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A DETAILS OF MODEL ARCHITECTURE
A.1 MATE-Encoder
We use a multi-edge graph neural network to get the interaction
representation. Given observation trajectories of agents 𝑿1, 𝑿2, ...,
𝑿𝑁 , we omit the superscripts for convenience and compute the
trajectories in following operations:

𝒈 (1)
𝑖

= 𝑓emb (𝑿𝑖 ),

𝑣→𝑒 : 𝒛 (1)
𝑖 𝑗

= 𝑓
(1)
𝑧 ( [𝒈 (1)

𝑖
,𝒈 (1)
𝑗

]),

𝑒→𝑣 : 𝒈 (2)
𝑖

= 𝑓
(1)
𝑣 (∑𝑖≠𝑗 𝒛 (1)(𝑖, 𝑗 ) ),

𝑣→𝑒 : 𝒛 (2)
𝑖 𝑗

= 𝑓
(2)
𝑧 ( [𝒈 (2)

𝑖
,𝒈 (2)
𝑗

]),
...

(Sp1)

where 𝑓∗ are MLPs, 𝒈 (𝑚)
𝑖

and 𝒈 (𝑚)
𝑗

denote the embedding of agent

𝑖 and agent 𝑗 after 𝑚-th round of message passing, 𝒛 (𝑚)
𝑖 𝑗

denotes
the embedding of edge (𝑖, 𝑗) after𝑚-th round of message passing.
Note that we denote 𝒛𝑘

𝑖 𝑗
to describe the 𝑘-th dimension of the edge

latent 𝒛𝑖 𝑗 in the Methodology Section and denote 𝒛 (𝑚)
𝑖 𝑗

to describe

the 𝑚-th round of message passing. 𝒛 (1)
𝑖 𝑗

represent the interaction

between agent 𝑖 and agent 𝑗 , and 𝒛 (2)
𝑖 𝑗

involve whole information
from the graph. We normalize the same dimension of edges between
agent 𝑖 and its neighbors 𝑗 :

𝒛𝑘𝑖 𝑗 =
𝑒𝑥𝑝 (𝒛𝑘

𝑖 𝑗
)∑

𝑗∈𝑁𝑖
𝑒𝑥𝑝 (𝒛𝑘

𝑖 𝑗
)
, ∀𝑘∈𝐾. (Sp2)

𝑁𝑖 denotes the neighbor set of agent 𝑖. By doing this, we use the
normalized latent code set 𝒛 = {𝑧𝑖 𝑗 | 1 ≤ 𝑖, 𝑗 ≤ 𝑁 } as the output of
the Encoder.

A.2 MATE-Decoder
We use a Neural Interaction Energy Module (NIEM) unit to predict
trajectories step by step. The basic structure of NIEM is as follows:

𝑰 𝑡𝑖 = [𝑓embx (𝒙𝑡𝑖 ), 𝑓embv (𝒗𝑡𝑖 )],

MSG𝑡𝑖 =
∑︁
𝑗∈𝑁𝑖

𝑘=𝐾∑︁
𝑘=1

𝑧𝑘𝑖 𝑗 𝑓
𝑘
𝑒 ( [𝒉𝑡𝑖 ,𝒉

𝑡
𝑗 ]),

𝒉𝑡+1𝑖 = GRU(MSG𝑡𝑖 , 𝑰
𝑡
𝑖 ),

𝒗𝑡+1𝑖 = 𝑓Energy (𝒉𝑡+1𝑖 ),
𝒙𝑡+1𝑖 = 𝒙𝑡𝑖 + Δ𝑡 · 𝒗𝑡+1𝑖 ,

L𝐸 ,L𝐷 = 𝑓CM (𝑬 , 𝒙𝑡+1𝑖 , 𝒙𝑡𝑖 , 𝒗
𝑡
𝑖 ),

(Sp3)

where 𝑓embx and 𝑓embv are two MLP layers for embedding position
𝑥 and velocity 𝑣 of agent 𝑖 into features, 𝑰 𝑡

𝑖
denotes the concatenated

feature of agent 𝑖 at step 𝑡 , 𝒉𝑡
𝑖

denotes the hidden state of agent 𝑖 at

step 𝑡 , 𝒙𝑡+1
𝑖

and 𝒗𝑡+1
𝑖

denotes the position and velocity of agent 𝑖 at
step 𝑡 + 1, 𝑁𝑖 denotes the neighbor set of agent 𝑖.
𝑓CM denotes the Constraint Module, which is the calculation

process of the inter-agent interaction constraint and the intra-agent
motion constraint we introduced in the Methodology Section.
𝑓Energy denotes the Energy Module, containing several MLPs to

get the neural interaction energy features of agents and subsequently
predict the kinematic states of agents. Note that the incorporation
of inter-agent interaction constraint is related to the design of the
Energy Module. We propose two implementation structures for the
Energy Module in the following paragraphs.

Structure (1): using the inter-agent interaction constraint directly
as part of the loss function. We design the Energy Module as two
MLP layers and generate the neural interaction energy features for
each agent, then we perform the calculation process discussed in the
Methodology Section and add the inter-agent interaction constraint
as part of the loss function for model optimization.

Structure (2): integrating the inter-agent interaction constraint into
the Energy Module. One of our core ideas lies in preserving system-
level temporal stability that the sum of changes in neural interaction
energy of agents tends to be zero over a short period. To simplify
the illustration, we will use two sets of agents, namely 𝐴 and 𝐵 as
an example. In the ideal situation, the sum of the neural interaction
energy changes of 𝐴 is the negative sum of 𝐵. Considering this, we
normalize neural interaction energy features of 𝐴 and concatenate
these features. Then we take the concatenated feature as the input of
𝐵, that is

𝑵𝑠 =
𝜕𝑬𝑠
𝜕𝒉𝑠

, ∀𝑠∈𝐴,

𝑯𝐵 = [𝑵1,𝑵2, ...,𝑵𝑠 ],
(Sp4)

where 𝑵𝑠 denotes the normalized neural interaction energy features
of agent 𝑠. We predict the velocity of agents in set 𝐴 and set 𝐵
separately.

We show the architecture of two proposed structures in Fig. 1. For
each dataset, the superior result from two structures was selected as
the final outcome.

B MATHEMATICAL DERIVATION OF
INTRA-AGENT MOTION CONSTRAINT

Here we give a brief derivation process of Eq.(6) in the Methodology
Section. Taking the inspiration from dynamic equations, we have

𝑭 𝑡 =𝑚𝒂𝑡 , 𝒙𝑡 ≈ 𝒙𝑡−1 + Δ𝑡 · 𝒗𝑡−1 + Δ𝑡2 · 𝑭 𝑡 , (Sp5)

where 𝑭 𝑡 is the force of agents and Δ𝑡 is timestep. 𝒙𝑡 and 𝒗𝑡 denote
the position and velocity of the current step, respectively. 𝒙𝑡−1 and
𝒗𝑡−1 denote that of the previous step. We consider mass 𝑚 as a
constant for simplicity. We leverage partial differential equations
(PDEs) to represent the relation between predicted states and input
states. Given the partial equation concerning 𝒙, 𝑭 and 𝑬 , 𝑭 𝑡 = 𝜕𝑬𝑡

𝜕𝒙𝑡 ,
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Figure 1: Two alternative structures of Energy Module.

Dataset PHASE Socialnav Charged NBA
𝛼 0.5 0.5 0.4 0.8
𝛽 -1 -1 -1 -1
𝛾 0.0625 0.0625 0.04 0.16

Table 1: Hyperparameters for intra-agent motion constraint.

we have,

𝜕𝒙𝑡

𝜕𝒗𝑡−1
≈ 𝜕𝒙𝑡−1

𝜕𝒗𝑡−1
+ Δ𝑡 · 𝜕𝒗

𝑡−1

𝜕𝒗𝑡−1
+ Δ𝑡2 · 𝜕𝑭 𝑡

𝜕𝒗𝑡−1
, (Sp6)

𝑢𝑡 ≈ 𝜕𝒙𝑡−1

𝜕𝒗𝑡−1
+ Δ𝑡 · 𝜕𝒗

𝑡−1

𝜕𝒗𝑡−1
+ Δ𝑡2 · 𝜕𝑬𝑡

𝜕𝒗𝑡−1𝜕𝒙𝑡
− 𝜕𝒙𝑡

𝜕𝒗𝑡−1
,

≈ Δ𝑡 + Δ𝑡 + Δ𝑡2 · 𝜕∇𝒙𝑡 𝑬𝑖 (𝒙𝑡 )
𝜕𝒗𝑡−1

− 𝜕𝒙𝑡

𝜕𝒗𝑡−1
,

= 𝛾 · 𝜕∇𝒙𝑬𝑡 (𝒙)
𝜕𝒗𝑡−1

+ 𝛽 · 𝜕𝒙𝑡

𝜕𝒗𝑡−1
+ 𝛼.

(Sp7)

We present the hyperparameter determination in Table 1. Specifically,
we set 𝛽 to −1 and determine the value of 𝛼 and 𝛾 according to the
timestep Δ𝑡 .

As presented in Eq. (Sp7), 𝑢𝑡 is a 1 × 2 matrix and it measures
the gap between the predicted movement ( 𝜕𝒙𝑡

𝜕𝒗𝑡−1
) and the approxi-

mate movement ( 𝜕𝒙
𝑡−1

𝜕𝒗𝑡−1
+ Δ𝑡 𝜕𝒗

𝑡−1

𝜕𝒗𝑡−1
+ Δ𝑡2 𝜕𝑭 𝑡

𝜕𝒗𝑡−1
). By regularizing the

norm of 𝑢, the predicted trajectory is refined to better align with
the ground-truth motion, yielding coherent and physically plausi-
ble agent motions. Consequently, we can leverage this intra-agent
motion constraint to preserve agent-level temporal stability.

C BROADER IMPACTS
This work has the potential for wide-ranging applications in au-
tonomous driving, mobile robot navigation, molecular simulation,
and team sports. Such systems have the potential for negative so-
cietal impact, and our algorithm has limitations and uncertainties.
We must critically evaluate such applications and promote beneficial

ones. We also should ensure that the application scenarios of the
algorithm are scientific.

D COMPLEXITY AND SCALABILITY
we supplement the discussion about the computational cost of our
approach. Compared to previous works, we additionally employ
two constraints to preserve temporal stability by computing the par-
tial derivatives of the neural interaction energy 𝑬 concerning the
agent’s position 𝒙 and velocity 𝒗 in Eq. (4) and Eq. (6). Our addi-
tional complexity brought by the partial derivatives is approximately
O(𝑏 ∗𝑇 ∗ 𝑑), where 𝑏 and 𝑇 denote batch size and time period, 𝑑 is
the feature dimension of 𝑬 . We take experiments on the Socialnav
dataset (containing 100K trajectory samples) for example to analyze
computational costs. We take 4 hours to train our model. The model
has 0.63M parameters. During the inference stage, we spent 0.04ms
to predict a sample’s trajectory. It means that our model is efficient
and applicable in real-time processing. Thus, our model can be used
in real-world scenarios.

E REPRODUCIBILITY
We submit the code of our model as part of the supplementary
to show the reproducibility of our method. The code contains an
MATE-Encoder and an MATE-decoder. We use the multi-edge graph
network to get the interaction latent for agents. We use a sequential
model to predict trajectories step by step.

F ADDITIONAL QUALITATIVE ANALYSIS
We show the visualizations of our model and other models on three
datasets in Fig. 2, Fig. 3, and Fig. 4. In each dataset, our model
performs the best prediction accuracy.
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Figure 2: Visualized prediction results of our model and other models on Charged dataset. Each row is a test sample and different
colored lines denote trajectories of different charges.
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Figure 3: Visualized prediction results of our model and IMMA model on Socialnav dataset. Each row is a test sample and different
colored lines denote trajectories of different agents. Dotted lines: past trajectories. Solid lines: ground truth future trajectories. Triangle:
predicted future trajectories. Agents relations means that the agent to the left of the arrow moves towards the agent to the right of the
arrow.
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Figure 4: Visualized prediction results of our model and IMMA on NBA dataset. Each row is a test sample and different colored lines
denote the trajectories of different players and the ball. Dotted lines: past trajectories. Solid lines: ground truth future trajectories.
Triangle: predicted future trajectories.
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