%4 72.0%3 81.5T6 (.064%009 2.908%017 -

Table 2: Quantitative evaluation results on KIT (Plappert et al., 2016) dataset. & indicates 95%
confidence interval. An up-arrow? indicates the performance is better if the value is higher. We use
bold to represent the best result in the table. {: ReMoDiffuse has access to the training set samples
during evaluation. MoMask does not apply diversity as a metric.

Method (toli)%l))T (t(i)q;)T (t(i)qg)T FIDJ MM Dist]  Diversity -

Ground Truth 42.4F5 64.955 77956 (.031F 0% 2788E 012 11 08097
TEMOS (Petrovich et al.[[2022) 35350 56.1F7 68.7F° 3717051 3417E0T9 1(0.84+ 100
T2M-GPT (Zhang et al.|[2023b) 41.6+6 62.7%6 745+6  (0.514F029 3007023 10.92+108

MLD (Chen et al.|[2023) 39.0%%  60.9%8 73.4F7  0.404%027  3.204F927  10.80%117
+ReMoDiffuse (Zhang et al.|[2023c) 4274 64.1%4 76.5%55 (0.155+006  9.814+012 10,80+ 105
Fg-T2M (Wang et al.|[2023) 41.8%5 62,654 7454 0.571F047  3.114+015  10.93+.083
GraphMotion (Jin et al./[2023) 42.9%7 6486 76.9%6 (0.313%013  3076+:022 11,12+ 135

BAD(OAAS) (Hosseyni et al.|[2024) 41756 3.1%6  750%6 (.221F012  2.941%+:025 11 00*-100
BAD(CBS) (Hosseyni et al.]2024) ~ 40.8%4 61.2%7 73.4%=7 0.246%019  3.100%021 10.874+083
BAMM (Pinyoanuntapong et al.[2024) 43.6%7 66.0%6 79.1%5 0.200%011  2.714%016  1(,914%.097

MDM (Tevet et al.|[2023) 16.4%4% 29.1F4 39.6%4 0.497F021  919+022 1 g47+109
Ours with MDM 19.5%4 3395 435+5 (0.365%041  9.042+015 10.808+093
MotionDiffuse (Zhang et al.|[2022) ~ 41.7%4 62.1%4 73.9%4 1.954%062 9 958+005 717 10+-143
Ours with MotionDiffuse 42.5% 6 64.9%8 77.7%9 0.113%021 2 797+.009 10 g1+-069
MoMask (Guo et al.|[2023) 43.3%7 65.6%° 78.1%5  (0.204% 011 2 779+.022 —
Ours with MoMask 44.6%6 67.1%7 79.8%6 (.143+:006 2 g08%-009
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4.2 IMPLEMENTATION DETAILS

For the pose feature generation, we use the Stable Diffusion 2.1 (Rombach et al.,|2021) to generate
images from text and use PyMAF-X (Zhang et al) 2023a)) to extract pose from images. For the
motion diffusion model, we use CLIP-ViT-B/32 (Radford et al., 2021)) as the text encoder. We train
the model for both HumanML3D and KIT with an 8-layer transformer in motion encoder, a 2-
layer transformer in pose temporal encoder, and a batch size of 64. For the pose memory, we set
k = 2048, m; = 16, m;,, = 12 for HumanML3D and k£ = 512, m; = 8, m,, = 6 for KIT. For our
MotionDiffuse (Zhang et al.,[2022)-based implementation, we set k¥ = 1024 for HumanML3D and
k = 256 for KIT. The latent dimensions of the hybrid feature and motion encoder are 256 and 512.
For the noising process, we set 7' = 1000 with a cosine noise schedule in the training stage. We
train three models based on MDM (Tevet et al., 2023), MotionDiffusion (Zhang et al., 2022) and
MoMask (Guo et al., [2023)), respectively. More details are provided in Appendix [A.3|

4.3 COMPARISON WITH STATE-OF-THE-ARTS

Comparisons on HumanML3D and KIT. The results on HumanML3D and KIT are shown in
Table[T]and Table[2] Furthermore, we gave qualitative comparisons in Appendix [A.2.1]

(1) We can see that our model achieves state-of-the-art results in the two datasets on R-precisions,
which proves that our design increases the correctness of conditional generation.

(2) We plug our module into MDM (Tevet et al., [2023)), MotionDiffuse (Zhang et al., [2022), and
MoMask (Guo et al., |2023), respectively, and both work much better than the original design. This
proves that our approach is generic.

(3) The FID suffers from a slight drop on HumanML3D with some baselines. As we employ a pose
memory and poses generated by StableDiffusion (Rombach et al.l 2021), it is reasonable that the
distribution of our generated samples slightly differs from the distribution of the dataset.

(4) The diversity of our method is slightly lower than the baseline, primarily because we introduced
pose information as an additional control condition. As shown in Fig.[3] the model generates motions
that better align with the pose conditions, which reduces the diversity. However, this enhances
the quality and controllability of the motion generation, as reflected in the improvement of the R-
precision. Furthermore, [Wang et al.| (2023)) has also pointed out that higher diversity is not always
better, as random motions have greater diversity but very low quality. We also find that the diversity
of our generated motions is relatively close to the diversity of ground truth as shown in Table [I}
which is reasonable.

Analysis on Multi-action Entanglement.

We design an additional experiment to further investigate whether our model performs better in han-
dling the multi-action entanglement in complex texts. From the training set of HumanML3D (Guo
et al., 2022), we select those with multiple actions and only use them as training data. For evalua-
tions, we use those with only one single action in the test set. We compare the performance of three
baselines (Tevet et al.| [2023; Zhang et al.| 2022} |Guo et al., [2023) w/ or w/o our design in TableE}
The results prove that our model learns each specific action in a highly entangled training set and
generates it correctly. This also indicates that our approach, which involves breaking down complex
text into sub-sentences and obtaining corresponding pose features through a text-to-motion diffusion
model, does not rely on the distribution of training data and exhibits better generalization.

4.4 ABLATION STUDIES AND DISCUSSIONS

To further explore if our proposed pipeline is effective and how the hyper-parameters in it will
affect the performance, we design several ablation studies. All of these studies are based on the
HumanML3D (Guo et al.,|2022) dataset using the MDM-based model. Despite the experiment done
with £ = 2048, all ablations are conducted with k& = 1024 for efficiency. We demonstrate the
quantitative results in Tables[dand [5] from which we can conclude the influence of:

Design Choices of Pose Memories Construction. In Table[d] we investigate how different ways of
constructing the pose memory influence the results.
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Table 3: Evaluation results on resplit HumanML3D (Guo et al., 2022) dataset. We choose the
multi-action data in the training set to train and use single-action data in the test set to evaluate.

Method R% (top 3)t FID, MM Dist],
Ground Truth 74.7 0.003  3.312
MDM (Tevet et al.|[2023) 53.3 0.721 5.891
Ours with MDM 61.8 0.717 5.517
MotionDiffuse (Zhang et al.|[2022) 60.1 0.728 3.759
Ours with MotionDiffuse 72.0 0.293  3.505
MoMask (Zhang et al.|[2022) 62.5 0.150  3.631
Ours with MoMask 73.2 0.156  3.502

Table 4: Ablation study on pose memories construction on HumanML3D (Guo et al.| 2022).

Method R% (top 3)7 FID] MM Dist]
Ours(k = 2048) 64.5 0.689  5.355
Ours(k = 1024) 64.3 0.695 5.358
Ours(k = 512) 62.6 0.818 5.404
Ours(k = 256) 61.9 0.940  5.529
Ours(m; = 16) 64.3 0.695  5.358
Ours(m; = 8) 64.1 0.754 5433
Ours(my = 4) 61.3 0.779  5.556
Ours(m,, = 12) 64.3 0.695 5.358
Ours(m,, = 6) 64.0 0.782  5.381
Ours(my, = 3) 62.1 0.762 5.414

Ours(clustered by text) 64.3 0.695 5.358
Ours(clustered by pose) 61.5 0.608 5.564

Size of the pose memory. In our pose memory, we cluster the texts into k clusters, keep m, texts for
each cluster center and generate m,, pose features for each text. We change k, m,, or m,, to discuss
how the scale of the pose memory influences the performance. In detail, the number of clusters may
influence the granularity of our pose memory, and the number of texts selected or poses for each
text may influence the diversity of the texts in a cluster or the poses for a certain text. For the cluster
center k, a larger k results in better performance. We suppose the reason is that a smaller % results
in clusters containing more text that may not be semantically close enough, so the model is more
likely to retrieve mismatched poses. However, from k£ = 1024 to &k = 2048, the improvement is
rather limited. We finally choose £ = 2048, to balance the performance and the scale of the pose
memory. The decrease of both m; and m,, will degrade R-precision and enlarge Multimodal dist.
This proves that the scale of the pose memory matters. The larger the pose memory, the higher
the diversity of stored text and poses. During training, the model can also learn more pose priors,
thereby improving performance. However, continuing to increase 1, m,, significantly increases the
storage and retrieval costs of the pose memory. For efficiency, we ultimately set m; = 16, m, = 12.

Clustering the entries by text or pose. As shown in the last 2 rows of Table ] we re-cluster the
pose memory by the pose representation instead of by the text features. The comparison shows that
our original direct way is better for conditional generation. Re-clustering by pose helps the model
generate motions more based on the motion itself rather than text conditioning, resulting in generally
more realistic motions that enhance FID but are worse for conditional generation. We suppose that
though a pose memory re-clustered by pose truly contains more similar poses in each cluster, it
increases the difficulty of text retrieval due to the variety of keys in a cluster. Thus, we cluster the
pose memory by texts throughout the experiments unless otherwise specified.

Design Choices of Pose Memory Usage. In Table [5] we investigate how several different choices
during the usage of the pose memory influence performance. We repeat this ablation with the dif-
ferent baseline, showing the results in Appendix [A.T.2]

Disabling the temporal encoder. We present the results in row 2 of Table[5] We disable the temporal
encoder, directly concatenate the pose features, and use a linear layer to encode the pose features.
The degradation shows that the temporal information between pose features is important for motion
generation and the temporal encoder can efficiently encode the temporal information.
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Table 5: Ablation study on choices of pose memory usage on HumanML3D (Guo et al., 2022).

Temporal Random  Text

encoder selection splitting R% (top 3)1 FID| MM Dist|

64.3 0.695 5.358

59.5 0.704  5.767
60.9 0.809 5470
61.4 1.001  5.564

NNX| N
NX NN
XNN N

Random selection or not. We randomly choose poses in the cluster during training. During inference,
after selecting a pose, it would not be changed during iterations. In the third row of Table[5] we test
the performance with randomness disabled during both training and inferring, i.e., choosing a fixed
text and pose feature in a cluster. The performance without random selection suffers from a drop.
The comparison illustrates that with a random selection, the model is provided with more diverse
pose priors during training and inference and works better.

Disabling the text splitting module. As shown in the last row in Table[5] we disable the text splitting
module and use the raw text to retrieve the pose. Furthermore, we gave visualizations of this ablation
study in Appendix[A.2.3] This increases FID, Multimodal Dist, and decreases R, showing that using
the whole text for retrieval leads to the disability of fetching poses in a fine-grained way, and no
static poses could be perfect for multi-action queries. Thus, the obtained pose might be limited and
misleading and cannot guide the model to generate motions like real humans.

4.5 CONTROL THE MOTION BY POSE

Pose Fetched Motion Sequence

12323
IEEREN!
173141

Figure 3: Fetching different poses to guide the motion generation from the same text A person kicks.

2

We demonstrate that our pose guidance effectively influences the motion generated in Figure 3] with
the results of generating motion from the same text input but guided by different poses fetched. The
text prompt is set as A person kicks, while poses used as guidance are chosen differently. We can
see that each motion generated is apparently related to the pose given, and does not appear to be an
average version affected by different poses the model may have encountered in the training process.

5 CONCLUSION

We introduce Pose-Guided Text to Motion (PG-T2M), which constructs a pose memory that stores
mappings between text clusters of the semantically similar single actions and their pose informa-
tion. We split the text into sub-sentences to handle the entangled verbs in complicated sentences
and help build a concrete mapping between single action descriptions and the motions. We propose
to automatically generate pose features for each sub-sentence to guide the generation of motions.
Quantitative experiments affirm the superior performance of our method compared to existing tech-
niques in text-driven motion generation.

10
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A APPENDIX

In this supplementary material, we present necessary additional information and take a deeper dive
into our approach. In Appendix[A.I] we present additional experiments. We make more discussions
on its performance with single-action texts, repeat the ablation studies on MoMask, and compare
the performance of different pose extractors. In Appendix we show more visual results and
discuss the zero-shot ability of pose-guided motion generation. In Appendix [A.3] we provide more
implementation details on how we apply our design principles on different baselines, along with the
introduction of each evaluation metric we use.

A.1 ADDITIONAL EXPERIMENTS AND DISCUSSIONS
A.1.1 EXPERIMENTS ON RESPLIT DATASET

Here we compare the performance of our model, MDM (Tevet et al., [2023) and MotionDif-
fuse (Zhang et al., [2022)) across varied test set splits. The aim is to investigate how the performance
is impacted by the varying numbers of actions present in the text input.

Texts in training data may include multiple actions, making it difficult for the model to learn the
concrete relationship between each action description and motion, resulting in bad performance

12
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Table 6: Result on KIT (Plappert et al., |2016) dataset, texts including one single action.

Single action

Method in KIT
R% (top 3)T FID] MM Dist|,
Ground truth 77.0 0.051 2.618
MDM 37.7 0.506 9.592
Ours with MDM 42.1 0.361 9.497
MotionDiffuse 73.2 1.915 2.861
Ours with MotionDiffuse 76.2 0.109 2.703

Table 7: Result on KIT (Plappert et al., 2016) dataset, texts including more than one action.

Multiple actions

Method in KIT
R% (top 3)T FID] MM Dist],
Ground truth 75.7 0.078 3.042
MDM 49.6 0.893 8.406
Ours with MDM 49.0 0.344 8.398
MotionDiffuse 74.3 2.076 3.068
Ours with MotionDiffuse 75.2 0.122 3.084

Table 8: Result on HumanML3D (Guo et al., 2022) dataset, texts including one single action.

Single action

Method in HumanML3D
R% (top 3)T FID] MM Dist],
Ground truth 76.5 0.003 3.034
MDM 57.0 0.688 6.355
Ours with MDM 60.9 0.690 6.203
MotionDiffuse 76.2 0.627 3.026
Ours with MotionDiffuse 79.4 0.154 2.994

Table 9: Result on HumanML3D (Guo et al.,|2022)) dataset, texts including more than one action.

Multiple actions

Method in HumanML3D
R (top 3)1 FID| MM Dist|
Ground truth 78.7 0.002 3.032
MDM 61.5 0.484 5.336
Ours with MDM 65.8 0.647 5.126
MotionDiffuse 76.0 0.638 3.185
Ours with MotionDiffuse  78.0 0.166 3.203

on single-action data. We conduct experiments on texts including different numbers of actions on
KIT (Plappert et al., 2016) and HumanML3D (Guo et al., 2022)) dataset using MDM (Tevet et al.,
2023)) and MotionDiffuse (Zhang et al.,|2022). Here we present a complete comparison in Tables E]
to9] 65.45% of the data in KIT is single-action and 36.97% of the data in HumanML3D is single-
action. As we can find in the tables: 1) MDM performs worse on single action on both KIT and
HumanML3D, illustrating that MDM does not understand the concrete relationship between each
single action description and the motion well. 2) Our method on MDM wins a great gain on single-
action data, improving R-top3 by 4.4%, FID by 0.145 MM Dist by 0.095 on KIT, and R-top3 by
3.9%, MM Dist by 0.152 on HumanML3D. Meantime, the ability to multiple-action data is also
enhanced. This proves that our method by splitting text into single actions and involving action pose
features can enhance the model’s understanding of the motion corresponding to a single action. 3)
MotionDiffuse has a more balanced performance on both datasets, yet our method still improves its
performance on each dataset, which shows the strong universality and portability of our method.

13
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A.1.2 ABLATION STUDIES WITH MOMASK AS THE BASELINE

Table 10: Ablation study on choices of pose memory usage on HumanML3D based on MoMask.

Temporal Random  Text R% R% R% FID| MM
encoder selection splitting (top 1)1 (top 2)T (top 3)T Dist]

53.1 72.0 81.5 0.064 2.908

52.4 71.5 80.8 0.061 2.953
52.5 71.5 81.1  0.059 2.927
52.7 71.8 81.3 0.067 2.923

ASNAN
NENAN
EENNAN

We repeat the ablation studies based on MoMask (Guo et al., [2023). As shown in Table @I, the
results prove the effectiveness of our designs for pose memory usage. In the main text, we choose
MDM as the baseline in ablation studies mainly because it is a simple baseline without heuristic
designs like a hierarchical quantization scheme or residual transformer, which can better reflect the
effectiveness of each module we propose. On the other hand, the ablations based on MoMask also
prove the generalization and effectiveness of our method.

A.1.3 ABLATION STUDIES ON THE POSE EXTRACTOR

Table 11: Ablation study on choices of pose extractors.

Pose Extractor R% (top 3)1 FID] MM Dist|

PyMAF-X 64.5 0.689  5.355
DecoMR 63.1 0.730  5.367
METRO 64.2 0.661  5.358

OSX-UBody 64.7 0.663  5.338

We have compared the performance of models using different pose extractors in Table[TT] Although
there are slight performance differences when using different pose extractors, these variations are
not substantial. Additionally, existing available pose extractors have already demonstrated good
performance in pose reconstruction.

Ours

ST 3N pAY 12 YLt

No running.

Figure 4: The comparison between original MDM (Tevet et al.,|2023) and our MDM-based model.
We choose two examples to show how our model performs better in fine-grained or coupled actions.
In the first example, motion frames are placed from left to right; in the second one, motion frames
are placed from right to left.
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Figure 5: The text prompt is: The person walks forward, then stops and bends down to pick up
something.
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Figure 6: The text prompt is: The person is doing push-ups, then stands up and runs forward.
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MoMask with more precise prompt
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Figure 7: The original text prompt is: A person walks while raising his hand up. The enhanced text
prompt is: A person walks while raising his hand up; during the process, the person moves to the
south, his left forearm moves to the body’s left up. The enhancement comes from SemanticBoost.
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(a) The text is An individual is doing stretching. (b) The text is A person kicks.

Figure 8: Using an unseen pose extracted from an image out of our pose memory to guide the
generation. In each subfigure, upleft: the novel image from the Internet; upright: the unseen pose
extracted from the image; down: motion generated guided by the unseen pose.
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Figure 9: Unseen text condition: A human is doing push-ups.
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Ours w/o text splitting
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The person kicks once more!

Figure 10: The comparison between our model based on MDM and the one without text splitting
module. The text input is A person kicks with his left leg and then punches to the front. Motion
frames are placed from left to right.

A.2 ADDITIONAL VISUALIZATIONS
A.2.1 QUALITATIVE COMPARISON

We compare our results with MDM (Tevet et al.| 2023 and present them in Figure[d We explored
the performance of our model on texts including multiple actions and fine-grained action descrip-

tions.

Compared with MDM, our model performs better when encountering multiple-action-included texts.
And for those few-action texts, our model generates more concrete motion sequences. We can
observe that: 1)MDM cannot understand specific figures like three, while ours control the motion
generated better in a fine-grained way. As in our first example in Figure[d, MDM just keeps stepping
backward, ignoring how many steps have been taken. Our result is much more accurate, the avatar
takes exactly three steps back. 2)MDM is easily distracted by a certain verb while there is more
than one included in a sentence, while ours separates them correctly. As is shown in the second
example in Figure d] MDM neglects the action running and only generates a jumping motion. Our
model avoids this mistake. In summary, our pipeline helps generate more reasonable, fine-grained,
and concrete motions.

We add three more qualitative visualizations comparing MoMask 2023) and our results.
Figure [5] demonstrates that MoMask cannot correctly handle it when multiple actions are involved
in textual prompts, where MoMask incorrectly generates a motion clip of turning around. Figure [6]
presents that when MoMask meets a novel verb-push-up-it will be confused and unable to generate
the subsequent motion of standing up and running forward. As shown in Figure[7} we manually pro-
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Figure 11: The comparison between our model based on MDM and the one without text splitting
module. The text input is A person walks forward and suddenly squats down, then he turns around
and runs back. Motion frames are placed from left to right.

TEIRLIAE

Figure 12: More visualized samples. The text input is A person takes six steps backward. Motion
frames are placed from left to right.

1111191919

Figure 13: More visualized samples. The text input is A person is playing the violin. Motion frames
are placed from left to right.

vide the baseline with a more precise prompt and compare the generated motions with our method.
The more precise prompt comes from SemanticBoost. We can observe that the MoMask performs
badly with the precise prompt and seems confused by the complex sentence. The information pro-
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Figure 14: More visualized samples. The text input is A person is playing soccer. Motion frames
are placed from left to right.

vided by a more precise prompt is still hard to extract. Better prompts alone cannot handle the
problem of action entanglement or help the model identify the concrete one-to-one association.

A.2.2 VISUALIZATION OF ZERO-SHOT POSE GUIDANCE

We have demonstrated in the main text that the poses in our pose memory can control the motion
generated. Further, we also find that our model demonstrates a certain zero-shot generalization
ability in using unseen poses extracted from novel images to guide the motion generation during
inference as we show in Figure[§] We select some images from the Internet and extract poses from
them which is totally new to the model. Using these unseen poses as guidance, the model can still
generate motions including these poses.

Furthermore, we use a textual prompt A human is doing push-ups not existing in the train set along
with an unseen figure to successfully generate a motion. The result shown in fig. [9] proves that
our method supports to control motion by user-specified pose images and can generalize to unseen
poses. This indicates that users can specify poses to more precisely control the generated motions.

A.2.3 VISUALIZATIONS OF ABLATION STUDIES

In Figures [T0] and we verify the effectiveness of the text splitting module. Specifically, we can
see from Figure|10|that without the text splitting module, the motion generated gets confused with
the temporal connections of each action and incorrectly repeats the motion once more. According
to Figure [T1] the exclusion of the text splitting module causes the model to generate incomplete
motions or neglect certain actions.

In Figures 2] to[T4] we present more visualizations of our models. In Figure[I2] we find that our
model has an accurate sense of details, like the number of steps it needs to take. In Figure T3] we
present another example to show the ability of our model to generate various motions like playing
the instruments. We use Figure [T4] to prove that the utilization of pose-feature-from-text does not
ruin the ability to generate an abstract and complex motion like playing soccer.

A.3 EXPERIMENT DETAILS

In this section, we first illustrate how we apply our pose-guided conditioning on MotionDif-
fuse (Zhang et al|[2022) in Appendix[A-3.1] Later, we show the computation resources we consume
in Appendix [A.3.2] We then describe the detailed evaluation process in Appendix [A3.3]
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A.3.1 ARCHITECTURE DETAILS

In the main text, we outlined the implementation details of applying our design principles to the
baseline MDM (Tevet et al.,2023). In this section, we elaborate on the application of our pipeline to
MotionDiffuse (Zhang et al.,|2022). Unlike MDM (Tevet et al., 2023)), which utilizes only sentence-
level text features supplemented by timestep embeddings as singular guidance, MotionDiffuse in-
corporates token-level text features for cross attention with motion frame representations. To seam-
lessly incorporate our pose memory design into MotionDiffuse with minimal alterations, we begin
by constructing the pose memory (involving the splitting of raw texts and encoding of pose features)
as proposed in the main text. Subsequently, for the encoded pose feature, we incorporate it into each
token-level text feature of MotionDiffuse as conditions to guide the motion generation. Notably, the
diffusion process of MotionDiffuse remains unaltered throughout this integration process.

A.3.2 COMPUTATION RESOURCES

We use only one single NVIDIA GeForce RTX 4090 GPU when training the MDM-based model with
a batch size of 64. We use 2 Tesla AI100 GPUs with 256 samples on each GPU when training the
MotionDiffuse-based model. We use one single NVIDIA GeForce RTX 4090 GPU when training the
MoMask-based model with a batch size of 512 for rvq training, a batch size of 64 for transformer
training.

A.3.3 EVALUATION METRIC DETAILS

We follow the standard test protocol as adopted by (Guo et al., 2022)) to evaluate all methods with
five different metrics. In this section, we provide more details on how these metrics are calculated.
Features are first extracted from both the generated motions and ground truth motions by the pre-
trained motion encoder, denoted as fgen, fq:- The text features are denoted as f;

Frechet Inception Distance(FID). FID is widely used in generation tasks to evaluate the overall
quality. Specifically, FID is calculated between ground truth and generated distributions to measure
the similarity. A lower FID is better, which means the overall generated motions are more similar to
the ground truth. We use

FID :Hﬂgt - /lgen‘g*‘
Trace(Xgr + Xgen — 2(zgtzgen)1/2)

to compute the FID, where pg¢, ttgen represents mean of fy;, fyen and X is the covariance matrix.

(7

Multimodal Distance(MM Dist). Multimodal distance is used to measure the difference between
the text feature and the motion feature. A lower MM Dist is better, which represents that the motions
generated are closer to the texts given. We use

N
. 1
DZSt:NZIHftffgcn‘b (8)

where [V is the length of the motion.

R-precision. For each text input, we choose the 31 other test text inputs in the same batch during
evaluation and then the multimodal distance will be computed between the generated motion and
these 32 texts. R-precision represents the average accuracy of matching (the matched text-motion
pairs have the smallest multimodal distance). A high R-precision is better, which means that the
model can generate motions close to its corresponding text description and easily be distinguished
from others.

Diversity. We use diversity to measure the variance of the whole motion sequences across the
dataset. A higher diversity is better, meaning the motion generated is more varied. S pairs of
motions(we refer to their features using f; 1, f; 2) are randomly sampled from the generated motions,
and we calculate diversity using
18
D= gi;\lfi,l — fiall> ©
Here we set S = 300 following HumanML3D (Guo et al., 2022).
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