Robust Compressed Sensing MRI with Deep Generative Priors

Ajl Jalal, Marius Arvinte, Giannis Daras, Eric Price, Alex Dimakis, Jon Tamir

Multi-coil MRI

Robust to changes in scan and anatomy

Posterior Sampling via Annealed Langevin Dynamics

• Given measurements y, density μ over images, measurement likelihood $\pi(y|x)$, estimate is \hat{x}, such that:
 \[\mu(\hat{x}|y) \propto \mu(x) \pi(y|x). \]
• Langevin dynamics:
 \[x_{t+1} \leftarrow x_t + \beta_t \nabla \log \mu(x_t) + \beta_t \frac{d}{\sigma^2} \left(y - Ax_t \right) + N(0,2\beta_t). \]
• We use annealed Langevin dynamics and NCSNv2 generative model trained on brains [Song & Ermon].

Fine details like Meniscus tears are preserved

References:
2. Song and Ermon. Improved techniques for training score-based generative models. NeurIPS 2020

PSNR plots: Posterior sampling wins in most cases

Theory Results

Competitive for arbitrary measurements and performance metrics: For arbitrary metric d, if an oracle x' achieves
\[d(x,x') \leq \varepsilon \text{ with probability } 1-\delta, \]
then posterior sampling $\hat{x} \sim \mu_{x'y}$ achieves
\[d(x,\hat{x}) \leq 2\varepsilon \text{ with probability } 1-2\delta. \]

Gaussian measurements are robust to distribution mismatch: If $x \sim \mu$, A is a Gaussian matrix with $m \geq \log \left(\frac{1}{\delta} \right) + \log \text{Cov}_{\mathbb{R}^n}(\mu)$, and $\hat{x} \sim \nu_{x'y}$, then
\[||x - \hat{x}||_2 \leq C\varepsilon \text{ with probability } 1-\delta, \]
if some $1 - \delta, 1 - \varepsilon$ fraction of μ & ν are ε-close in W_2 distance.