Robust Compressed Sensing MRI with Deep Generative Priors

Ajil Jalal, Marius Arvinte, Giannis Daras, Eric Price, Alex Dimakis, Jon Tamir

Multi-coil MRI

Measurements from i^{th} coil : $y_i = PFS_i x + \eta$, η i.i.d. Gaussian

Posterior Sampling via Annealed Langevin Dynamics

• Given measurements y, density μ over images, measurement likelihood $\pi(y|x)$, estimate is \hat{x} , such that:

$$\mu(\hat{x}|y) \propto \mu(\hat{x}) \pi(y|\hat{x}).$$

• Langevin dynamics:

$$x_{t+1} \leftarrow x_t + \beta_t \nabla \log \mu(x_t) + \beta_t \frac{A^H(y - Ax_t)}{\sigma^2} + \mathcal{N}(0, 2\beta_t).$$

• We use annealed Langevin dynamics and NCSNv2 generative model trained on brains [Song & Ermon].

References:

- Jalal, Karmalkar, Dimakis, Price. Instance-optimal compressed sensing via posterior sampling, ICML 2021
- Song and Ermon. Improved techniques for training score-based generative models, NeurIPS 2020
- Knoll et al., fastMRI: A publicly available raw k-space and dicom dataset of knee images for accelerated MRI reconstruction using machine learning. Radiology: Artificial Intelligence, 2020.

Robust to changes in scan and anatomy

Fine details like Meniscus tears are preserved

Competitive for arbitrary measurements and performance metrics: For arbitrary metric d, if an oracle x' achieves

then posterior sampling $\hat{x} \sim \mu_{x|y}$ achieves

Gaussian matrix with $m \ge \log q$

||x -

if some $1 - \delta$, $1 - \alpha$ fraction of $\mu \& \nu$ are σ -close in \mathcal{W}_{∞} distance.

PSNR plots: Posterior sampling wins in most cases

- $d(x, x') \leq \varepsilon$ with probability 1- δ ,
- $d(x, \hat{x}) \leq 2\varepsilon$ with probability $1-2\delta$.
- Gaussian measurements are robust to distribution mismatch: If $x \sim \mu$, A is a

$$g\left(\frac{1}{1-\alpha}\right) + \log \operatorname{Cov}_{\sigma,\delta}(\mu)$$
, and $\hat{x} \sim \nu_{x|y}$, then
- $\hat{x}||_2 \leq C\sigma$ with probability $1-\delta$,