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Neural Interaction Energy for Multi-Agent Trajectory Prediction
Anonymous Authors

ABSTRACT
Maintaining temporal stability is crucial in multi-agent trajectory
prediction. Insufficient regularization to uphold this stability often
results in fluctuations in kinematic states, leading to inconsistent
predictions and the amplification of errors. In this study, we intro-
duce a framework called Multi-Agent Trajectory prediction via
neural interaction Energy (MATE). This framework assesses the in-
teractive motion of agents by employing neural interaction energy,
which captures the dynamics of interactions and illustrates their
influence on the future trajectories of agents. To bolster tempo-
ral stability, we introduce two constraints: inter-agent interaction
constraint and intra-agent motion constraint. These constraints
work together to ensure temporal stability at both the system and
agent levels, effectively mitigating prediction fluctuations inherent
in multi-agent systems. Comparative evaluations against previous
methods on four diverse datasets highlight the superior predic-
tion accuracy and generalization capabilities of our model. We will
release our code.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Trajectory Prediction, Multi-agent System, Partial Differential Equa-
tions

1 INTRODUCTION
Multi-agent trajectory prediction is a fundamental research task
with many applications such as autonomous driving [23], interac-
tive robotics [18], particle simulation [24], and team sports [13].
It refers to predicting the future positions of multiple agents in
a dynamic environment simultaneously, based on their historical
positions and agent interactions. This task is critical in many real-
world scenarios where a group of agents interacts with each other,
giving rise to complicated behavior patterns at the level of both
individuals and the whole system. For this reason, it is more chal-
lenging to simultaneously predict the future positions of multiple
agents compared to single-agent trajectory prediction [25].

One of the major obstacles in multi-agent trajectory prediction
lies in the frequent fluctuations of kinematic states across consecu-
tive time intervals. These fluctuations pose a significant challenge
as they can lead to inconsistencies in the trajectory predictions
for each agent. The variability in kinematic states, such as sudden
changes in position or velocity, further causes error amplification in
sequential predictions [1, 39, 46]. Such fluctuations can be mainly
attributed to the absence of proper regularization to temporal dy-
namics in multi-agent systems.

Motivated by this, we aim to regularize the multi-agent trajec-
tory prediction systems to be temporally stable, enhancing the
prediction robustness across diverse scenarios. Temporal stability
refers to the property that the system’s kinematic states do not
change abruptly or inconsistently over time, but rather approach a

steady-state distribution [5]. Temporal stability offers two advan-
tages for trajectory prediction in multi-agent systems: 1) Improved
prediction accuracy. By enforcing temporal stability in the multi-
agent systems, the prediction results would be more resilient to
observation noises and error propagation. 2) Enhanced adaptabil-
ity to diverse environments. The presence of temporal stability
in multi-agent systems results in more uniform and coordinated
movement patterns, enabling the system to adapt seamlessly to a
variety of environmental conditions.

In this paper, we propose a framework named MATE for multi-
agent trajectory prediction. We enhance the temporal stability of
the multi-agent system with an inter-agent constraint and an intra-
agent constraint. These two constraints help to preserve temporal
stability at the system level and agent level, respectively.

First, we introduce the inter-agent interaction constraint to
enhance the stability of agent interactions at the system level. We
represent the interactions between agents as the changes of their
neural interaction energy, while the system-level dynamics can
be considered as the aggregation of neural interaction energy from
all agents. Specifically, the neural interaction energy quantifies
agents’ motion interactiveness at each step and determines the
agents’ action in future steps. The agents with low neural interac-
tion energy may exhibit reduced movement speed, whereas those
with high energy are prone to be more dynamic. The inter-agent
interaction constraint minimizes the change of system-level neural
interaction energy, stabilizing the multi-agent movement patterns
and ensuring a more coherent evolution of the multi-agent system
over time.

Second, we introduce the intra-agent motion constraint to
enforce the agent-level stability. For each agent, we leverage a tem-
poral motion variance term to measure the consistency of their
movement patterns over time. We derive an approximated motion
based on the agent’s past kinematic states and its interactions with
surrounding agents. The temporal motion variance term quantifies
the discrepancy between the approximated motion and the pre-
dicted motion, which helps to identify the agent movement incon-
sistency. By minimizing this variance, it ensures that the predicted
motion aligns closely with the approximated motion, restricting
the kinematic states of agents to be coherent and may vary within
a plausible range.

Our model outperforms the state-of-the-art methods in multi-
agent trajectory prediction across four datasets, i.e., PHASE [30],
Socialnav [3], Charged [25], and NBA datasets. We further validate
the advantages of our method in zero-shot generalization to unseen
scenarios. In summary, the main contributions of this paper are
threefold:

• We propose to use neural interaction energy to model the in-
teractions between agents, providing an effective framework
to capture the complexities of agent interactions.

• We establish an inter-agent interaction constraint and an
intra-agent motion constraint, which well preserve the tem-
poral stability at the system level and agent level.
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• Extensive experiments demonstrate that our model accu-
rately predicts future trajectories and improves the general-
ization abilities in unseen scenarios.

2 RELATEDWORK
Trajectory Prediction. Trajectory prediction approaches fall into
model-based [14] and model-free methods [1, 2, 8–10, 12, 15, 21, 24,
25, 27, 28, 33, 36, 38, 40, 41, 45, 46]. Before the deep learning era, pre-
vious works employ various physical models to conduct trajectory
prediction. Social force [14] and energy [19] are commonly used to
model pedestrian motion. Some works [42] exploit the reciprocal
velocity obstacles (RVO) model for trajectory prediction. [44] pre-
dicts transitions in pedestrians by applying spatiotemporal graphs,
where nodes and edges are represented by RNNs. [32] computes
joint motion predictions based on the time of possible collision
between pairs of agents. [48] propose the Multi-Agent Tensor Fu-
sion encoding, which fuses contextual images of the environment
with sequential trajectories of agents. We will include the above
discussion and references in the revision. The rise of deep learn-
ing [3, 6, 12, 31, 34] has introduced model-free methods into this
field. Such a method shifts the focus of modeling agents’ trajectories
to fitting the distribution of data [9, 13, 16, 29, 47], which improves
computational efficiency while reducing the model interpretabil-
ity. GAT-LSTM [43] employs graph attention layers along with
LSTMs for prediction. NRI [22] designs a VAE model with recurrent
GNN networks to encode and predict trajectories. EvolveGraph [24]
and fNRI [45] expand the framework of NRI and introduce addi-
tional modules to improve performance. RFM [40] uses a recurrent
GNN model with a supervised loss to realize trajectory prediction.
IMMA [39] introduces a multiplex graph and proposes a progressive
layer training strategy. GRIN [25] employs generative models to
learn the distribution of trajectories. Inspired by traditional dynam-
ics, we combine a novel concept named neural interaction energy
and sequential models to predict the changes in agents’ trajecto-
ries and introduce an inter-agent interaction constraint and an
intra-agent motion constraint for preserving temporal stability.
Differential Equations Informed Neural Network. Recently
the combination of deep learning and differentiable equations has
earned significant interest. Related research [20, 37] can be catego-
rized into different subfields such as deep learning assisted DE [7],
differentiable physics, neural differential equations [4], and physics-
informed neural networks (PINNs) [26, 35, 49]. PINNs are based
on the physical prior that constrains the output by calculating the
means of a partial differential equation (PDE) system with the assis-
tance of a neural network. Inspired by such research, we propose
novel neural differential equations for modeling interactions and es-
tablishing motion constraints for agents to predict coherent future
trajectories.

3 METHODOLOGY
3.1 Problem Formulation.
Given an observed trajectory X𝑇

𝑖
= {𝒙1

𝑖
, 𝒙2

𝑖
, ..., 𝒙𝑇𝑜𝑏𝑠

𝑖
} of an agent

𝑖 ∈ 𝑁 across period𝑇𝑜𝑏𝑠 , our goal is to predict the future trajectories
of all agents simultaneously. 𝒙𝑡

𝑖
∈ R2 is the 2D coordinate position

of the agent 𝑖 at time step 𝑡 . We denote the future trajectory across
𝑇𝑝𝑟𝑒𝑑 steps as Y𝑇

𝑖
= {𝒙𝑇𝑜𝑏𝑠+1

𝑖
, 𝒙𝑇𝑜𝑏𝑠+2

𝑖
, ..., 𝒙𝑇

𝑖
}, where 𝑇 = 𝑇𝑜𝑏𝑠 +

𝑇𝑝𝑟𝑒𝑑 . Note that for each agent, we only predict a single future
trajectory across𝑇𝑝𝑟𝑒𝑑 steps. In this paper, kinematic states include
position and velocity. At each step, the position 𝒙 of an agent
indicates its location in the 2D coordinate system. In addition, to
represent movement speed, we calculate the velocity 𝒗 of agents at
each step based on their position and time interval Δ𝑡 .

3.2 Inter-agent Interaction Modeling
Predicting future trajectories in multi-agent systems necessitates an
accurate modeling of agent interactions. Existing approaches often
rely on graph neural networks (GNNs) to depict these interactions
as latent features of graph edges. However, this representation
ignores ensuring the stability of agent interactions. Also, it does
not focus on promising a temporally coherent evolution of the
system. In order to address these overlooked aspects, we employ
a neural interaction energy mechanism to model the interactions
of agents, further preserving the temporal stability at the system
level.
Neural Interaction Energy 𝐸.We first present the neural interac-
tion energy to quantify the agent’s motion interactiveness, thereby
capturing the dynamics of multi-agent interactions and illustrating
how interactions influence agents’ future trajectories.

Neural interaction energy quantifies the motion interactiveness
at each step and affects the agent movement in future steps. This
motion interactiveness is a function concerning both an agent’s
kinematic states (position and velocity) and its interaction represen-
tation. For clarity, we use 𝐸𝑡

𝑖
to denote the neural interaction energy

scalar for agent 𝑖 at step 𝑡 and use 𝑬𝑡
𝑖
to denote the corresponding

neural interaction energy features in the neural networks.
Intuitively, the reduction of neural interaction energy will de-

crease the agent interactiveness, while agents with high neural
interaction energy are more likely to move. In a multi-agent sys-
tem, the motion of the target agent is affected by other agents. The
change in neural interaction energy, reflecting each agent’s inter-
actions with others, acts as a measure of the dynamic exchanges
within the system. Moreover, the overall dynamics of the multi-
agent system can be viewed as the aggregation of the neural interac-
tion energies of all participating agents, providing a comprehensive
view of the system’s interactive behavior.
Inter-agent Interaction Constraint.We introduce an inter-agent
interaction constraint to preserve system-level temporal stability
based on the interaction between agents. Considering a multi-agent
system, agents are moving concurrently and their behaviors are
mutually influenced through complex social interactions. The social
interactions among agents indicate the transfer of neural interaction
energy, accelerating or decelerating agents. However, due to the
complexity of interactions between agents in systems, the neural
interaction energy transfer process becomes difficult to analyze
from the perspective of the agent level.

Nevertheless, we model the interactions at the system level. We
aim to preserve system-level temporal stability, which means the
changes in its neural interaction energy maintain temporal conti-
nuity. The target formulation for system-level temporal stability
is,

𝐸𝑡+Δ𝑡𝑖 − 𝐸𝑡𝑖 → 0, when Δ𝑡 → 0. (1)
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Figure 1: The MATE model consists of (i) a MATE-Encoder responsible for extracting interaction latent between agents, and (ii)
a MATE-Decoder integrated with a Neural Interaction Energy Module (NIEM). The NIEM incorporates an Energy Module that
extracts the neural interaction energy features 𝑬 of agents. These features are used for the subsequent networks. They are also
leveraged to calculate the inter-agent interaction and intra-agent motion constraints through a Constraint Module. Refer to
the Appendix for more details about the NIEM.

Therefore, over a short time interval, the aggregated neural inter-
action energy of the system should experience negligible changes,
resulting in a nearly constant sum of neural interaction energy
changes of agents. That is,

Δ
𝑁∑︁
𝑖=1

𝐸𝑖 =

𝑁∑︁
𝑖=1

𝐸𝑡+Δ𝑡𝑖 −
𝑁∑︁
𝑖=1

𝐸𝑡𝑖 → 0, when Δ𝑡 → 0. (2)

Note that the magnitude of change in neural interaction energy dif-
fers among different types of agents, necessitating the assignment
of weights to achieve normalization. Considering that different
types of agents have different ranges of positional changes within
the same time interval, we employ Δ𝒙 as the normalization weight.
We have

𝑁∑︁
𝑖=1

Δ𝐸𝑖
Δ𝒙 𝒊

→ 0, when Δ𝑡 → 0. (3)

Δ𝐸𝑖 and Δ𝒙 𝒊 denote the change in neural interaction energy and
the change in position of agent 𝑖 , respectively.

Consequently, we can model the interactions between agents
while preserving the temporal stability at the system level. Formally,
the system would have minimal neural interaction energy change
in its aggregated interactions of all agents over a short period. Since
the time interval is short, Δ𝒙 tends to be zero. Not that we use the
derivative of the neural interaction energy features concerning the
position ∇𝒙𝑬𝑖 (𝒙) in implementation to replace the expression in
Eq. (3). That is

𝑁∑︁
𝑖=1

∇𝒙𝑬𝑖 (𝒙) =
𝑁∑︁
𝑖=1

lim
Δ𝑥→0

Δ𝑬𝑖
Δ𝒙𝑖

→ 0. (4)

We omit the superscript 𝑡 for simplification.

In summary, we leverage Eq. (4) to ensure the temporal stability
of a multi-agent system by minimizing the aggregated changes
in neural interaction energy over a short period. Therefore, by
incorporating this inter-agent interaction constraint into model
optimization, we preserve system-level temporal stability. We add
this constraint in the form like

L𝐸 =
1
𝑁

1
𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

∥∇𝒙𝑬
𝑡
𝑖 (𝒙)∥2 . (5)

3.3 Intra-agent Motion Modeling
This section introduces to improve intra-agent motion coherence
and avoid catastrophic erroneous predictions, preserving agent-
level temporal stability. If the value of the target agent’s kinematic
states deviates from the normal range (e.g., a pedestrian moves at
the speed of a car), it indicates unstable changes and a potential
prediction error. We aim to mitigate the prediction discrepancy at
each step. Technically, we define a temporal motion variance term
and regularize this variance to be coherent. This helps to restrict
the value of the agent’s kinematic states to vary within a plausible
range.

The kinematic states of the target agent in the current time
step (𝒙𝑡 , 𝒗𝑡 ) can be determined by the kinematic states from the
previous time step and the neural interaction energy. We calculate
the derivative of the predicted position 𝒙𝑡 and the change in neural
interaction energy ∇𝒙𝑬𝑡 (𝒙) concerning the previous step velocity
𝒗𝑡−1. We formulate the following temporal motion variance 𝑢 for
the target agent,

𝑢𝑡 = 𝛾 · 𝜕∇𝒙𝑬𝑡 (𝒙)
𝜕𝒗𝑡−1

+ 𝛽 · 𝜕𝒙𝑡

𝜕𝒗𝑡−1
+ 𝛼, (6)
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where𝛾 and 𝛽 are scaling scalars and 𝛼 is the bias term representing
a constant correlation between the position and velocity of agents.
For clarity, we omit the subscripts 𝑖 of the variables as agents share
the same formula. Within a multi-agent environment, an agent’s
position is not solely determined by its own intention but is also
influenced by the interactions with other agents. Consequently, in
addition to 𝜕𝒙𝑡

𝜕𝒗𝑡−1
, our motion variance 𝑢 introduces an additional

term to encapsulate external influences on the agent. Hyperparam-
eters 𝛾 and 𝛽 are introduced to weigh the significance of these
two terms, catering to scenarios where agent behaviors vary based
on differing extents of external influences. This refined approach
renders our proposed constraints more adaptable for trajectory
prediction within multi-agent systems.

In the temporal motion variance 𝑢, we use the derivative of the
predicted output (∇𝒙𝑬𝑡 (𝒙) and 𝒙𝑡 ) concerning 𝒗𝑡−1 to measure
the prediction’s sensitivity. A high sensitivity means that a minor
miscalculation in estimating 𝒗𝑡−1 can magnify into a prominent
prediction error. The detailed mathematical derivation of Eq. (6)
and determination of hyperparameters 𝛾 , 𝛽 , and 𝛼 can be found in
the Appendix.

By minimizing the temporal motion variance 𝑢:

L𝐷 =
1
𝑁

1
𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

∥𝑢𝑡𝑖 ∥2, (7)

we reduce the prediction sensitivity and penalize inaccurate or
incoherent predictions, achieving agent-level temporal stability.
We add this intra-agent motion constraint to model optimization.

3.4 Model Architecture
MATE-Encoder with Multi-Edge Graph. Previous research em-
ploys a single-edge GNN to represent interactions between agents.
In such a framework, the interaction latent 𝒛 produced by the GNN
is normalized and then utilized as a one-hot vector to symbolize
interactions for proceeding prediction. However, multiple types of
interactions frequently coexist between agents in real scenarios,
and a simple one-hot vector fails to encapsulate the intricate prop-
erties of these interactions. For instance, in social event systems,
factors like familiarity, status, and identities concurrently influence
agents’ interactions with others.

Addressing this, as shown in Fig. 1, we present a multi-edge
GNN, where multiple edges are assigned between agents. Each
edge symbolizes a distinct type of interaction and is separately
encoded through a unique Multi-Layer Perceptron (MLP) layer.
We hypothesize that all types of interactions influence the agents’
neural interaction energy and their future trajectories. This fosters
a richer representation of the interactions in a given multi-agent
system.

Mathematically, given the observation of all agents 𝑿1:𝑇𝑜𝑏𝑠 , we
employ a GNN model to learn the interaction latent as 𝒛𝑖 𝑗 =

𝐺𝑁𝑁 (𝑿𝑖 ,𝑿 𝑗 , 𝜃 ). Here 𝑿𝑖 and 𝑿 𝑗 represent the observed trajec-
tory of agent 𝑖 and 𝑗 respectively, 𝜃 denotes model parameters, and
𝒛𝑖 𝑗 represents the interaction latent between agent 𝑖 and agent 𝑗 .
The interaction latent 𝒛𝑖 𝑗 has 𝐾 unnormalized dimensions, each
indicating a type of interaction. We assume that agents can main-
tain diverse interactions and that the neighboring agents of the
target agent have different importance considering each type of

Agents relations

Observed trajectories

0       4

Ground truth

Predicted trajectories

1 3

2 0

3       1

4 2

Figure 2: Qualitative analysis of our model on Socialnav
dataset. Agent relations mean that the agent to the left of the
arrow moves towards the agent to the right of the arrow.

interaction. Consequently, instead of normalizing the dimensions
of interaction latent 𝒛𝑖 𝑗 , we normalize the same dimension of inter-
action latent between agent 𝑖 and all its neighbors 𝑗 as:

𝒛𝑘𝑖 𝑗 =
𝑒𝑥𝑝 (𝒛𝑘

𝑖 𝑗
)∑

𝑗∈𝑁𝑖
𝑒𝑥𝑝 (𝒛𝑘

𝑖 𝑗
)
, ∀𝑘∈𝐾. (8)

𝑁𝑖 denotes the neighbor set of agent 𝑖 , and𝐾 represents the number
of dimensions of the latent code 𝒛𝑖 𝑗 , we take the 𝒛 = {𝑧𝑖 𝑗 | 1 ≤
𝑖, 𝑗 ≤ 𝑁 } as the output of the MATE-Encoder.
MATE-Decoder with Neural Interaction Energy Module. To
optimize the prediction of the future trajectory, our MATE-Decoder
incorporates a sequential model, incorporating our proposed con-
straints. Specifically in the MATE-Decoder, we introduce a Neural
Interaction Energy Module (NIEM) unit (depicted in Fig. 1) that
processes the previous position 𝒙 , velocity 𝒗, interaction latent 𝒛,
and previous hidden state 𝒉, yielding the new position, velocity, and
hidden state for the predicted step. To enhance the performance of
the MATE-Decoder, we adopt a burn-in strategy [22] that initiates
the decoding process from the first observation step during training,
thereby prolonging the prediction horizon and enhancing model
robustness.
Structure of the NIEM. Initially, a message passing (MSG) block
is leveraged to integrate the information between the hidden state
𝒉 and interaction latent 𝒛. This is followed by the processing of the
embedding from the previous step’s kinematic states along with
the output from the MSG block through a GRU module. The GRU
module results in the generation of an updated hidden state. Subse-
quently, an Energy Module calculates the neural interaction energy
features 𝑬 for each agent. These features serve as inputs for sub-
sequent networks, facilitating the generation of agent trajectories.
Additionally, a Constraint Module exploits these neural interaction
energy features to formulate the inter-agent interaction constraint
L𝐸 and the intra-agent motion constraint L𝐷 . It is noteworthy
that, in our implementation, the inter-agent interaction constraint
is integrated into the trajectory prediction through two distinct
methods. For each dataset, the method yielding the most favorable
result is selected for final result presentation. Refer to the Appendix
for more details about the NIEM.
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PHASE SocialnavModel ADE↓ FDE↓ Graph.%↑ ADE↓ FDE↓ Graph.%↑
MLP 1.024 1.763 - 0.241 0.513 -
GAT-LSTM [43] 1.545 2.527 52.94 0.306 0.527 21.83
NRI [22] 0.986 1.772 55.30 0.217 0.386 57.18
EvolveGraph [24] 0.848 1.522 58.96 0.160 0.321 70.23
RFM(skip 1) [40] 0.870 1.581 55.30 0.160 0.325 70.05
RFM [40] 0.892 1.630 54.71 0.156 0.317 71.53
fNRI [45] 0.883 1.607 55.49 0.151 0.308 33.97
IMMA [39] 0.801 1.484 79.21 0.139 0.279 81.38
Ours 0.660 1.281 91.18 0.111 0.229 91.21

Table 1: Quantitative results of trajectory prediction on PHASE and Socialnav datasets.

3.5 Loss for Training
We employ an end-to-end training method. In our approach, we
compute the mean squared error (MSE), denoted as L𝑃 , between
the predicted position and their corresponding ground truth across
period 𝑇 . That is,

L𝑃 =
1
𝑁

1
𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

∥𝒙𝑡𝑖 − 𝒅𝑡𝑖 ∥2, (9)

where 𝒅𝑡
𝑖
means ground truth position for agent 𝑖 at time step 𝑡 .

Moreover, we integrate the proposed constraints 𝐿𝐸 and 𝐿𝐷 into
our optimization. Above all, the loss function for our framework is
shown below and 𝜆1, 𝜆2 are hyperparameters for scale balance,

L = L𝑃 + 𝜆1L𝐸 + 𝜆2L𝐷 . (10)

4 EXPERIMENTS
4.1 Datasets
We validate our method on four datasets: PHASE [30], Social-
nav [3], Charged [25], NBA. For simulated datasets, we set the
same simulation configurations with previous work for fair Com-
parison. The detailed description each dataset are as follows:
PHASE. The PHASE is a dataset of physically grounded abstract
social events that resemble a wide range of real-life social interac-
tions by including social concepts such as helping another agent.
For comparison with previous work, we choose the “collaboration”
task in that two agents collaborate to move one of the balls to a
pre-set position. Note that we additionally take the label informa-
tion indicating the difference between agents and balls as part of
the input. We do the same data augmentation on the training set
as previous work, by flipping the environment and rotating it by
90 degrees, 180 degrees, and 270 degrees, resulting in a training set
with 8x more instances. We use 80% for training, 10% for validation,
and 10% for testing, and predict 10 steps based on the observation
of 24 steps. The timestep of this dataset is 0.25.
Social Navigation Environment. The Social Navigation Environ-
ment (Socialnav) dataset includes annotations for each trajectory,
and it also includes annotations for social interactions between
agents, such as whether two agents are nearby or whether one
agent is following another. Complex unseen trajectories can be eas-
ily generated by varying different parameters and configurations.
We follow the environmental configurations of previous work. In
this simulation, agents are controlled by ORCA policy. We set the

radius of agents to 0.3, the radius of the circular environment to 8,
and the preferred speed of agents to 1. For Social Navigation we
use 100k multi-agent trajectories, in total for training, validation,
and testing. We also simulate 50k, 25k, 12.5k, and 10k samples to
validate the performance of our model in different dataset sizes. We
use 80% for training, 10% for validation, and 10% for testing, and
predict 10 steps based on the observation of 24 steps. The timestep
of this dataset is 0.25.
Charged. The Charged datasets are usually used to illustrate the
performance of graph relation prediction in previous work, as the
relation type between agents can be set manually. We simulate a
dynamic system controlled by physical laws. There are 5 charged
particles in each scene, each particle has a positive or negative
charge with equal probability, attracting the particles with different
charges and vice versa. We experiment with the generalization of
models on the Charged dataset by modifying configurations. We
generate 50k trajectories for training, 10k trajectories for validation,
and 10k trajectories for testing. In the basic environment, we set
the side length of the box square to 5, the number of particles to
5, and the sampling timestep to 0.2. To compare with GRIN and
previous work, we use our model to predict 20 steps based on the
observation of 80 steps. The timestep of this dataset is 0.2.
NBA. The National Basketball Association (NBA) uses the SportVU
tracking system to collect player-tracking data, where each frame
contains the location of all ten players and the ball at each time
step. We use 300k multi-agent trajectories of players and the ball in
total for training, validation, and testing. We use 80% for training,
10% for validation, and 10% for testing, and predict 10 steps based
on the observation of 24 steps. The timestep of this dataset is 0.4.

4.2 Setup
Baselines. Following IMMA [39] andGRIN [25], we compare our re-
sults with approaches conducting multi-agent trajectory prediction.
In specific, we choose MLP, GAT-LSTM [43], NRI [22], EvolveG-
raph [24], RFM [40], fNRI [45], IMMA, FQA [17], dNRI [11], Social-
GAN [12], and GRIN as baselines in quantitative evaluation. We
choose GAT-LSTM and IMMA for qualitative analysis.
Hyperparameter Choice. For all datasets, we set 𝜆1 to 1 and 𝜆2 to
0.001 in Eq. (10). 𝜆2 is set to a smaller value to balance the regulariza-
tion term. When comparing with baselines, we only report this set
of hyperparameters as they have the highest average performance
across four datasets.
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Evaluation Metrics.We quantitatively compare our model with
other methods using the following metrics: 1) Average Displace-
ment Error (ADE) is the L2 distance between the ground truth
trajectories and predicted trajectories. 2) Final Displacement Error
(FDE) measures the L2 distance between the ground truth of the des-
tination and the predicted destination. 3) Graph Accuracy (Graph.)
measures the consistency between the predicted interaction graph
and the input interaction graph. To ensure a fair comparison with
previous methods [39], we use Graph Accuracy to evaluate our
model on the PHASE and Socialnav datasets since these datasets
have the corresponding ground-truth social interaction graph.
Implementation Details. For generalization in the Socialnav
dataset, we change the environment by setting the number of agents
to 10 (doubling the number of agents) and setting the preferred
speed of agents to 2 (doubling the speed of agents). For generaliza-
tion in the Charged dataset, we change the environment by setting
the number of agents to 10 (doubling the number of agents), setting
the time step to 0.1 (halving the sampling timestep), setting the
side length of the box square to 3.5 (halving the environment space
size).

We do experiments for PHASE, Socialnav, and Charged datasets
with Nvidia 2080Ti GPU, with Ubuntu 18.04 system. Our networks
were implemented using the PyTorch framework. For Socialnav
and Charged datasets, the input dimension is 2 (position for each
agent) and it is 4 for the PHASE dataset (position and label for each
agent). We train the model with Adam optimizer with learning rate
1×10−3 and decay the learning rate by a factor of 0.9 if the validation
performance has not improved in 5 epochs. We use a hidden size of
96, 128, and 128 for the Social Navigation Environment, PHASE, and
the Charged dataset, and we use 4 latent graph layers for PHASE
and Socialnav datasets (the dimension of edge latent z is 4) and 4
latent graph layers for the Charged dataset (the dimension of edge
latent z is 2).

As the size of the NBA dataset is much larger than the other three
datasets, we do an experiment using Nvidia 3090 GPU, with Adam
optimizer with learning rate 5 × 10−4 and decay the learning rate
by a factor of 0.9 if the validation performance has not improved in
5 epochs. We use a hidden size of 256 and 5 latent graph layers for
the NBA dataset (the dimension of edge latent z is 5).

For implementing IMMA, RFM, RFM (skip 1), and GAT models
for comparison in the Charged dataset, we use the default configu-
rations mentioned in IMMA, that is, we use Adam optimizer with
an initial learning rate of 1e-6 and decay the learning rate by a
factor of 0.9 if the validation performance has not improved in 5
epochs, and we use 2 latent graph layers (the dimension of edge
latent z is 2).

4.3 Results for Trajectory Prediction
Quantitative Evaluation. In Table 1, we report ADE, FDE, and
Graph Accuracy for each model on PHASE and Socialnav datasets.
Our model achieves the best performance on both datasets. Com-
pared with the IMMA model, we achieved a relative improvement
by 17.6% / 13.7% in ADE / FDE on the PHASE dataset, respectively.
On the Socialnav dataset, the improvement is 20.1% / 17.9% in ADE
/ FDE. In the aspect of the Graph Accuracy metric, we compare
the ability of each model to predict social interaction graphs. The

Model ADE↓ FDE↓
NRI [22] 0.63 1.30
FQA [17] 0.82 1.76
dNRI [11] 0.94 1.93
GAT-LSTM [43] 0.74 1.45
Social-GAN [12] 0.66 1.25
RFM(skip 1) [40] 0.78 1.53
RFM [40] 0.79 1.55
IMMA [39] 0.73 1.44
GRIN [25] 0.52 1.09
Ours 0.48 1.05

Table 2: Quantitative results on Charged dataset.

Model ADE↓ FDE↓
MLP 1.113 1.990
GAT-LSTM [43] 0.978 1.733
NRI [22] 0.946 1.818
EvolveGraph [24] 0.896 1.695
RFM(skip 1) [40] 0.938 1.756
RFM [40] 0.839 1.572
fNRI [45] 0.804 1.517
IMMA [39] 0.769 1.438
Ours 0.659 1.266

Table 3: Quantitative results on NBA dataset.

Dataset Method ADE↓ FDE↓

PHASE

MATE 0.706 1.462
MATE + L𝐸 0.688 1.357
MATE + L𝐷 0.690 1.382

MATE + L𝐸 + L𝐷 0.660 1.281
Table 4: Ablation study on PHASE dataset.

results show that our model achieves an accuracy of over 90% on
both datasets. It means that our method can not only accurately
predict the future trajectories of each agent, but also clearly express
the relationships between agents, which helps explain how agents
affect other’s trajectories. Our model and other models are also
tested on Charged dataset and NBA dataset. Results are presented
in Table 2 and Table 3. As can be seen, our model yields the best
performance compared with existing methods, indicating that our
method is robust to both simulated and real-world scenarios.
Qualitative Analysis. Fig. 2 visualizes the trajectory prediction
results of our model on Socialnav dataset. Note that each agent has
a target agent and moves towards its target. It can be seen that our
model accurately predicts the future trajectory of agents with the
assistance of their past information and interactionswith others.We
also visualize the prediction results of our method and others in Fig.
3 on Charged dataset. It can be seen that interactions exist between
charges that repel and attract each other. We accurately predict
such interactions and future trajectories of charges.We visualize the
results on NBA dataset in Fig. 5 and show the trajectories of the ball
and the players in different colored lines. See more visualizations
of our model in the Appendix.
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Double agents Double speedModel ADE↓ FDE↓ Graph.%↑ ADE↓ FDE↓ Graph.%↑
MLP - - - 0.303 0.632 -
GAT-LSTM [43] 1.486 2.538 19.84 0.361 0.635 22.04
NRI [22] 0.527 1.096 34.57 0.269 0.485 55.10
EvolveGraph [24] 0.354 0.988 50.56 0.219 0.421 67.30
RFM(skip 1) [40] 0.441 0.792 49.41 0.209 0.418 68.03
RFM [40] 0.333 0.762 51.37 0.205 0.411 69.54
fNRI [45] 0.310 0.659 19.71 0.206 0.410 33.48
IMMA [39] 0.195 0.406 64.25 0.192 0.383 78.84
Ours 0.173 0.367 78.34 0.159 0.329 89.02

Table 5: Quantitative results of zero-shot generalization on Socialnav dataset.

Double agents Half sampling Δ𝑡 Half spaceModel ADE↓ FDE↓ ADE↓ FDE↓ ADE↓ FDE↓
GAT-LSTM [43] 1.198 2.282 0.381 0.738 1.435 2.667
RFM(skip 1) [40] 4.538 10.44 0.406 0.822 1.380 2.5286
RFM [40] 1.897 4.019 0.414 0.834 1.378 2.5287
IMMA [39] 1.140 2.227 0.402 0.777 1.400 2.5290
Ours 1.011 2.148 0.348 0.745 1.341 2.604

Table 6: Quantitative results of zero-shot generalization on Charged dataset.
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Figure 3: Qualitative analysis of models on Charged dataset.
Different colored lines denote the trajectories of different
charges.

4.4 Ablation Study
Table 4 shows the results of our ablation study on PHASE dataset,
where we verify the effect of different components of our model.
Specifically, we compare the performance of our model with dif-
ferent variants: 1) MATE (base model), 2) MATE + L𝐸 (inter-agent
interaction constraint), 3) MATE + L𝐷 (intra-agent motion con-
straint), and 4) MATE + L𝐸 + L𝐷 . We depict the results in Table
4. Compared with MATE (base model), our model performs bet-
ter with the assistance of the inter-agent interaction constraint

Ground Truth GAT

IMMA Ours
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Figure 4: Visualization of generalization on Charged dataset.
Different colored lines denote the trajectories of different
charges.

on PHASE dataset, indicating that modeling interactions between
agents through neural interaction energy and constraining it as
prior knowledge preserves a temporally stable system, improving
the prediction accuracy and robustness of our model. Moreover,
adding the intra-agent motion constraint further boosts the perfor-
mance, indicating that punishing the incoherent motion prediction
and connecting the relation between interactions and motions of
agents helps to preserve the agent-level temporal stability.
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Figure 5: Qualitative analysis of our model on NBA dataset.
The red agent is the basketball, and other colored agents
represent players.

4.5 Generalization to Unseen Scenarios
Our method focuses on preserving temporal stability, which exists
in various multi-agent systems. Consequently, our approach is
robust to unseen scenarios. We conduct zero-shot experiments
to present the generalization ability of our method. Table 5 and
Table 6 depict the zero-shot experiments on Socialnav and Charged
datasets, where we test the trajectory prediction accuracy of our
model and other existing models to unseen situations.

On Socialnav dataset, we create two new environments by 1)
doubling the number of agents and 2) doubling the speed of agents.
As shown in Table 5, our model outperforms other methods in
both environments, demonstrating that our model is generalizable
to different scenarios of complexity and dynamics in the social
navigation environment.

On Charged dataset, we test our model on three novel situations:
1) doubling the number of charges, 2) halving the sampling timestep,
and 3) halving the environment space size. As shown in Table
6, our model achieves the best performance in most situations.
In Fig. 4, we also visualize the results of our model and others
in the unseen situation by halving the environment space size.
Though the trajectory prediction accuracy of each model drops,
our model performs the best. This indicates that our model has a
better generalization ability.

4.6 Results of Different Dataset Sizes
To investigate the impact of different size datasets on our models,
we simulate datasets of 50k, 25k, 12.5k, and 10k samples, and use
the same network structure and hyperparameters, The result is in
Fig. 6. Compared with the strongest baseline (IMMA), our model
outperforms on all datasets of different sizes, and the prediction
performance remains stable.

5 CONCLUSION
In this work, we proposed a framework named MATE for multi-
agent trajectory prediction, aiming at eliminating the prediction
fluctuations and preserving the temporal stability of multi-agent
systems. Our framework introduces the concept of neural interac-
tion energy to model the interactions and motions of agents in a
dynamic environment. Furthermore, we employ partial differential

0.342

0.301

0.246

0.184

0.1390.203
0.185

0.156
0.131

0.111

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

10000 12500 25000 50000 100000

IMMA Ours

0.661

0.579

0.477

0.358

0.279

0.427
0.388

0.325

0.272
0.229

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10000 12500 25000 50000 100000

IMMA Ours

35.8
43.1

55.5

79 81.4
71.2 72.8

82.8
86.9

91.2

0

10

20

30

40

50

60

70

80

90

100

10000 12500 25000 50000 100000

IMMA Ours

Dataset size

G
ra

p
h

.

Dataset size

Dataset size

A
D

E
F

D
E

Figure 6: Results of ourmodel and IMMA on different sizes of
Socialnav datasets. Lower ADEs and FDEs and higher graph
accuracies (Graph.) are better.

equations to establish the inter-agent interaction constraint and the
intra-agent motion constraint, which preserve the temporal stabil-
ity of the multi-agent system and improve the prediction accuracy
of our model. Through quantitative and qualitative experiments,
we evaluate our framework on four datasets and demonstrate that
it outperforms the state-of-the-art methods in trajectory predic-
tion. We also show the advantages of our framework in zero-shot
generalization capacity. Our work opens up new possibilities for
representing interactions between agents for multi-agent systems
and illustrating themechanism of how interactions influence agents’
future trajectories.
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