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Utilizing Speaker Profiles for Impersonation Audio Detection
Anonymous Authors

ABSTRACT
Fake audio detection is an emerging active topic. A growing num-
ber of literatures have aimed to detect fake utterance, which are
mostly generated by Text-to-speech (TTS) or voice conversion
(VC). However, countermeasures against impersonation remain
an underexplored area. Impersonation is a fake type that involves
an imitator replicating specific traits and speech style of a target
speaker. Unlike TTS and VC, which often leave digital traces or sig-
nal artifacts, impersonation involves live human beings producing
entirely natural speech, rendering the detection of impersonation
audio a challenging task. Thus, we propose a novel method that
integrates speaker profiles into the process of impersonation audio
detection. Speaker profiles are inherent characteristics that are chal-
lenging for impersonators to mimic accurately, such as speaker’s
age, job. We aim to leverage these features to extract discriminative
information for detecting impersonation audio. Moreover, there is
no large impersonated speech corpora available for quantitative
study of impersonation impacts. To address this gap, we further
design the first large-scale, diverse-speaker Chinese impersonation
dataset, named ImPersonation Audio Detection (IPAD), to advance
the community’s research on impersonation audio detection. We
evaluate several existing fake audio detection methods on our pro-
posed dataset IPAD, demonstrating its necessity and the challenges.
Additionally, our findings reveal that incorporating speaker profiles
can significantly enhance the model’s performance in detecting
impersonation audio.

CCS CONCEPTS
• Security and privacy→ Spoofing attacks; Biometrics.

KEYWORDS
Fake Audio Detection, Impersonation Audio Dataset, Speaker Pro-
files

1 INTRODUCTION
Over the past few years, speech synthesis and voice conversion
technologies have made great improvement, enabling the genera-
tion of high-fidelity and human-like speech [29, 44]. However, the
misuse of these technologies can facilitate the spread of mislead-
ing information and contribute to cybercrimes such as fraud and
extortion [42]. Given the devastating consequences of fake audio,
fake audio detection has become an urgent and essential task that
needs to be addressed.
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In recent years, a growing number of scholars have made at-
tempts to detect fake audio. Most previous fake audio detection
research has primarily focused on four kinds of fake types: text-
to-speech, voice conversion, replay and partially fake [42]. Text-
to-speech (TTS) [34] is a technique that generates intelligible and
natural speech from any given text via deep learning based models.
Voice conversion (VC) [34] aims to alter the timbre and prosody
of a given speaker’s speech to that another speaker, while keeping
the content of the speech remains the same. These two spoofing
techniques are widely used in a series of competitions, such as the
ASVspoof [31] and ADD challenge [40, 41]. Replay attack [17] is re-
ferred to as a form of replaying pre-recorded genuine utterances of
a target speaker to an automatic speaker verification (ASV) system.
Partially fake [39] focuses on only changing several words in an
utterance. where fake segment is generated by manipulating the
original utterances with genuine or synthesized audio clips. Despite
the considerable attention given to these spoofing techniques [9],
countermeasures against impersonation remain relatively underex-
plored [25, 34].

Impersonation [9, 25, 34] entails an imitator mimicking specific
traits associated with the prosody, pitch, dialect,lexical and speech
style of a particular target speaker. This form of fake audio is gener-
ated by real human beings and poses a significant threat to speaker
verification systems, as criminals could potentially use imperson-
ation to gain unauthorized access [25]. Also, Wu et al. [34] points
out that, despite its higher cost, impersonation audio is more ef-
fective at evading detection due to its naturalness, making it a
challenging fake type to detection, when compared to TTS and VC.

Unlike the four previously mentioned spoofing attacks, which
typically leave traces via the physical characteristics of recording
and playback devices, or through artifacts introduced by signal pro-
cessing in synthesis or conversion systems, impersonation audio is
entirely natural speech produced by actual human beings [25, 34].
This makes the detection of impersonation audio a challenging task.
Thus we propose an innovative method that integrates the speaker
profiles into the detection of impersonation audio. Speaker profiles
refer to inherent attributes such as the speaker’s age, hometown,
job and so on. We aim to leverage these inherent characteristics
that are challenging for impersonators to imitate accurately for
impersonation audio detection. As speakers from the same home-
town typically share accents and those with the same job often
use a similar lexicon, a graph-based approach is ideal for modeling
the interconnected relationships between these attributes [22, 27].
Accordingly, we introduce a speaker profile extractor that employs
a mutual information-based graph embedding method [22, 27] to
gather speaker profile information. Subsequently, the features en-
riched with the speaker profiles are integrated with the features
derived from the front-end feature extractor module through a
fusion module. Finally, the fusion module’s output is fed to the
back-end classifier, which generates the high-level representation
aiming at distinguishing between impersonated utterances and
genuine ones.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Name Year Language Fake Types Traits # Utts # Hours # Spks

FoR [23] 2019 English TTS Clean 195,541 150.3 Fake:33/Real:140
ASVspoof 2021 [31] 2021 English TTS, VC, Replay Noisy 1,566,273 325.8 Fake:133/Real:133
In-the-Wild [20] 2022 English TTS Social Media 31,779 38.0 Fake:58/Real:58
ADD 2022 [40] 2022 Chinese TTS, VC, Partially Fake Noisy 493,123 - -
ADD 2023 [41] 2023 Chinese TTS, VC, Partially Fake Noisy 517,068 - -

IPAD 2024 Chinese Impersonation Web Media 24,074 23.5 Fake:408/Real:258
Table 1: Characteristics of representative datasets on fake audio detection. # Utts, # Hours and # Spks represent number of
utterances, hours and speakers, respectively. We will make our dataset publicly available once our paper is accepted.

However, a significant obstacle is the absence of large-scale
impersonated speech datasets, limiting quantitative analysis of im-
personation effects, primarily due to the challenges associated with
acquiring high-quality impersonation data, which is both scarce
and expensive. An impersonation dataset is designed by [18], fo-
cusing on investigating the vulnerability of speaker verification.
However, only two inexperienced impersonators are involved to
mimic utterances from YOHO corpus [4]. Hautamäki et al. [9] con-
structs a small Finnish impersonation dataset in 2013. All these
prior datasets suffer limitations such as few speakers and short
durations. Addressing these gaps, this paper presents a diverse-
scenarios, diverse-speaker impersonation dataset, named ImPerson-
ation Audio Detection (IPAD), to benefit the community’s research.
As Sahidullah et al. [25] indicate that professional impersonators
result in higher deception rates than amateurs, we specifically cu-
rated our dataset with audio from skilled impersonators, making
our IPAD dataset more pratical. Moreover, we are committed to
ensuring a balanced distribution of speakers across different age
groups and genders.

The main contributions of this paper are as follows:

• We propose a novel method that integrates speaker profiles
into the detection of impersonation audio. To this end, we
utilize a graph-based approach to extract speaker profile
information. Additionally, our proposed method does not
require labeled speaker profiles during the test period.

• We present the first diverse-scenarios, diverse-speaker im-
personation dataset, named ImPersonation Audio Detection
(IPAD), to promote the community’s research on imperson-
ation audio detection. The impersonation dataset will be
publicly available.

• We perform comprehensive baseline benchmark evaluation
and demonstrated our speaker profiles integrated method
can achieve impressive results.

2 RELATEDWORK
2.1 Fake Audio Detection Methods
In recently years, many detection methods have been introduced
to discriminate fake audio files from real speech, mainly focusing
on the pipeline detector and end-to-end detector solutions [42].

The feature extraction, which aims to learn discriminative fea-
tures via capturing audio fake artifacts from speech signals, is the
key module of the pipeline detector. The features used in previ-
ous can be roughly divided into two categories [42]: handcrafted

features and deep features. Linear frequency cepstral coefficients
(LFCC) is a commonly used handcrafted features that uses linear
filerbanks, capturing more spetral details in the high frequency
region. LFCC in conjunction with Gaussian Mixture Models (GMM)
and Light Convolutional Neural Networks (LCNN), have been
adopted as the baseline models for ASVspoof 2021 [31] and ADD
challenge. [40, 41]. Nevertheless, handcrafted features are flawed
by biases due to limitation of handmade representations [43]. Deep
features, derived from deep neural networks, have been proposed to
address these limitations. Pre-trained self-supervised speech mod-
els, such as Wav2vec [3], Hubert [11] and WavLM [5], are the most
widely used ones [30]. Wang and Yamagishi [30] investigate the
performance of spoof speech detection using embedding features
extracted from different self-pretrained models. The back-end clas-
sifier, tasked with learning high-level feature representations from
the front-end input features, is indispensable in the fake audio de-
tection. One of the extensively used classifiers is Light CNN (LCNN)
[33], as it is an effective model employed as the baseline model in a
series of competitions, such as ASVspoof 2017 [17], ASVspoof 2019
[21] and ADD 2022 [40].

End-to-End Models are deep neural networks that integrate fea-
ture extraction and classification in an end-to-end manner have
shown competitive performance in fake audio detection. Notable
models include RawNet2 [14] and its derivatives, RawNet3 [15] and
TO-RawNet [28]; the Differentiable Architecture Search (DARTS)
influenced Raw PC-DARTS [8]; Transformer-based Rawformer [37];
the Graph Neural Network-based AASIST [13] and its orthogonal
regularization variant, Orth-AASIST [28];.

However, previous models have primarily targeted fake types
such as TTS and VC, which often leave digital traces or signal
artifacts. In contrast, impersonation audio is entirely natural speech
produced by real humans, making it challenging for these methods
to effectively detect. Filling this gap, in this paper, we propose a
novel method that integrates speaker profiles that are inherent
characteristics that are challenging for impersonators to mimic
accurately into the detection of impersonation audio.

2.2 Fake Audio Detection Datasets
The advancement of fake audio detection techniques significantly
depends on well-established datasets, which encompass various
fake types and diverse acoustic conditions. Table 1 summarizes the
characteristics of representation datasets in the field of fake audio
detection along with our proposed dataset.
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Figure 1: Overview of the training process of the attribute encoder (left figure) and detail for speaker profiles integrated
framework (right figure).

Dataset # Target # Imitators Professional
Lau et al. [18] 6 2 No

Farrús Cabeceran et al. [6] 5 2 Yes
Hautamäki et al. [9] 5 1 Yes

IPAD 799 408 Yes
Table 2: Summary of impersonation spoofing attack dataset.
# Target and # Imitators represent number of target speak-
ers and impersonators. Professional represents whether the
audio is imitated by professional impersonators.

Most earlier spoofed datasets were primarily developed to bol-
ster defenses against spoofing attacks in ASV systems. Moreover,
the spoofing types are not diverse. Some spoofing datasets focus
exclusively on a single type of TTS method [19] or a specific VC
Method [1]. To alleviate this issue, Wu et al. [35] design a standard
public spoofing dataset SAS which consists of various TTS and VC
methods. The SAS dataset is used to support ASVspoof 2015 [36],
which aims to detect the spoofed speech. Replay is considered as
a low cost and challenging attack included in the ASVspoof 2017
challenge [17]. The ASVspoof 2019 [21] and 2021 datasets [31] both
consist of replay, TTS and VC attacks.

In recent years, a few attempts have beenmade to design datasets
mainly for fake audio detection systems. In 2020, Reimao and Tzer-
pos [23] developed a publicly available dataset FoR containing syn-
thetic utterances, which are generated with open-source TTS tools.
In 2021, Frank and Schönherr [7] developed a fake audio dataset
named WaveFake, which contains two speaker’s fake utterances
synthesised by the latest TTS models. However, these datasets have
not covered some real-life challenging situations. The datasets in
ADD 2022 challenge [40] are designed to fill the gap. The fake ut-
terances in LF dataset are generated using the latest state-of-the-art
TTS and VC models, which contain diversified noise interference.
The fake utterances in PF dataset are chosen from the HAD dataset
[39] designed by, which are generated by manipulating the original
genuine utterances with real or synthesized audio segments.

Few previous studies have been dedicated to the construction
of voice imitation datasets. In 2004, an impersonation database is
developed by [18], which is used for investigating the vulnerability
of speaker verification. Two novice impersonators were tasked
with mimicking voices from the YOHO corpus. They listened to and

subsequently imitated 40 training utterances from selected speakers.
In 2013, a small Finnish impersonation dataset was designed by
[9]. Our dataset IPAD markedly distinguishes itself from previous
efforts by incorporating a significantly larger number of speakers.
Additionally, our audio is extracted from videos downloaded from
entertainment programs on web media, enhancing the practicality
of our IPAD dataset.

3 METHOD
In this section we provide details of the developedmethods to detect
impersonation audio. An overview of our approach is illustrated in
Figure 1.

3.1 Attribute Encoder
Speaker profiles include different attributes, such as speaker’s age,
hometown. For each attribute, we will learn a attribute encoder to
extract attribute-specific information.

Speakers with the same attribute value often exhibit similar
characteristics. For instance, speakers from the same hometown
typically share similar accents. Thus, we employ a graph-based
approach, in which we model each audio in the training set as a
node, to effectively model the interconnected relationships between
speaker attribute.

We first give a introduce to the problem statement. Suppose we
are provided with a set of node features, in our method, i.e. audio
features, X = {x1, x2, . . . , x𝑁 }, where 𝑁 is the number of nodes in
the graph and x𝑖 ∈ R𝑓 encodes the feature of node 𝑖 . We are also
provided with relational information between these nodes in the
form of an adjacency matrix, A ∈ R𝑁×𝑁 . We assume that 𝐴𝑖 𝑗 = 1
if there exists an edge between node 𝑖 and node 𝑗 , for example,
node 𝑖 and node 𝑗 have the same job in job attribute encoder. We
draw inspiration from [22, 27], where learn the encoder relaying
on maximizing local mutual information between global summary
vector and local node representations. More precisely, we learn a
low-dimensional representation for each node x𝑖 , i.e., h𝑖 ∈ R𝑑 , such
that the average mutual information between the global summary
vector s ∈ R𝑑 , and local node representations {h1, h2, . . . , h𝑁 } is
maximized.

To this end, we first introduce a attribute encoder E, consisting
two linear layer with ReLU activation. Then we can generate the
local node representation matrix H following Eq. (1)
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H = 𝜎

(
D̂− 1

2 ÂD̂− 1
2 E(X)

)
(1)

where Â = A+𝑤 IN, IN is the 𝑁 ×𝑁 identity matrix. D̂ii =
∑

𝑗 Âij, E
is the trainable network, and 𝜎 is the ReLU non-linearity function.
Our approach adjusts the impact of self-connections by introduc-
ing a weight parameter 𝑤 ∈ R. A higher 𝑤 value increases the
node’s self-relevance in its embedding, consequently lessening the
influence of adjacent nodes.

Then we can calculate the graph-level summary representation
s by employing a readout function R.

s = R(H) = 𝜎

(
1
𝑁

𝑁∑︁
𝑖=1

hi

)
(2)

where 𝜎 is the logistic sigmoid non-linearity function, and hi rep-
resents the 𝑖-th row of the node embedding matrix H.

We follow [22, 27], introducing a scoring network D that dis-
criminates the true samples. i.e., (hi, s) from (h′j , s) as a proxy for
maximizing the local mutual information. D((hi, s) represents the
probability scores assigned to the patch-summary pair. Here nega-
tive representation h′j is obtained by row-wise shuffling, i.e.X → X′.
The corruption function used here is designed to encourage the
representations to properly encode structural similarities of differ-
ent nodes. Then we calculate the H′ following Eq.(1). The scoring
network scores patch-summary pairs by applying a simple bilinear
transformation function:

D(hi, s) = 𝜎

(
hi𝑇𝑀s

)
(3)

where 𝜎 is the logistic sigmoid non-linearity function, and𝑀 is
the trainable scoring matrix.

Finally, we can update parameters of E, R and D by optimizing
the following attribute specific cross entropy loss L𝐺 .

L𝐺 =

𝑁∑︁
𝑖=1

logD (hi, s) +
𝑁∑︁
𝑗=1

log
(
1 − D

(
hj, s

) )
(4)

3.2 Framework of our proposed method
In this subsection, we will describe the framework of our proposed
speaker profiles integrated detection method in detail.

For each attribute, we first train an attribute encoder to extract
attribute specific information following the method described in
subsection 3.1. The input audio features are obtained by passing
the audio through a Embedding layer. Suppose we have 𝑠 types of
attributes, we can obtain 𝑠 attribute encoders {E (1) , E (2) , . . . , E (𝑠 ) }.
There encoders contain relevant information regarding correspond-
ing speaker profile.

Supposewe are provided amini-batch of audio,W = {w1,w2, . . . ,
w𝑛}. We first employ the speaker profile extractor to extract speaker
profile information. Specifically, for each w𝑖 , we adopt an Embed-
ding layer 𝐸, followed by 𝑠 learned attribute encoders to obtain
the speaker profiles incorporated representations, then we take an
average of these representations:

v𝑖 = 𝐴𝑣𝑔
{
E (1) [𝐸 (w𝑖 )], E (2) [𝐸 (w𝑖 )], . . . , E (𝑠 ) [𝐸 (w𝑖 )]

}
(5)

Here 𝐴𝑣𝑔 represents the averaging operation. The v𝑖 calculated
by Eq.(5) is the output of the speaker profile extractor for w𝑖 . A
key consequence is that the produced representation v𝑖 contains
speaker profile information, such as speaker’s age, hometown, job.
Then we can obtain V = {v1, v2, . . . , v𝑛}.

Next, we can derive the deep features Q by employing the front-
end feature extractor F𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟 (wav2vec2 [3] for example).

Q = {q1, q2, . . . , q𝑛} = F𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟 (W) (6)

Subsequently,We amalgamate representationV from the speaker
profile extractor and Q from the front-end feature extractor via a
feature fusion module F𝑓 𝑢𝑠𝑖𝑜𝑛 .

K = {k1, k2, . . . , k𝑛} = F𝑓 𝑢𝑠𝑖𝑜𝑛 (V,Q) (7)
Here K represents the integrated representation. This is obtained

by the frame-level concatenation of corresponding features from V
and Q. In detail, if q𝑖 is the feature with dimensions (𝑡, 𝑓 ), where 𝑡
represents the number of time frames and 𝑓 represents the embed-
ding size of the frond-end feature extractor. v𝑖 is the feature with
dimensions (𝑙, ), where 𝑙 denotes the output size of the speaker
profile extractor, then 𝑣1 is replicated 𝑚 times to align with the
dimensions of 𝑞1. As a result, the fused feature 𝑘1 will have dimen-
sions (𝑡, 𝑓 + 𝑙).

Ultimately, we engage a back-end classifier F𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 , Light
CNN (LCNN) [33] for example, to detect fake audio. Suppose the
labels for the mini-batch of audioW are Y = {y1, y2, . . . , y𝑛}. We
can formulate the classification loss L𝐶𝐿𝑆 as follows:

L𝐶𝐿𝑆 = − 1
𝑛

𝑛∑︁
𝑖=1

[𝑦𝑖 log(𝑦𝑖 ) + (1 − 𝑦𝑖 ) log(1 − log(𝑦𝑖 )] (8)

where 𝑦𝑖 is the model’s predicted probability that the 𝑖-th audio
is a bona fide one. Here the prediction is obtained by feeding K to
F𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 . Then we can update the parameters of F𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 by
optimizing L𝐶𝐿𝑆 .

Additionally, during the test phase, since we have already trained
the attribute encoder for each speaker profile, our method does not
require labeled speaker profiles for prediction.

4 DATASET
4.1 Dataset Collection Policy
We construct our impersonation dataset IPAD through five steps.
The audio is extracted from videos downloaded from web media,
resulting in the "in the wild" characteristics of our IPAD dataset.

Step 1: Download Videos. In order to build our dataset from
scratch, we collect videos from several variety entertainment pro-
grams that contain segments featuring impersonators mimicking
others. The programs include The Sound1, Voice Monster2, Voice
Acting’s Influence3, Lucky Start4, Cheerful Gathering5, Tu cara me
1https://zh.wikipedia.org/wiki/%E5%A3%B0%E4%B8%B4%E5%85%B6%E5%A2%83
2https://zh.wikipedia.org/wiki/%E6%88%91%E6%98%AF%E7%89%B9%E4%BC%98%
E5%A3%B0
3https://baike.baidu.com/item/%E5%A3%B0%E6%BC%94%E7%9A%84%E5%8A%9B%
E9%87%8F/57929334
4https://zh.wikipedia.org/wiki/%E5%BC%80%E9%97%A8%E5%A4%A7%E5%90%89
5https://baike.baidu.com/item/%E6%AC%A2%E4%B9%90%E6%80%BB%E5%8A%A8%
E5%91%98/11011573

https://zh.wikipedia.org/wiki/%E5%A3%B0%E4%B8%B4%E5%85%B6%E5%A2%83
https://zh.wikipedia.org/wiki/%E6%88%91%E6%98%AF%E7%89%B9%E4%BC%98%E5%A3%B0
https://zh.wikipedia.org/wiki/%E6%88%91%E6%98%AF%E7%89%B9%E4%BC%98%E5%A3%B0
https://baike.baidu.com/item/%E5%A3%B0%E6%BC%94%E7%9A%84%E5%8A%9B%E9%87%8F/57929334
https://baike.baidu.com/item/%E5%A3%B0%E6%BC%94%E7%9A%84%E5%8A%9B%E9%87%8F/57929334
https://zh.wikipedia.org/wiki/%E5%BC%80%E9%97%A8%E5%A4%A7%E5%90%89
https://baike.baidu.com/item/%E6%AC%A2%E4%B9%90%E6%80%BB%E5%8A%A8%E5%91%98/11011573
https://baike.baidu.com/item/%E6%AC%A2%E4%B9%90%E6%80%BB%E5%8A%A8%E5%91%98/11011573
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Real Fake Total
# Utts # Spks # Hours # Utts # Spks # Hours # Utts # Spks # Hours

Train 1,400 58 1.9 2,893 68 2.9 4,293 73 4.8
Dev 747 37 0.9 1,775 38 1.8 2,522 43 2.7
Test 1,909 78 2.6 4,558 78 4.6 6,497 95 7.2

Unseen 1,114 138 1.6 9,648 277 7.2 10,762 296 8.8
Table 3: Key statistics for the IPAD dataset. It consists of four sets: train, dev, test and unseen test (unseen) sets. We enumerates
the number of utterances (# Utts), speakers (# Spks), and total hours (# Hours) for each subset, with an additional column
summarizing the combined totals.

Scenarios Dubbing Conversational Speech
# Utts # Spks # HTs # Ages # Jobs # Utts # Spks # HTs # Ages # Jobs

Train
Real Male 1,157 36 14 21 4 19 7 7 6 5

Female 221 13 7 12 2 3 3 3 3 3

Fake Male 1,893 40 15 27 5 261 8 6 7 6
Female 689 15 9 16 2 50 6 4 6 5

Dev
Real Male 593 21 10 15 4 120 8 6 7 3

Female 120 8 6 7 3 7 1 1 1 1

Fake Male 1,180 22 10 18 4 106 5 5 5 4
Female 475 10 7 9 3 14 1 1 1 1

Test
Real Male 1,475 47 18 27 4 80 17 11 12 11

Female 331 9 5 9 2 23 6 5 4 6

Fake Male 3,009 53 19 31 5 360 10 8 7 4
Female 1,118 14 8 14 4 101 3 2 3 3

Scenarios Singing Other

Unseen
Real Male 592 82 26 32 21 195 15 6 5 4

Female 302 38 18 20 10 25 6 5 5 1

Fake Male 5,804 185 34 39 30 107 4 3 3 3
Female 3,723 92 27 30 16 14 1 1 1 1

Table 4: Detailed statistics for the real utterances and fake utterances in our IPAD dataset. # Utts, # Spks, # HTs, # Ags, # Jobs
represent number of utterances, speakers, hometowns, ages and jobs, respectively.

suena 6, Fun with Liza and Gods 7, Copycat Singers8. In total, we
have collected 168.34 hours of video for subsequent audio slicing
in the imitation dataset.

Step 2: Manual Labeling. We recruit nine annotators to label our
dataset. For each video, they are tasked with identifying segments
where the impersonator is speaking as themselves and segments
where the impersonator is mimicking others, marking the start
and end times with precision to the second for subsequent audio
segmentation. For the first condition, annotations required include
the speaker’s name, hometown, age, job, gender, and the scenario.
In instances of imitation, annotations needed to cover the imper-
sonator’s name, hometown, age, job, gender, the scenario of the
imitation, as well as the name of the person being imitated. For the
hometown, we require annotations to be specific to the province
level. Regarding the scenario, they were categorized into dubbing,

6 https://zh.wikipedia.org/wiki/%E7%99%BE%E5%8F%98%E5%A4%A7%E5%92%96%E7%
A7%80
7https://zh.wikipedia.org/wiki/%E8%8D%83%E5%8A%A0%E7%A6%8F%E7\%A5%BF%
E5%A3%BD
8https://baike.baidu.com/item/%E5%A4%A9%E4%B8%8B%E6%97%A0%E5%8F%8C/
19885272

conversational speech, and singing. If a segment did not fit
into these three categories, it was labeled as ’other’. For virtually
all videos, two annotators were assigned to provide labels. Sub-
sequently, a reviewer would reconcile any discrepancies between
the annotations, making necessary adjustments. This process was
instituted to ensure the quality of the dataset.

Step 3: Extract Audio from Video. we leverage FFmpeg 9 to ex-
tract and convert specific audio segments from videos into mono
wav files with a 16,000 Hz sampling rate. This process ensures the
standardization of our audio dataset for consistent analysis.

Step 4: Audio Segmentation. Following the extraction of the audio,
we employed a Voice Activity Detection (VAD) tool [38] to elimi-
nate segments of silence. For audio clips exceeding 10 seconds in
duration, the VAD model10 [38] was utilized to determine the start
and end points of valid speech within the input audio, ultimately
discarding non-speech parts in the audio.

9https://ffmpeg.org/
10https://modelscope.cn/models/iic/speech_fsmn_vad_zh-cn-16k-common-
pytorch/summary

https://zh.wikipedia.org/wiki/%E7%99%BE%E5%8F%98%E5%A4%A7%E5%92%96%E7%A7%80
https://zh.wikipedia.org/wiki/%E7%99%BE%E5%8F%98%E5%A4%A7%E5%92%96%E7%A7%80
https://zh.wikipedia.org/wiki/%E8%8D%83%E5%8A%A0%E7%A6%8F%E7 \ %A5%BF%E5%A3%BD
https://zh.wikipedia.org/wiki/%E8%8D%83%E5%8A%A0%E7%A6%8F%E7 \ %A5%BF%E5%A3%BD
https://baike.baidu.com/item/%E5%A4%A9%E4%B8%8B%E6%97%A0%E5%8F%8C/19885272
https://baike.baidu.com/item/%E5%A4%A9%E4%B8%8B%E6%97%A0%E5%8F%8C/19885272
https://ffmpeg.org/
https://modelscope.cn/models/iic/speech_fsmn_vad_zh-cn-16k-common-pytorch/summary
https://modelscope.cn/models/iic/speech_fsmn_vad_zh-cn-16k-common-pytorch/summary
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Step 5: Train, Dev, Test and Unseen Test Split. After acquiring
the complete set of audio, we split the audio from dubbing and
conversational speech scenarios into train, dev, and test sets. The
allocation is based on the number of utterances per speaker, with
the stipulation that the speakers across the train, dev, and test sets
must be mutually exclusive to avoid any overlap. In detail, to ensure
the dataset’s train, dev, and test splits maintain balance in terms of
age and gender, we divide speakers into four age groups: 20-35, 35-
50, over 50, and unknown. For each age group and gender, speakers
were allocated to train, dev, and test in a 3:2:5 ratio by utterance
count. Consequently, the number of speakers designated for the
train, dev, and test sets are 73, 43, and 95, respectively. Additionally,
audio from singing and the other scenarios are segregated into an
unseen test (unseen) set. Therefore, we can not only detect fake
utterances on the test set, but also to evaluate the generalization of
fake audio detection models on unseen scenarios.

4.2 Dataset Description
There are four sets in our impersonation dataset IPAD: train, dev,
test and unseen test (unseen). Key statistics for different subsets of
the impersonation dataset, categorized into "Real" and "Fake" with
a further cumulative "Total", are summarized in Table 3.

As our IPAD dataset is partitioned into train, dev, and test subsets
based on the dubbing and conversational speech scenarios, with
singing and other scenarios being treated as unseen set. In Tables 4,
we have meticulously compiled the number of utterances, the count
of speakers, and the distribution of speaker profiles — ages, jobs,
and hometowns for male and female within each specific scenario
for the various subsets.

5 EXPERIMENTS
In this section, we first introduce our evaluation metric in Sec. 5.1.
In the remaining subsections, we primarily address the following
three questions:

• Can models trained on existing fake audio detection dataset
ASVspoof2019 LA reliably detect impersonation audio in Sec.
5.2 ?

• How do existing models perform on the impersonation audio
dataset IPAD in Sec. 5.3 ?

• Does integrating speaker profiles improve performance on
the IPAD dataset in Sec. 5.4?

5.1 Evaluation Metric
Equal error rate (EER) is used as the evaluation metric for the
detection tasks. Previously, EER is used as the evaluaion metrics for
fake audio detection tasks in the ASVspoof [31] and ADD challanges
[40, 41]. Let 𝑃𝑓 𝑎 (𝜃 ) and 𝑃𝑚𝑖𝑠𝑠 (𝜃 ) denote the false alarm and miss
rates at threshold 𝜃 respectively.

𝑃𝑓 𝑎 (𝜃 ) =
#{fake trials with score > 𝜃 }

#{total fake trials} (9)

𝑃𝑚𝑖𝑠𝑠 (𝜃 ) =
#{genuine trials with score < 𝜃 }

#{total genuine trials} (10)

The functions 𝑃𝑓 𝑎 (𝜃 ) and 𝑃𝑚𝑖𝑠𝑠 (𝜃 ) monotonically decrease and
increase, respectively, as a function of 𝜃 . The EER corresponds to
the threshold 𝜃𝐸𝐸𝑅 at which the two detection error rates are equal,

i.e., EER = 𝑃𝑓 𝑎 (𝜃𝐸𝐸𝑅) = 𝑃𝑚𝑖𝑠𝑠 (𝜃𝐸𝐸𝑅). A lower EER value indicates
a model with better performance.

5.2 Performance of models trained on
ASVspoof2019 LA dataset

5.2.1 Experimental Setup. We evaluate the discriminative perfor-
mance of different combination of frond-end features and back-end
classifiers, trained with ASVspoof2019 LA [21] on our IPAD dataset.
We choose the ASVspoof2019 LA dataset [21] because it is the most
commonly used dataset in fake audio detection research. Our ob-
jective is to evaluate whether models trained on this dataset can
effectively handle impersonation-type spoofing attacks.

The handcrafted features analyzed include linear frequency cep-
stral coefficients (LFCC), mel-frequency cepstral coefficients (MFCC),
invertedMFCC (IMFCC) and constant-Q cepstral coefficients (CQCC).
LFCC is obtained using linear triangular filters. while MFCC orig-
inates from mel-scale triangular filters, designed with a denser
distribution in lower frequencies to mimic the human ear’s per-
ception. IMFCC employs triangular filters arranged linearly across
an inverted-mel scale, thereby giving higher emphasis to the high-
frequency areas. CQCC is obtained from the discrete cosine trans-
form of the log power magnitude spectrum derived by constant-Q
transform. For all these features, we apply a 50ms window size
with a 20ms shift and extract features with 60 dimensions. The
self-supervised feature includes Wav2Vec 2.0 [3] which combines
contrastive learning with masking and HuBERT that uses quantized
MFCC features as targets learned with classic k-mean. We lever-
age the "wav2vec2-base11" and "hubert-base12" checkpoint from
Huggingface’s Transformer library [32].

We choose Light CNN (LCNN) [33], Squeeze-and-Excitation net-
work (SENet) [12], Xception [24] and ResNet [10] as our back-end
classifiers due to their popularity and effectiveness. Short introduc-
tions of these classifiers are provided below.

• LCNN [33] consisting of convolutional and max-pooling
layers with Max-FeatureMap (MFM) activation is extensively
used as the baseline model of the ASVspoof [31] and ADD
[40, 41] competitions.

• SENet [12] dynamically adjusts channel-wise features by
explicitly modeling the interdependencies between channels.

• Xception [24], which is employed as a baseline model in
[16], utilizes depth-wise separable convolutions to effectively
capture both cross-channel and spatial correlations.

• ResNet [10] is introduces as a classifier for fake audio detec-
tion in [2], employing a residual mapping.

We also evaluate the performances of four widely used end-
to-end competitive models: RawNet2 [14], Raw PC-DARTS [8],
Rawformer [37] and AASIST [13] on our proposed dataset. The
four end-to-end models are trained on ASVspoof. Brief descriptions
are provided below.

• RawNet2 [14] operates directly on raw audio via time-domain
convolution. Tak et al. [26] applied it for anti-spoofing, se-
curing second against A17 attacks in ASVspoof 2019.

11https://huggingface.co/facebook/wav2vec2-base
12https://huggingface.co/facebook/hubert-base-ls960

https://huggingface.co/facebook/wav2vec2-base
https://huggingface.co/facebook/hubert-base-ls960
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Features LA 2019 Test IPAD Test IPAD Unseen
LCNN SeNet Xception ResNet LCNN SeNet Xception ResNet LCNN SeNet Xception ResNet

LFCC 3.97 3.38 2.83 4.62 48.97 57.04 58.25 59.06 63.19 46.77 52.06 63.85
MFCC 8.23 8.06 9.02 8.83 51.57 44.03 56.75 53.82 42.88 48.62 45.24 47.38
IMFCC 21.74 24.75 16.64 12.86 48.78 57.42 56.75 57.19 50.58 46.05 43.59 40.71
CQCC 12.39 16.84 17.45 17.64 55.61 54.48 55.26 58.87 52.51 48.62 48.47 55.98

wav2vec2-base 1.49 1.61 1.13 1.26 56.99 45.27 57.10 62.28 63.58 45.29 43.99 58.84
hubert-base 7.59 6.89 5.77 7.41 61.43 60.67 60.39 65.29 55.31 62.90 44.99 57.17

Table 5: The performances of representative combination of front-end features and back-end classifiers are evaluated on the
ASVspoof2019 LA test set, test and unseen set of the IPAD dataset in terms of the EER(%) ↓. The back-end classifiers are trained
with ASVspoof2019 LA[21]. LA 2019 Test represents the ASVspoof2019 LA test set.

Features IPAD Test Avgtest IPAD Unseen Avgunseen
LCNN SeNet Xception ResNet LCNN SeNet Xception ResNet

LFCC 25.37 26.48 25.03 24.99 25.46 29.89 28.18 28.90 31.15 29.53
MFCC 25.03 27.18 26.06 25.77 26.01 30.88 29.42 29.17 30.25 29.93
IMFCC 32.74 30.05 31.36 30.12 31.06 36.62 34.12 34.38 32.00 34.28
CQCC 26.98 27.08 26.97 26.72 26.93 30.12 29.53 31.06 32.32 30.76

wav2vec-base 23.43 23.67 23.12 23.83 23.51 27.38 28.38 30.34 28.27 28.59
hubert-base 24.01 23.57 24.28 23.68 23.88 29.89 27.74 28.30 28.98 28.72

Table 6: The EER (%) ↓ for different combinations of front-end features and back-end classifiers, assessed on test and unseen
subsets of IPAD dataset. The back-end classifiers are trained using our IPAD dataset. The highest result of each classifier is
bolded. Avgtest and Avgunseen represents the EER (%) ↓ averaged across all back-ends for the test and unseen set, respectively.

End-to-end Models LA 2019 Test IPAD Test IPAD Unseen
AASIST 0.83 47.03 47.26
RawNet2 4.59 42.01 68.40

Raw PC-DARTS 2.49 49.86 52.01
Rawformer 1.15 43.27 60.77

Table 7: The EER (%) ↓ for several classic end-to-end mod-
els on the ASVspoof2019 LA test set, test and unseen sets
of IPAD dataset. These end-to-end models are trained on
ASVspoof2019 LA. LA 2019 Test represents the ASVspoof2019
LA test set.

• Raw PC-DARTS [8] utilizes an automatic approach, which
not only operates directly upon the raw speech signal but
also jointly optimizes of both the network architecture and
network parameters.

• Rawformer [37] integrates convolution layer and transformer
to model local and global artefacts and relationship directly
on raw audio.

• AASIST [13], which employs a heterogeneous stacking graph
attention layer to model artifacts across temporal and spec-
tral segments.

5.2.2 Experimental Results. We report the EER (%) for front-end
features combinedwith classifiers and end-to-endmodels, all trained
on ASVspoo2019 LA, across ASVspoof2019 LA test set, IPAD’s test
set, and unseen set, as detailed in Table 5 and 7.

Results from Table 5 and 7 reveal that models trained on the
ASVspoof2019 LA and tested on IPAD dataset exhibit markedly high

EER (%), hovering around 50. This is not surprising, as ASVspoof2019
is mainly tailoring for identifying machine-generated audio and
real audio. In contrast, our IPAD dataset comprises solely of human-
produced audio, resulting in failure detection of impersonation
audio when models are trained on ASVspoof2019 LA. This indicate
that models trained on the ASVspoof2019 LA struggle to detect
impersonated audio, suggesting that impersonation as an attack
type can significantly increase the success rate of spoofing attacks.

5.3 Performance of models trained on the IPAD
dataset

5.3.1 Experimental Setup. The front-end features combined with
classifiers and end-to-end models are the same as those evaluated
in Sec. 5.2, but trained on the IPAD’s train set.

5.3.2 Experimental Results. For handcrafted features combined
with classifiers, from Table 6, we observe that, with the exception of
the LFCC+LCNN combination on the test set and the LFCC+ResNet
on the unseen set, the LFCC feature generally outperforms other
handcrafted features, suggesting its effectiveness in impersonation
audio detection.

As presented in Tables 6, our findings reveal that self-supervised
features outperform handcrafted features on both the test and
unseen sets. Specifically, averaged over four different back-ends,
wav2vec-base exhibits an average performance of 23.51 and 28.59 on
IPAD’s test and unseen sets, respectively. However, the best hand-
crafted feature demonstrates performance of 25.46 and 29.53 on
IPAD’s test and unseen sets. This indicates that pretrained models
are more adept at capturing information pertinent to impersonation
audio detection compared to handcrafted features.
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End-to-end Models IPAD Test IPAD Unseen
RawNet2 27.44 31.19

Raw PC-DARTS 26.66 37.16
Rawformer 28.44 35.12
AASIST 23.73 30.25

Table 8: The EER (%) ↓ for several representative end-to-end
models on both IPAD’s test and unseen sets. These end-to-
endmodels are trained on IPAD’s train set. The highest result
of each subset is bolded.

Moreover, when averaging features, the ResNet backend achieves
the lowest EER (%) 25.85 on the test set, showing the best perfor-
mance, while SeNet exhibits superior generalization with the lowest
EER (%) 29.56 on the unseen set.

For end-to-end models, Table 8 reveals that among the evaluated
models, AASIST achieves the best performance on both the test
and unseen set with the lowest EER (%) at 23.73 and 30.25, respec-
tively, demonstrating superior performance in impersonation audio
detection and great generalization capabilities in unseen conditions.

In this subsection, we evaluate the performance of existing mod-
els on the IPAD dataset. The results indicate that there is still sig-
nificant room for improvement.

5.4 Performance of our proposed speaker
profiles integrated method

5.4.1 Experimental Setup. As indicated in Sec 5.3, self-supervised
features outperform handcrafted features in the detection of im-
personation audio, thus we employ self-supervised features in our
speaker profiles integrated method. The self-supervised models
considered include Wav2Vec 2.0 [3], HuBERT [11] and WavLM [5].
WavLM [5], largely paralleling HuBERT, introduces advancements
in spoken content and speaker identity by integrating a gated rel-
ative position bias and enriching training data with an utterance
mixing approach.

We utilize the self-supervised models as the frond-end feature
extractor and instance the Embedding layer of the speaker profile
extractor as the convolutional waveform encoder of the correspond-
ing frond-end feature extractor. The output size of the speaker
profile extractor in Sec. 3.2 is 128 in our experiments.

For self-supervised pre-trained models, we leverage the pre-
trained checkpoint from Huggingface’s Transformer library [32].
Below are the models used in our experiment: "wav2vec2-base13",
"wav2vec2-large14", "hubert-base15", "hubert-large16","wavlm-base"
17 and "wavlm-large" 18. For the back-end classifier, we opted for
the widely utilized LCNN [33].

5.4.2 Experimental Results. We report the model’s performance
on the IPAD dataset with ("w/") and without ("w/o") speaker profile

13https://huggingface.co/facebook/wav2vec2-base
14https://huggingface.co/facebook/wav2vec2-large
15https://huggingface.co/facebook/hubert-base-ls960
16https://huggingface.co/facebook/hubert-large-ll60k
17https://huggingface.co/microsoft/wavlm-base
18https://huggingface.co/microsoft/wavlm-large

IPAD Test IPAD Unseen
w/o w/ w/o w/

wav2vec2-base 23.43 22.78 27.38 25.13
wav2vec2-large 24.49 23.62 33.98 30.97
hubert-base 24.01 22.89 29.89 25.04
hubert-large 24.77 23.04 30.34 25.49
wavlm-small 24.36 22.56 27.08 26.54
wavlm-large 23.28 21.97 27.49 23.96

Table 9: The performance is evaluated on test and unseen
set of the IPAD dataset in terms of the EER(%) ↓. w/o and w/
represents whether speaker profiles are integrated.

information. Results for test and unseen sets of IPAD are detailed
in Table 9.

We observe that wavlm-large consistently yields the best results
on both the test and unseen sets, when no speaker profiles are
integrated, indicating its robust and useful audio feature extraction
capabilities. Surprisingly, we find that the performance of wav2vec-
large is inferior to that of wav2vec-small, and similarly, hubert-large
underperforms hubert-small. We speculate that this may be due to
the fact that the models were only pretrained on genuine audio, and
simply increasing model size does not enhance the model’s ability
to detect impersonation audio. Furthermore, when comparing base
models, wav2vec-small emerges with the optimal performance.

We find that the incorporation of speaker profiles can signif-
icantly enhances the detection of impersonation audio. wavlm-
large with speaker profile information integrated achieved the
best EER(%) of 21.97 and 23.96 on IPAD’s test and unseen sets,
respectively. The inclusion of speaker profiles has led to notable
improvements for all six pretrained models on both IPAD’s test and
unseen sets. On average, the EER(%) decreased by 1.26 on the test
set and by 3.17 on the unseen set. This suggests that the utilization
of speaker profiles enable models to better leverage information
such as the speaker’s job and age in the detection of imitated audio.
Additionally, the more pronounced improvement on the unseen
set indicates that the introduction of speaker profiles bolsters the
model’s generalization capabilities in out-of-domain situations.

6 CONCLUSIONS
In this work, we investigate countermeasures against imperson-
ation. Different from spoofing attacks like TTS and VC, which leave
physical or digital traces, impersonation involves live human beings
producing entirely natural speech. We propose a novel strategy that
utilize speaker profiles for impersonation audio detection.Moreover,
we propose the ImPersonation Audio Detection (IPAD) dataset to
promote the community’s research on impersonation audio detec-
tion, filling the gap that there is no large-scale impersonated speech
corpora available. To provide baselines for future practitioners,
we train several existing models on our IPAD dataset. Finally, we
demonstrate that incorporating speaker profiles into the process of
impersonation audio detection can achieve notable improvements.
Future work includes constructing an English-language imperson-
ation dataset and exploring how to better utilize speaker profiles
from other modalities for impersonation audio detection.

https://huggingface.co/facebook/wav2vec2-base
https://huggingface.co/facebook/wav2vec2-large
https://huggingface.co/facebook/hubert-base-ls960
https://huggingface.co/facebook/hubert-large-ll60k
https://huggingface.co/microsoft/wavlm-base
https://huggingface.co/microsoft/wavlm-large
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