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ABSTRACT

How do two deep neural networks differ in how they arrive at a decision? Mea-
suring the similarity of deep networks has been a long-standing open question.
Most existing methods provide a single number to measure the similarity of two
networks at a given layer, but give no insight into what makes them similar or dis-
similar. We introduce an interpretable representational similarity method (RSVC)
to compare two networks. We use RSVC to discover shared and unique visual
concepts between two models. We show that some aspects of model differences
can be attributed to unique concepts discovered by one model that are not well
represented in the other. Finally, we conduct extensive evaluation across different
vision model architectures and training protocols to demonstrate its effectiveness.
Project Page: RSVC Code: github.com/nkondapa/RSVC

1 INTRODUCTION

The accuracy of deep neural networks has steadily increased over the last few years thanks to im-
provements in model architectures, dataset size, and pretraining strategies. However, much less is
understood regarding how the representations of different models have changed to make the mod-
els more effective. Thus, there is growing interest in developing methods that allow practitioners
to compare different networks. Comparing the activation matrices of two neural networks over
the same set of inputs underpins current representational similarity methods, e.g., CCA (Hotelling,
1936), CKA (Kornblith et al., 2019), RSA (Kriegeskorte et al., 2008), and Brain-score (Schrimpf
et al., 2018). While these approaches provide a score denoting the similarity between two differ-
ent models, they do not identify the specifics of what makes two models’ computations similar or
dissimilar, and what aspects of a representation lead to differences in model decisions.

In parallel, methods for concept-based eXplainable AI (XAI) have improved our ability to under-
stand what features individual models use to arrive at decisions. Understanding these features is
critical for ensuring model fairness and identifying potential sources of bias (Kaminski & Urban,
2021; Kop, 2021). In general, XAI methods sacrifice model fidelity to produce explanations that are
simple enough for human interpretation (Fel et al., 2023a; Cunningham et al., 2024). Thus, there is
a tension between model fidelity and human understanding.

We propose that contrasting two models is an effective way to identify and highlight what makes a
model unique, so that users can identify critical features that drive differences in model behavior.
To investigate this idea we develop a new approach that extends concept-based XAI methods so
they can quantitatively measure representational similarity and provide interpretable insights into
the differences between models. We name our method Representational Similarity via Interpretable
Visual Concepts (RSVC). Our method builds on interpretability approaches in which the activations
of a given layer are decomposed into a coefficient matrix and a vector basis. These approaches
group images that produce similar activation patterns together. Thus, we define a visual concept to
be the equivalence class of images that produce similar activation patterns. After computing visual
concepts from each model, our method evaluates whether the visual concepts from one model are
also used by the other model. We make three contributions:

• RSVC, a new approach for providing human-interpretable insights into model differences (Fig. 1).

• A validation strategy to link representational differences to model decisions.

• Experiments to show that RSVC can measure similarity at both coarse- and fine-grained levels.
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2 RELATED WORK

2.1 REPRESENTATIONAL SIMILARITY

Similarity methods attempt to quantify the similarity/dissimilarity between pairs of different mod-
els (Hotelling, 1936; Kornblith et al., 2019; Raghu et al., 2017; Li et al., 2015; Huh et al., 2024).
Models can be compared based on their functional similarity (i.e., how their outputs relate) or their
representational similarity (i.e., how the activations of intermediate layers relate) (Klabunde et al.,
2023). While functional similarity can tell us about how model outputs vary, two models can achieve
the same performance with significantly different representations. These differences matter, e.g.,
while two different forms of pretraining can achieve similar performance on certain datasets, they
may transfer poorly to others (Xie et al., 2023).

Representational similarity metrics have successfully been used to analyze the differences between
architectures (Nguyen et al., 2021; Raghu et al., 2021), explore the effects of different kinds of
pretraining (Xie et al., 2023; Neyshabur et al., 2020; Park et al., 2024), develop novel strategies
for efficient ensembling (Zhang et al., 2020), or perform ensembling that is robust to distribution
shifts (Lee et al., 2023). Some methods have leveraged representational similarity to build tools for
text-to-image generation (Rombach et al., 2020) or model-to-model translation (Dravid et al., 2023).
In neuro- and cognitive science, representational similarity is used to measure how well models are
able to approximate the neural recordings of the brain and/or the behavior of humans (Schrimpf
et al., 2018; Muttenthaler et al., 2023; Fel et al., 2022b; Ahlert et al., 2024; Kriegeskorte et al.,
2008). In the disentanglement literature, representational similarity has been used to evaluate how
well the learned representation matches known ground truth latent factors. A popular approach is
to use regularized linear predictors to map learned factors to ground truth latent factors (Eastwood
& Williams, 2018; Eastwood et al., 2023; Locatello et al., 2019; Roth et al., 2023; Duan et al.,
2020). Recently, Dravid et al. (2023) proposed a method that uses correlated activation patterns
across networks to mine for “Rosetta Neurons”. These neurons provide insights about features that
re-occur consistently in many models. In contrast to our proposed method, Rosetta Neurons do not
quantify the overall similarity between networks and do not identify neurons that explain model
differences. Most closely related to our work is that of (Schrimpf et al., 2018) and (Li et al., 2015)
which use a linear regression model as a similarity metric between the activations of two networks.
We describe these methods in more detail in Sec. 3.2.

The primary limitation of most existing representational similarity methods is that they can quantify
how similar the representations of two models are, but can not tell users what makes the models
similar or dissimilar. We propose a new approach that aims to address this question. Our approach
leverages concept-based explainability as an intermediate step to measure representational similarity.

2.2 EXPLAINABLE AI (XAI)

XAI methods aim to answer the questions (1) what features did a model use to arrive at a decision
and (2) where is the relevant information in the input. Local explanation methods focus on pixel-
based attribution, in which a heatmap indicates the region of the image that is most relevant to the
model’s decision (Selvaraju et al., 2020; Ribeiro et al., 2016; Lundberg & Lee, 2017). While local
explanations are able to answer the “where” question, it can be challenging to interpret “what” is
being highlighted as attributions can be noisy.

To better address the “what” question, global concept-based explanations can be used (Kim et al.,
2018; Ghorbani et al., 2019; Zhang et al., 2021; Fel et al., 2023a; Kowal et al., 2024; Poeta et al.,
2023; Bau et al., 2020). These approaches discover groups of images (or image regions) that share
some visual feature that is relevant to the model’s decision making. In addition, “glocal” methods
have been developed to answer both questions simultaneously (Schrouff et al., 2021; Fel et al.,
2023b; Achtibat et al., 2023; Kondapaneni et al., 2024).

Ilyas et al. (2022) take a different approach to explaining model decisions whereby linear surrogate
models are trained to reproduce the output of a deep neural network. Then, each training image is
given a score that reflects how much it contributed to the final weights of the learned model. In (Shah
et al., 2023), this approach was extended to analyze the differences between two models by iden-
tifying the differences in training images that each model relies on to arrive at different decisions.
While our work also aims to compare two models in an interpretable manner, our approach uses
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Figure 1: Representational Similarity via interpretable Visual Concepts (RSVC). (Concept
Extraction): First, activations for a set of image patches, Ic, are computed for each model (M1

and M2). Second, the activation matrix for M1 is factorized into the concept coefficient matrix U1

and the concept basis W1, i.e., A1 ≈ U1W1. Each entry in a column vector of the coefficient
matrix U1 represents the strength of a concept in an image. Concepts are visualized by the image
patches that correspond to the top n coefficients. Here, we highlight only two concepts, ua

1
and ub

1
.

The top four images for these concepts indicate that ua
1

represents bluejay tail and ub
1

represents
sky background. (Concept Regression): To measure concept similarity, we learn a weight matrix
W∗

2→1
to map A2 to the concept coefficient matrix U2. We denote the predicted coefficient matrix

as U2→1. (Concept Similarity): Finally, we compute the correlation between columns of U2→1

and U1. If A2 contains a concept in U1, then the predicted coefficient vector should be highly
correlated to the real coefficient vector. In this example, we see that the bluejay tail concept is
poorly represented in M2, but both models share the sky background concept.

the activations of the original model itself. This gives RSVC the advantage of being able to link
representational changes to functional model behavior.

3 METHOD

We propose a new approach to compare the representations of two models using concepts. Our
approach is closely related to methods for computing representational similarity, such as Brain-
Score (Schrimpf et al., 2018) and the metric in (Li et al., 2015), and builds upon prior work in
concept extraction (Fel et al., 2023b; Ghorbani et al., 2019; Fel et al., 2023a). We bridge approaches
from these two fields, resulting in an interpretable method to measure representational similarity for
deep neural networks (Fig. 1).

3.1 CONCEPT EXTRACTION

Fel et al. (2023a) showed that many concept based explainability approaches can be generalized as
dictionary learning methods. In these approaches, a set of n input images I is used to compute
activations from a specific layer l of a neural network resulting in an activation matrix A ∈ R

n×d,
where each row is an activation vector of dimensionality d. Then, a dictionary learning algorithm
can be used to approximate the activations as A ≈ UW. The row vectors of the vector basis
W ∈ R

k×d can be interpreted as a set of k concepts. Similarly, the rows of the coefficient matrix
U ∈ R

n×k represent the importance of a particular concept vector in W for a given image. By
visualizing the images that have the largest concept coefficients for a given concept, we are able to
understand what visual concepts the network has identified in the data. The effectiveness of such
concept based XAI methods has been demonstrated via user studies in previous work (Fel et al.,
2023b; Ghorbani et al., 2019; Kim et al., 2018).
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Our goal is to develop a method to compare the representational similarity between two models, not
just in terms of a single numerical score, but via interpretable concepts. For each model, we use the
concept extraction approach proposed in CRAFT (Fel et al., 2023b). We denote the first model as
M1, and the second as M2. Importantly, we make no assumption that these two models are from the
same model family, e.g., one could be a CNN and the other a Vision Transformer. We outline the
concept extraction process for M1, but the same process is applied to M2.

For a specific object class c, we select the set of images Ic
1

that M1 predicted to contain class c. By
grouping images according to model predictions, as opposed to only the ground truth labels, we are
able to identify concepts used in all images that the model believes are part of class c. This allows
the method to provide better insight into both correct and incorrect predictions. Images are usually
composed of several visual concepts, so we extract evenly spaced patches from the image to form a
set of “concept proposal” images. These patches are more likely to contain a single visual concept
and are easier to interpret. We re-use Ic

1
to refer to the set of concept proposal images.

Each concept proposal is resized to the model’s input resolution and passed through the network.
Note that all networks are trained with cropping augmentation, such that patches are in the domain

of training images. We denote the activations from a specific layer l and class c as A1 ∈ R
|Ic

1
|×d,

where d is the dimension of the activations of the layer. We then use a dictionary learning algorithm

with k components to decompose A1 into a matrix U1 ∈ R|Ic

1
|×k and W1 ∈ R

k×d, such that A1 ≈
U1W1. We refer to U1 as the concept coefficient matrix and W1 as the concept basis. We repeat
this process for M2, resulting in U2 and W2. Intuitively, each row of a concept coefficient matrix U
encodes the contribution of each concept vector in W to the activation vector of a particular image
in I.

To measure concept similarity between two models, we need to understand how each concept reacts
to the same set of images. For example, if both networks have discovered a concept that reacts to
the color red, they would both have an activation pattern that spikes when red objects are presented.
Following this logic, we propose that if two concept vectors are encoding the same information,
their concept coefficients over the same set of images should be correlated. To obtain a shared set of
images, we take the union over the image sets Ic

1
∪Ic

2
to form Ic. The proposals are passed through

the model M1 to produce A1 for the shared concept set. Given the concept basis W1 (which is
specific to M1), we re-compute U1 over the shared set of images. We repeat this process for M2 to
compute U2. In practice, we use a non-negative least squares solver, since the original coefficient
matrices are non-negative (Appendix B).

3.2 CONCEPT SIMILARITY

Here we address the following question: in a specific pair of layers, does M1 encode the same
concepts as M2? In the following sections, we make use of A1, A2, U1 and U2 to compute the
similarity between concepts encoded in M1 and M2. We consider two different approaches that
trade-off computational cost and error. In Appendix A.1 we describe a correlation based metric that
has a low computational cost that we use to coarsely compare many layers of two neural networks.

In order to more accurately measure similarity in a single layer, we propose a regression based
metric similar to the strategy in (Li et al., 2015) and the BrainScore (Schrimpf et al., 2018), which
was originally introduced to compare artificial neural networks to biological neural networks. In (Li
et al., 2015), the outputs of a convolutional layer in one model are mapped to the outputs of a
convolutional layer in another network using a sparse weight matrix. The prediction error between
the predicted outputs and true outputs are used as a metric for the similarity between the two layers.
In BrainScore, for a set of n stimuli (e.g., images), the activations from a layer of the DNN are stored
in a matrix A ∈ R

n×d, where d is the dimensionality of the layer activations. For the same set of
stimuli, neural recordings are measured from an animal and processed forming a vector y ∈ R

n

for each target “neuroid”. A linear mapping is introduced to predict the neural responses from the
DNN activations, y = Aw∗ + b, where w∗ are the weights of the regressor and b is the bias.
The regression model is trained on a set of training images and evaluated on held out test images
where the predicted outputs of the regressor are compared to the true neural responses using Pearson
correlation, giving a score between -1 and 1.

To compare two neural networks using these methods, each column of A2 would serve as prediction
targets for regression with A1 resulting in a similarity score for each column of A2. However,
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visualizing and interpreting each neuron results in an explanation that is too complex for users.
Instead, a more interpretable result can be achieved by setting the coefficient matrix U2 as regression
targets for A1 (Fig. 1). Essentially, RSVC encodes similarity by measuring how well M1 can predict
the concept coefficients of M2 and vice-versa,

A1W
∗
1→2

= U1→2 and A2W
∗
2→1

= U2→1, (1)

where we learn W∗ such that the following regularized (l1) mean-squared error is minimized.

min
W∗

1

n

n
∑

i=1

(AW∗ −U)
2
+ λ∥W∗∥1. (2)

l1 regularization guides the regression model to seek a sparse set of neurons in M1 that can be used
to predict U2 and reduces over-fitting to the regression training data. We also compute baselines for
each model from their own activation matrices, learning W∗

1→1
and W∗

2→2
. Finally, we compute the

Pearson and Spearman correlation between columns of the predicted coefficient matrix and columns
of the true coefficient matrix to get a similarity score for each concept between -1 and 1. We refer
to the score as cross-model concept similarity (CMCS) when computed across two models, and as
same-model concept similarity (SMCS) when computed within the same model.

Finally, we investigate whether similar or dissimilar concepts are more important to model decisions
by applying concept integrated gradients (Fel et al., 2023a). Concept integrated gradients measure
the contribution of each concept to a model’s decision (Appendix B.1.1).

3.3 REPLACEMENT TEST

To link differences in predicted concept coefficients and real concept coefficients to model be-
havior, we conduct a “replacement test”. For each model comparison, we conduct a replacement

1: for each i = 1 to K do
2: Ūi

2→1
= Copy U1

3: Ūi
2→1

[:, i] = U2→1[:, i]
4: Āi

2→1
= Ūi

2→1
W1

5: z̄i
2→1

= h(Āi
2→1

)
6: ȳi

2→1
= argmax(z̄i

2→1
)

7: end for

operation over each column of the coefficient matrix and keep
track of the resultant reconstructed activation matrix, model log-
its, and model predictions (as seen in the pseudocode on the left).
We perform the replacement operation using the same model
predicted coefficients U1→1 (baseline) and also the cross-model
predicted coefficients U2→1. We measure the impact of replace-
ment at three levels during a classification task. We denote h
as the classification head that produces logits (z) for each input

image. We compute the mean l2-distance between each row of Āi
2→1

and Āi
1→1

, the mean KL-
divergence over the logits z̄i

2→1
and z̄i

1→1
, and the match accuracy between ȳi

2→1
and ȳi

1→1
.

3.4 INTERPRETING LOW SIMILARITY CONCEPTS

How should we visually compare predicted and real concepts? Concept based XAI methods like
CRAFT (Fel et al., 2023b) and CRP (Achtibat et al., 2023) visualize the n images with the largest
concept coefficient as representatives of the visual feature encoded by the concept. The same ap-
proach can be used to visualize similar concepts, since, by definition, similar concepts have highly
correlated activation patterns over the shared set of concept proposal images. However, this ap-
proach is misleading when low similarity concepts are discovered. When a concept is dissimilar it
may share the same top n images, but have entirely uncorrelated coefficients over the remaining im-
ages. This possibility is further amplified due to the mean squared error (MSE) loss used to estimate
the regression matrix W∗

1→2
. The MSE loss penalizes prediction error on the largest coefficients

disproportionately, leading to a higher chance the two models share the same top n images.

To address this, we develop a new approach to specifically visualize how two models are dissimilar
with respect to a concept. We start by visualizing the target concept by using an image collage
corresponding to the top n concept coefficients. The target concept is compared to the predicted
concept by visualizing the top n over-predicted coefficients and top n under-predicted coefficients.
This allows users to reason about visual features that one model entangles or disentangles with the
target concept, improving their overall understanding of the compared models. To ensure sample
diversity, we enforce that we visualize one patch per image. We also exclude the top-10 real concept
images when selecting the over and under predicted points. In Figs. 2 and 5, we demonstrate our
proposed approach for interpreting the dissimilarity of the concepts. We include more visualizations
in Appendix A.2.
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3.5 IMPLEMENTATION DETAILS

We choose a ResNet-18 (RN18), ResNet-50 (RN50) (He et al., 2016), ViT-S, ViT-L (Dosovit-
skiy, 2021), DINO ViT-B (DINO) (Caron et al., 2021), and MAE ViT-B (MAE) (He et al., 2022)
from the timm library (Wightman, 2019) for our experiments. All models were trained on Ima-
geNet (Deng et al., 2009). For our exploration with DINO and MAE, we finetune the models on
NABirds (Van Horn et al., 2015). We compare four pairs of models: RN18 vs. RN50, ViT-S vs. ViT-
L, RN50 vs. ViT-S, and DINO vs. MAE. Model performance on their respective datasets are reported
in Tab. A1. The first two pairs have a clear difference in performance, implying that there are sig-
nificant representational differences between the models. The second two pairs are roughly equal in
overall performance, allowing us to explore how representational differences may result in different
behavior even when overall performance is the same. For the l1 penalty, we sweep λ on a subset of
data and find λ = 0.1 to be a reasonable choice (Fig. A13). Additionally, we set the number of con-
cepts k = 10 to balance reconstruction error and computational cost (Fig. A14). We provide further
details on the concept extraction, concept comparison and computational cost in Appendix B.

4 RESULTS

4.1 DISCOVERING A “TOY” CONCEPT

While understanding models on real data is closely related to real-world use cases, it results in
complex concepts that can be more challenging to interpret. To better understand the properties of
RSVC, we design an experiment in which we train a model on images modified with a simple toy
visual concept. In this experiment, we are able to control what the model learns and explore how
RSVC works in a more controlled setting.

We train two ResNet-18 models from scratch on all classes from a modified NABirds
dataset (Van Horn et al., 2015). The first model, Mps, is trained to make use of the toy concept
in its decisions and the second, Mnc is trained to become invariant to the toy concept. The toy con-
cept is a 20px× 20px pink square that is stochastically placed on the images at a random location.
For Mps, the concept appears on images from the Common Eider class with a 70% probability,
giving the concept predictive power. For Mnc, the concept appears on images from any class with
a 50% probability, giving the concept no predictive value. Thus, Mps should learn to attend to the
visual concept while Mnc should learn to ignore the concept, since it is simply noise. Finally, both
models are tested on a dataset in which the concept appears on images from the Common Eider class
with a 100% probability. Provided that Mnc successfully learns to ignore the concept, RSVC should
have a low similarity score to any concept in Mps that primarily fixates on the pink square. Recall
that concepts are visualized using image patches. This allows us to break the 100% correlation be-
tween the pink square and the image during testing, such that only some patches contain the added
concept. Both models achieve ∼34% classification accuracy on the test set of NABirds.

In Fig. 2, we visualize the similarity from Mnc to Concept 1 in Mps. We find that Mnc has a
near zero similarity to Concept 1 in Mps, which we visually identify to be a concept that fixates on
the pink square. Importantly, the modified training paradigm does not affect the similarity scores
between other concepts in the two models. In Fig. A5, we show that Mnc has high similarity to
two other concepts in Mps. Thus, we show that RSVC clearly identifies the primary conceptual
difference between the two models in this controlled experiment.

4.2 CONCEPT SIMILARITY VS. CONCEPT IMPORTANCE

To analyze real data, we start by exploring the relationship between concept similarity and impor-
tance in the penultimate layers of different models trained on ImageNet (Deng et al., 2009). We
compute the cross-model concept similarity (CMCS) and the concept importance (CI) for every
extracted concept. In Fig. 3, we plot the concept similarity from M1 to M2 against the concept
importance for M2 across four pairs of models. In this figure, a point with low similarity and high
importance would indicate that in layer l, M1 can not predict the coefficients of a concept that
M2 finds important in decision making. We use color to indicate the density of points in a region
(warmer colors indicate more density). In Appendix A.7, we compare same-model concept simi-
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Common Eider | Concept 1 | Mnc → 𝑀𝑝𝑠
Top-10 𝑀𝑝𝑠   Concept Patches

pink squares overlayed over water and tails

over-sensitivity to water without pink square under-sensitivity to pink squares 

Top-10 Overpredicted Concept Patches Top-10 Underpredicted Concept Patches

Figure 2: Adding and Discovering a Toy Concept. Here we train two ResNet-18 models, Mps

and Mnc. Mps is trained to associate a pink square (i.e., Concept 1) with the Common Eider class,
while Mnc is trained to be invariant to the pink square concept. We find that the similarity score
from Mnc → Mps for Concept 1 is ∼ 0.0, indicating that Mnc is unable to predict Concept 1 from
Mps. To understand various aspects of the differences between the two models, RSVC inspects three
distinct regions of the predicted vs. real coefficient scatter plot (Sec. 3.4). (Green): RSVC visualizes
images corresponding to the top-10 Mps target concept coefficients. This allows the user to under-
stand what the target concept is encoding. This concept clearly reacts strongly to the pink square
visual feature. (Blue): RSVC visualizes the image patches with the largest Mnc under-predicted co-
efficients. Mnc under-reacts to the pink square when compared to Mps. (Orange): RSVC visualizes
the image patches corresponding to the top-10 Mnc over-predicted coefficients. The over-predicted
patches show that Mnc cannot distinguish between background and the pink square.

larity (SMCS) to CI. As expected, we find that SMCS values are significantly higher than CMCS
values, since the model is predicting its own concepts.

In cross-model comparisons, we observe that models tend to have medium/high similarity for most
concepts, since dense regions in the plot tend to be above 0.6 similarity. We also notice that the
similarity scores from ViTs and ResNets have a different overall structure, with ResNets having a
longer tail of low similarity and low importance concepts. Finally, except for DINO vs. MAE we
find that there are several low/medium similarity concepts that also have a medium/high importance.
In Appendix A.5, we systematically vary the training protocol (seed and data) for a ResNet-18 model
and measure the impact of the changes on model similarity. We find that changes in model training
lead to intuitive changes in similarity and use RSVC to reveal some concepts that suggest how
the two models differ (Fig. A7). In summary, we observe two key results: (1) model differences are
largely driven by medium similarity, medium importance concepts, jointly contributing to significant
changes in model behavior and (2) some models do learn “unique” low similarity, high importance
concepts. In the following sections we explore both of these results further.

4.3 REPLACEMENT TEST

In order to better understand how variations in similarity impact model behavior we conduct a re-
placement test (described in Sec. 3.3). This test allows us to measure how changes in concept sim-
ilarity impacts the l2-distance of the activations, KL-divergence of the logits, and match accuracy
of the predictions. We investigate this question because it is possible that changes in Pearson corre-
lation are due to changes in predicted coefficients on unimportant images for a particular concept,
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Figure 3: Concept Similarity vs. Concept Importance. We compare four pairs of models using
CMCS: (A) RN18 vs. RN50, (B) RN50 vs. ViT-S, (C) ViT-S vs. ViT-L, and (D) DINO vs. MAE.
The y-axis represents the concept importance (CI) measured using concept integrated gradients.
Warmer colors represent the density of points in a region. We highlight several regions in the plots:
(1) low similarity and low importance concepts that are unique to a model but contribute little to its
decisions, (2) high importance and high similarity concepts that are shared across both models and
also contribute greatly to decision making, (3) low similarity, high importance concepts that only
one model has discovered, but are very important to that model’s decisions.

leading to no change in model behavior. In Fig. 4, we visualize the change in Pearson correlation
(∆Pearson) against the change in the three aforementioned metrics. We use color to indicate con-
cept importance (warmer colors are more important). As expected, we observe a trend showing that
l2-distance increases as similarity decreases. For the KL-divergence, we observe two trends: (1)
when the importance is sufficiently high, the KL-divergence increases as similarity decreases and
(2) when the importance is low, there is no effect on the model’s logits. Finally, we observe a trend
that shows that model predictions change as a function of both similarity and importance. We find
that these trends roughly hold for all models, although the structure of the plots changes for ViTs.
See Appendix A.8 for more results.

4.4 LOW SIMILARITY CONCEPTS

In Fig. 3 we observe that model comparisons identify low similarity, high importance concepts.
These concepts are particularly interesting because they identify visual features that one model has
constructed that the other has not. In Fig. 5 we apply our proposed approach for understanding
the dissimilarity between predicted and real concepts (see Sec. 3.4). We analyze a RN50 concept
used on the barbell class, which primarily reacts to images containing hands/arms lifting a barbell.
When a regression model is trained on the ViT-S activations to predict the coefficients of the RN50
concept, the model becomes over-sensitive to any image with weight plates or gym equipment and
remains under-sensitive to images of people around gym equipment. This result suggests that the
ViT-S does not have a feature encoding “hands lifting weights”. In Fig. A3, we show some more
examples of important low similarity concepts that are visually interpretable.
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Figure 4: Replacement Test. We determine whether poorly predicted coefficients for concepts ac-
tually impact model behavior (Sec. 4.3). We use color to represent the concept importance (warmer
is higher importance). When ignoring low importance concepts, we observe expected trends, i.e.,
decreases in similarity (∆Pearson) result in increases in the l2-distance, increases in KL-divergence
on the classifier logits, and decreases in model accuracy. The effect also seems to be scaled by
importance, for example, changes to low importance concepts (black) has no impact on ∆KL.

4.5 LLVM GENERATED CONCEPT DIFFERENCE ANALYSIS

Fig. 5 contains a manual analysis of the difference between a visual concept for the barbell class
from two different models. Here we use an LLVM (ChatGPT-4o Achiam et al. (2023)) to analyze
image collages and describe them. This approach has a similar goal to Gandelsman et al. (2024), in
which the authors use an LLVM to interpret specific MLP heads in a CLIP ViT model. The input
and output structure for this experiment is provided in Fig. A4. We do not emphasize differences
in the system prompt, instead we ask the model to describe both similarities and differences. We
provide the top-k image collage (IC1) and the over-predicted image collage (IC2) as input to the
LLVM. The LLVM outputs for the barbell concept are presented below. We observe that the LLVM
description is similar to the manual description in the caption:

LLVM Analysis of a Visual Concept from the Barbell class

IC1: A collage of people engaging in strength training exercises, with a focus on lifting dumb-
bells, barbells, and performing weightlifting movements.
IC2: A collage showcasing gym equipment and weights, with some emphasis on exercises
involving barbells and dumbbells but with fewer people depicted.
Similarity: Both collages center on weightlifting and gym-related activities, featuring equip-
ment and exercises.
Difference: IC1 highlights people actively performing weightlifting exercises, while IC2 pri-
marily focuses on the gym equipment and setup with minimal human involvement.
Semantically different: [Yes] IC1 emphasizes the activity of weightlifting, whereas IC2 fo-
cuses more on the tools and environment of the gym.

5 LIMITATIONS

We limit our analysis to computer vision models. In practice, there is nothing restricting the ap-
plication of the RSVC approach to large language models, but we leave this for future work. Our
work builds on concept-based XAI methods, and thus inherits the trade-off between fidelity and
interpretability. In particular, we note that the reconstruction error varies for each model, which
may explain some properties of concept similarity in our experiments. However, we are agnostic
to the precise concept extraction method used and thus our approach will benefit from further ad-
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Barbell | ViT-S → ResNet50

Top-10 (R50) Concept Patches

hands and arms lifting barbell

over-sensitivity to weight equipment under-sensitivity to people + gym equipment

Top-10 (ViT-S) Overpredicted Concept Patches Top-10 (ViT-S) Underpredicted Concept Patches

(IC 1)

(IC 2)

Figure 5: Interpreting Low Similarity Concepts. In this example, we find a RN50 concept for the
barbell class that the ViT-S is not able to predict. (Green): The RN50 concept reacts to images of
hands lifting barbells. Additionally, many images contain vertical supports for a squat rack. We train
a regression model on the ViT-S activations to predict the RN50 concept coefficients. (Blue): The
ViT-S regression model under-reacts to images containing hands, people, and squat racks. (Orange):
It over-reacts to images that have a greater focus on weight plates. These results suggest that the
the specific concept of hands lifting barbells is not represented in the ViT-S. In Sec. 4.5 we use an
LLVM to analyze the image collages (IC1 and IC2) and find that it detects similar differences in the
visualizations.

vances in these methods. For example, incorporating a recursive strategy like the one presented in
CRAFT (Fel et al., 2023b), may significantly improve the number of interpretable comparisons dis-
covered. Outside of overly artificial settings whereby two models are trained on completely different
datasets, we note that it can be challenging to compare the representations of two models trained on
the same or similar datasets (e.g., ImageNet) as done in this work. However, we believe that this
more challenging setting is of most interest and relevance.

6 CONCLUSION

We introduced a new method for exploring representational similarity via interpretable visual con-
cepts (RSVC). In contrast to existing representational similarity methods that simply provide a single
numerical score to denote similarity, our approach fuses ideas from concept-based explainability and
shows us what visual concepts make two models similar or dissimilar. In particular, we demonstrate
that comparing models can be an effective path towards understanding what concepts a model is
missing. In future, this may be helpful in identifying sources of model failures. We presented exper-
iments on a range of different vision models and demonstrated that our approach is general and can
be applied across a variety of different backbone models, irrespective of the pretraining objective
used by the model. Finally, we suggest that explaining the functional differences in two models’
behavior could serve as a valuable testbed for future XAI research. We hope that our work opens
the door to further investigation into how concepts are represented inside of deep networks.
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A ADDITIONAL EXPERIMENTS

A.1 LAYERWISE CONCEPT SIMILARITY

A.1.1 CORRELATION

We propose a correlation based comparison method that has a lower computational cost than the
regression method presented in the main text (Sec. 3.2). This approach allows us to efficiently
compare many concepts and layers for two models. Recall that each column of U contains the
concept coefficients of a specific concept for each image. If the concepts encode the same informa-
tion, they should have highly correlated activation patterns since they would react similarly to the
same proposal images. Thus, we compute the correlation for each vector ui

1
∈ Columns(U1) and

u
j
2
∈ Columns(U2). We measure both Pearson and Spearman correlation to form the correlation

matrices Rρ ∈ R
k×k and RS ∈ R

k×k. Since concepts extracted from each network do not have
a direct correspondence, MCS measures the concept similarity between a concept from M1 and all
of the concepts from M2 and keeps the maximum. We compute the maximum concept similarity
(MCSc) over each dimension of the correlation matrix for each concept and class

MCSc
1
= max

i
Rij and MCSc

2
= max

j
Rij . (3)

MCS is fast to compute and can be done with relatively few image samples (Appendix B.2). Thus,
we use it to compute layerwise concept similarity which gives us coarse-grained insights into the
similarity between each layer of two different models. For layerwise concept similarity, we compute
the correlation matrix Rc between M1 and M2 at each pair of layers for every class c. Then, for each
correlation matrix we compute the mean maximum concept similarity (MMCS) over each dimension
and then take the average of the two matrices

MMCSm =
1

k · c

c
∑

c=1

k
∑

i=1

MCSc,i
m ,

MMCS = (MMCS1 + MMCS2)/2.

(4)

However, correlation based similarity can be affected by confounds from concept extraction. For
example, extracted concepts can entangle or disentangle visual features that are encoded by the
respective models. Suppose U1 encodes features for both ears and snouts of a dog together in
a single concept, but these two features are disentangled into two concepts in U2, the maximum
match between these concepts would be lower even though both networks are encoding the same
information. Additionally, extracted concepts do not contain all the information in the network since
there is some reconstruction error when learning the decomposition. Thus, correlation matrices can
tell us when two concepts are highly similar, but do not tell us if a concept is missing in a layer.
However, they can serve as a noisy lower bound for measuring concept similarity (Appendix A.1.3).
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Figure A1: Layerwise Mean-Max Concept Similarity. We compare four pairs of models across
many selected layers using Pearson correlation. Each entry in the matrix is the mean maximum
concept similarity (MMCS) between M1 and M2 at a particular pair of layers. Brighter colors
represent higher MMCS values. We see that, in general, concept similarity is highest in earlier
layers and decays as networks get deeper. We also notice that there is a slight increase in similarity
towards the final layers (Appendix A.1).

A.1.2 COMPARING MODEL LAYERS

In Fig. A1, we explore how concept similarity arises across many layers of each network. We
compute the MMCS at each pair of layers and visualize the resulting matrix. For all models, we
find that concept similarity is highest at the early layers of each model and decays gradually as
network depth increases. In all model comparisons, we see a slight increase in similarity towards the
final layers relative to the preceding layers, suggesting that the way networks organize information
converges as the network get closer to producing a final decision. Interestingly, (Fel et al., 2022b)
also found the last layer to have better properties for concept extraction.

We also notice several properties unique to each comparison. When comparing different sized mod-
els with the same architecture, the similarity is related to the relative depth of the layer. For ResNets,
we notice that matrices show a pattern of increased similarity after residual blocks and lower simi-
larity for layers within blocks. For the ViT-S and ViT-L we find that there is a broad band of concept
similarity in the middle of each network in which the ViT-S layers 4 through 9 have higher similar-
ity to ViT-L layers 5 through 20. In addition, there is an increase in concept similarity between the
last layer of the ViT-S and the last three layers of the ViT-L. When comparing the RN50 to ViT-S
we find that concept similarity of layers 0 through 25 are most similar to layers 0 through 3. This
finding matches observations found in previous work, in which relatively earlier layers in the ViT
match relatively later layers in the ResNet (Raghu et al., 2021). Finally, when comparing the MAE
to DINO, we see high concept similarity between the first 3 layers of DINO and the first 8 layers of
the MAE. However, this similarity decays significantly as the layer index of DINO increases. This
divergence in concept similarity may be due to differences between supervised and self-supervised
training, but further research is needed.

A.1.3 COMPARING MCS (PEARSON) TO LASSO REGRESSION (PEARSON)

In Appendix A.1.1, we claimed that MCS (Pearson) could serve as a noisy lower bound to better
measurements of similarity like CMCS (Pearson). This is because MCS is computed over concepts
extracted by the decomposition method, which introduces its own entanglements, disentanglements,
and reconstruction error. In Fig. A2, we compare the penultimate layers of the four pairs of models
and compute both MCS (Pearson) and the CMCS (Pearson). We find that MCS is correlated to
CMCS, but, as expected, under-predicts the concept similarity. For this experiment only, due to the
fact that we computed Pearson correlation over images in the training set of the deep neural network,
we compare to the mean similarity score that is computed from the held-out folds of the five lasso
regression models. The held-out folds are not part of the training set for the regression models, but
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were part of the training set of the deep neural network. However, this comparison is more fair, since
we compare the two methods on the same set of images.

Figure A2: MCS (Pearson) vs. Lasso Regression. We see that the most points lie above the red-
line. This means that lasso regression (followed by Pearson correlation on the predicted and real
coefficients) usually predicts a higher similarity value than the MCS values directly on the columns
of the coefficient matrix. Thus, we experimentally validate that the Pearson correlation acts as a
noisy lower bound on concept similarity.

A.2 ANALYZING CONCEPTS

In Fig. A3 we display some more examples of dissimilar concepts found through RSVC. We also
provide interpretations of the dissimilarities between the concepts. Note that these dissimilarities
do not necessarily indicate worse performance on images from this class because there are many
possible correct strategies when trying to make a decision about an image.

Rugby Ball | RN18 → RN50

The RN50 has learned a visual concept that entangles the arms of a rugby player and the rugby ball.
We see in the under-predicted samples that the regression model under-predicts samples with the
players’ limbs and rugby balls together. When visualizing the over-predicted samples we can see
that the regression model increases sensitivity to both close-ups of rugby balls and to the legs of the
players. These results suggest that the RN18 encodes for the legs of the rugby players independently
of the rugby ball and the regression model is using these independent features to try and reproduce
the RN50’s concept. It also suggests that the RN18 is not encoding the arms as an independent
feature.

Grey Whale | ViT-S → ViT-L

It appears that the ViT-L has learned a visual concept for whales surfacing parallel to the surface
of the water. We can see that the regression model under-predicts images of the whales back and
also images of its eye in a horizontal orientation. The regression model seems to have increased
sensitivity to breaching whales, either raising their tails or their heads. This suggests that the ViT-S
has entangled calm whales floating at the surface with active whales breaching the water.

Strawberry | RN50 → ViT-S

This concept is one of the lowest similarity concepts that causes a meaningful change in model
behavior (as seen by the KL-Divergence). We can see that the ViT-S has learned a concept for
mixed fruits that include strawberries. The under-predicted and over-predicted samples show that
the RN50 has no ability to reproduce this pattern, suggesting that it ignores mixed fruits entirely.
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Rugby Ball | ResNet18 → ResNet50

Grey Whale | ViT-S → ViT-L

Strawberry | ResNet50 → ViT-S

Bluejay | ViT-B MAE → ViT-B DINO

UnderpredictedTop-9 Concept Patches

Volleyball | ResNet18 → ResNet50

Overpredicted

Figure A3: Qualitative Samples. In each row, we show visualizations for selected concepts from
different model comparisons. In the first column of each row, we show scatter plots between real
and predicted concept coefficients. Colored points mark the top-9 images in different subregions of
the scatterplot. Each subregion indicates a different aspect of dissimilarity. (Green): Top-9 images
for the real concept. These images are used to help the user understand what the target concept pays
attention to. (Orange): Top-9 images that are over-predicted by the contrasted model. You may need
to zoom in to best analyze the image grids. (Blue): Top-9 images that are underpredicted by the
contrasted model. We discuss possible interpretations of the concepts in Appendix A.2. See Sec. 3.4
for a detailed breakdown of how to interpret these plots.
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Volleyball | RN18 → RN50

The RN50 has learned to encode volleyball players in a variety of active positions. There seems to
be an emphasis on hands and arms near or above the net. The RN18 under-predicts close-up images
of volleyballs and players at the net and it tends to over-predict images containing balls high in the
air and close-ups of nets/grids. This suggests that the regression model is trying to reproduce the be-
havior of the RN50 concept using a variety of related features learned by the RN18. We explore the
top-6 neurons that most contribute to the regression model’s prediction of this concept in Fig. A6.
We compute the neuron contribution using permutation feature importance (Appendix B). We find
that the regression model uses RN18 neurons that are highly sensitive to volleyballs in the air, play-
ers near nets, and close-ups of nets qualitatively explaining some of the differences between the
predicted and real concept.

Bluejay | ViT-B MAE → ViT-B DINO

The DINO model has isolated the tail of the bluejay as an important visual feature. The regression
model under-predicts images with bluejay tails and over-predicts random images, suggesting that
this concept is not independently encoded in the feature space of the MAE.

A.3 LLVM GENERATED CONCEPT DIFFERENCE ANALYSIS

In Sec. 4.5, we provide an example that uses an LLVM for analyzing the image collages produced
by RSVC. In Fig. A4, we describe the procedure in detail. We apply this method to the concept
comparisonsin Fig. A3 and report the results below. We find that the LLVM annotations are fairly
similar to the manual annotations.

Rugby Ball | RN18 → RN50

IC1: A collage featuring various close-ups of players holding rugby balls during gameplay, empha-
sizing hands and ball contact.
IC2: A collage with mixed shots of rugby gameplay, focusing on players’ lower bodies, shorts, and
action involving the rugby ball from different perspectives.
Similarity: Both collages depict scenes from rugby games and include elements of players and
rugby balls in action.
Difference: IC1 focuses on hand interactions with the rugby ball, while IC2 emphasizes lower body
dynamics and broader gameplay elements.
Semantically different: [Yes] IC1 highlights ball handling, whereas IC2 portrays physical move-
ment and positioning.

Grey Whale | ViT-S → ViT-L

IC1: A collage featuring close-up views of whales, focusing on surface water interaction and de-
tailed textures of their bodies.
IC2: A collage showing whales from various perspectives, including body parts like tails, heads,
and fins, with more diverse settings and details.
Similarity: Both collages depict whales and highlight different parts of their bodies in aquatic envi-
ronments.
Difference: IC1 emphasizes close-up textures and water interaction, while IC2 provides broader
views of whales, showing distinct body parts and their environment.
Semantically different: [Yes] IC1 focuses on textures and surface detail, while IC2 captures a wider
perspective of whale features and behaviors.

Strawberry | RN50 → ViT-S

IC1: A collage featuring various fruits, with a focus on strawberries along with other fruits like
grapes, blueberries, and kiwi, emphasizing vibrant colors and diversity.
IC2: A collage entirely centered on strawberries, showing detailed close-ups of their textures and
seeds in different lighting and angles.
Similarity: Both collages prominently showcase strawberries and their textures.
Difference: IC1 includes a mix of other fruits alongside strawberries, while IC2 exclusively focuses
on strawberries and their intricate details.
Semantically different: [Yes] IC1 presents a broader context of mixed fruits, whereas IC2 isolates
strawberries as the sole subject.
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I am going to ask you to analyze image collages. You will receive two image collages and your 
task is to: (1) provide one sentence to describe each image collage. (2) Provide one sentence to 
describe similarities between the image collages and one sentence to describe the differences 
between the image collages. (3) Make a judgement on whether the two collages convey 
different semantic information and summarize it in a few words. The format of your output 
should be organized as follows: 

IC1: desc 
IC2: desc 

Similarity: desc 
Difference: desc 

Semantically different: (Boolean Answer) - desc

System 
Prompt

Input

Output

Figure A4: LLVM Concept Difference Analysis. We use ChatGPT-4o (Achiam et al., 2023) to
analyze concept differences. We provide a general system prompt asking the LLVM to describe the
collages, provide a description of the similarities and differences between the collages, and provide
a final judgement on whether there is a semantic difference between the collages. We provide an
example for the rugby ball class. The LLVM receives the image collage (IC) corresponding the
top-k concept images (IC1) and the over-predicted concept images (IC2), see Fig. 5 for more details
on image collages. Here, the LLVM notices that IC1 focuses on hands and ball contact, whereas
the IC2 focuses more on lower bodies. The described difference matches the manual annotation
provided in Appendix A.2.

Volleyball | RN18 → RN50

IC1: A collage depicting volleyball gameplay, focusing on players’ hands, the volleyball, and inter-
actions around the net during action-packed moments.
IC2: A collage showing volleyball gameplay as well but with a wider variety of scenes, including
players near the net, different environments, and more casual setups.
Similarity: Both collages revolve around volleyball and the central theme of gameplay near the net.
Difference: IC1 emphasizes action shots with players and the ball in dynamic moments, while IC2
includes a mix of gameplay contexts and less action-oriented scenes.
Semantically different: [Yes] IC1 focuses on the intensity and dynamics of volleyball action,
whereas IC2 portrays a broader variety of volleyball scenarios and contexts.
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Bluejay | ViT-B MAE → ViT-B DINO

IC1: A collage of close-up views of blue jay feathers, primarily showcasing the distinctive blue and
black patterns on their wings and tails.
IC2: A collage of blue jays in various settings, including full-body shots, close-ups of their heads,
and natural habitats like branches and foliage.
Similarity: Both collages feature blue jays and focus on their unique physical features and natural
environment.
Difference: IC1 highlights detailed patterns on blue jay feathers, while IC2 captures a broader
context of the bird’s appearance and behavior in its habitat.
Semantically different: [Yes] IC1 emphasizes feather patterns, whereas IC2 provides a holistic
view of blue jays in their environment.

Common Eider | Concept 2 | Mnc → 𝑀𝑝𝑠
Top-10 𝑀𝑝𝑠  Concept Patches

black and white color pattern of Common Eider

light blue ocean background

Top-10 𝑀𝑝𝑠  Concept Patches

Common Eider | Concept 3 | Minv → 𝑀𝑝𝑠

Figure A5: Specificity of Toy Concept. In Fig. 2, we showed that Mnc is not able to predict the
pink square concept from Mps. In this figure, we show that the toy concept does not impact the
similarity between other concepts learned by the networks. We visualize the top-10 patches from
Concept 2 and Concept 3 of Mps in the same class (Common Eider). These concepts correspond
to the white and black color pattern of the bird and a water background. Note that these models
have been trained from scratch on NABirds resulting in a relatively low 34% accuracy. This leads
to noisier concepts that are more challenging to interpret. Importantly, we can see that Mnc still has
a very high similarity score for these two concepts, highlighting the specificity of RSVC.

A.4 SPECIFICITY OF RSVC ON THE TOY CONCEPT EXPERIMENT

In Sec. 4.1 we showed how RSVC can be used to distinguish between a model trained to use the
pink square concept and a model trained to ignore the pink square concept. However, training with
the pink square concept could have undesirable effects on other model concepts for the Common
Eider class. In Fig. A5, we show two shared concepts that are unaffected by the pink square. This
experiment suggests that our toy concept training procedure does not impact other concepts learned
by the networks.
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Volleyball | ResNet18 → ResNet50

Neuron 465 | Imp: 0.10 Neuron 340 | Imp: 0.08 Neuron 297 | Imp: 0.05

Neuron 33 | Imp: 0.02 Neuron 203 | Imp: 0.02 Neuron 355 | Imp: 0.01

ResNet18 Neurons

Figure A6: Neuron Analysis For Volleyball Concept Difference In Fig. A3 we visualized a RN50
concept for the volleyball class that the RN18 did not contain. In this figure, we explore the top-6
neurons used by the regression model to predict the RN50 concept. We find that Neuron 465 is
sensitive to edges between a volleyball net and the background. It seems to mistake some grid-like
textures for nets as well (image [1, 0], [1, 1], and [2, 0]). In addition, it seems to be sensitive to
volleyballs high in the air. Neuron 340 seems to activate for athletes in indoor gyms and seems
partial to lower bodies. Neuron 297 is sensitive to close-ups of nets with hands or arms in the frame.
In summary, these neuron visualizations help to explain some of the images over-predicted by the
regression model.

A.5 VARYING RESNET-18 TRAINING

Next, we conduct controlled variations of model training and measure how it effects model concept
similarity in the last layer. We train a ResNet-18 model on variations of the NABirds dataset.

We start by comparing two ResNet-18 models trained on NABirds with different seeds, 4834586
(R18 s483) and 87363356 (R18 s873). We find that, despite varying the seed during training, both

22



Published as a conference paper at ICLR 2025

NAB R18 (s483) → NAB+SC R18

UnderpredictedTop-9 Concept Patches

NAB+SC R18 → NAB R18 (s483)

Overpredicted

Figure A7: Impact of Training on Stanford Cars. In each row, we show visualizations for selected
concepts from comparing R18 NAB+SC to R18 s483. In the first two rows, we visualize two R18
NAB+SC concepts that R18 s483 cannot reproduce. The first concept is a racing stripe that is
associated with the Shelby Mustang. The R18 s483 model appears to sometimes entangle this
concept with a blue color, irrespective of the car model. The second concept appears to be common
features associated with Mercedes cars. For this concept, the difference between the two models is
more abstract and challenging to interpret. We visualize NAB R18 s483 concepts in the next three
rows. First, we show a R18 s483 concept that R18 NAB+SC is unable to predict. We see that this
concept is very abstract without a clear pattern, but is generally related to sandy textures. Next,
we visualize two car-related concepts from R18 s483. We find that these concepts are sensitive to
the combination of the presence of a car and a specific color. For the orange car concept, the R18
NAB+SC makes small over-predictions with different shades of orange. For the yellow car concept,
the over-predicted group shows a different shade of yellow and a specific style of car. A discussion
of these results is available in Appendix A.5.
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models discover highly similar concepts (Fig. A8A). Then, we train a ResNet-18 model on a mod-
ified version of the NABirds dataset in which waterbirds (169 classes) have been excluded during
training (R18 NAB-WB). After training, the backbone is frozen and just the classification head is
trained on the full dataset. We compare this model to R18 s483 trained on the full dataset (34%).
We find that training without waterbirds results in a significant decrease in performance (25%) and,
surprisingly, only a slight increase in dissimilar concepts (Fig. A8B).

We then explore if introducing novel features from an out-of-domain dataset would result in more
dissimilar concepts. In this experiment, we train one model (R18 NAB+SC) on a combined dataset
of NABirds and Stanford Cars (Krause et al., 2013) achieving 37% accuracy on the combined classi-
fication task. To compare to R18 s483, we freeze the backbone and re-train the model head on both
NABirds and Stanford Cars, achieving 26% accuracy. We find training the backbone on Stanford
Cars significantly increases concept dissimilarity (Fig. A8C). Interestingly, we find that the increase
in dissimilarity is bi-directional, both models are less able to predict the concepts of their contrasted
pair. In order to better understand the bi-directional nature of this dissimilarity, we visualize a few
concepts from each model in Figure A7. These concepts were selected by (1) filtering concepts
above the 75th percentile in delta KL-divergance, (2) visualizing the 15 lowest delta Pearson con-
cepts and (3) manually selecting concepts that were easiest to interpret. We find dissimilar concepts
from the R18 NAB+SC model that seem to be semantic concepts specific to car models. In contrast,
we found no dissimilar car related concepts that met the criteria from R18 s483. Instead, we find
that concepts that meet this criteria are from NABirds classes and tend to be challenging to interpret.
We then visualize R18 s483 concepts that result in the largest kl-divergence when replaced by the
predictions from R18 NAB+SC. When visualizing these concepts we find two car related concepts
that seem to be primarily driven by color, but not car model. These results match the intuition that
R18 NAB+SC should contain more complex, car model aligned concepts that can be used to better
classify images from Stanford Cars. However, it is not a complete explanation of model behavior
and further analysis is needed to make concrete statements about concept dissimilarity.

Finally, we compare a ResNet-18 trained on ImageNet and fine-tuned on NABirds to a NABirds
model (R18 ImgNet PT). Unsurprisingly, this results in the most dissimilar concepts (Fig. A8D). In
sum, we find that larger changes during training results in more dissimilar concepts.
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Figure A8: Effect of Seed and Dataset on ResNet-18 Similarity. We compare several pairs of
ResNet-18 models while varying their training protocols. We use the same base model in all com-
parisons, a ResNet-18 model trained with the seed set to 4834586 (R18 s483). (A) We compare
the base model to a model trained with seed 87363356 (R18 s873) and find that the two models are
highly similar despite the change in seed. (B) We train a ResNet-18 on a modified dataset where we
exclude 169 classes that belong to the coarse category of waterbirds (R18 NAB-WB). When compar-
ing to the seed variation experiment, we see a slight increase in the number of dissimilar concepts.
(C) We train a ResNet-18 on a combined dataset of NABirds and Stanford Cars (R18 NAB+SC). To
compare to the base model, we freeze the base model’s backbone and re-train the linear classifier
on this combined dataset. We find that introducing Stanford Cars results in a significant increase in
dissimilar concepts. (Right) Finally, we compare to a model pre-trained on ImageNet and fine-tuned
on NABirds (R18 ImgNet PT). We find that training on ImageNet introduces many novel concepts
that are dissimilar to the features of the base model.
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Figure A9: DINO and MAE Seed Variation. We explore the effects of varying seed on finetun-
ing a DINO and MAE model on the NABirds dataset. (Left): We show layerwise and last layer
comparisons of MAE s483 vs. DINO s483. These plots are reproductions from the main text. The
black line denotes the average concept similarity. For this comparison, the average similarity in both
directions is 0.80. (Center): We compare DINO s873 vs. MAE s873. We see a similar layerwise
matrix and last layer similarity to DINO s483 vs. MAE s483. The average similarity for both mod-
els is, once again, 0.80. (Right): We compare DINO s483 vs. DINO s873 and find that there is a
better layer-to-layer mapping in the layerwise comparison matrix. In addition, the average similarity
in both directions is 0.89, higher than comparisons across the different pretraining strategies. Taken
together, these results indicate that individual concepts change due to different seeds, but the global
structure of the relationship between these models is not affected by seed.

A.6 DINO AND MAE SEED VARIATION EXPERIMENTS

In Section 4, we compared a DINO pretrained model and a MAE pretrained model that were fine-
tuned on the NABirds dataset. In those experiments, models were finetuned with the seed set
to 4834586. In this section, we explore comparisons to models finetuned with a different seed,
87363356. The models finetuned with the new seed are denoted as DINO s873 and MAE s873. We
compare two pairs of models, DINO s873 to MAE s873 and DINO s483 to DINO s873. In Fig-
ure A9, we show that changing the seed does change the concepts learned, but that the general
relationship between the different pretraining strategies is preserved. In particular, we find that com-
paring DINO models finetuned with different seeds results in a higher average similarity (∼0.89)
than models with different pretraining strategies (∼0.80), indicating that the seed has a smaller im-
pact on finetuning than the initialization.

A.7 SAME MODEL CONCEPT SIMILARITY VS. CONCEPT IMPORTANCE

In this section, we validate the feasibility of the regression task. Due to the reconstruction error
inherent in decomposition methods, it is not possible to perfectly predict the concept coefficients
from the activation matrix. However, in Fig. A10, we show that the regression models do well
when trying to do same-model concept regression and significantly better than cross-model concept
regression.

A.8 ADDITIONAL REPLACEMENT TESTS

In Figs. A11 and A12 we visualize the replacement tests for the three pairs of models not presented
in the main text. We see the same effects as before, with a decrease in similarity corresponding to
increasing changes in model behavior. Notably, although DINO and MAE models (finetuned on
NABirds) have high similarity relative to the other models, they show stronger changes in model
behavior for smaller changes in similarity. However, it is not clear whether these differences are due
to changes in dataset or changes in pretraining.
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A B

C D

Figure A10: SMCS vs CI. We visualize same-model concept similarity (SMCS) against the concept
importance. We find that reconstructing more important concepts tends to be easier for ResNets.
However, for some ViT models, there can be important learned concepts that are hard to predict.
Importantly, SMCS is significantly higher than CMCS indicating that the regression task is feasible.
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Figure A11: Replacement Test for DINO vs. MAE (NABirds). We find that for the DINO
vs. MAE comparison. As Pearson correlation decreases the l2-distance increases, KL-divergence
increases, and the match accuracy decreases. Notably, the Pearson correlation decreases a smaller
amount than for the other three pairs of models, but the change in the three metrics is on the same
order as the other comparisons. This suggests that these two models are more sensitive to changes
in a concept.
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Figure A12: Replacement Test for ViT-S vs. ViT-L and RN50 vs. ViT-S. We find that for these
model comparisons, as Pearson correlation decreases the l2-distance increases, KL-divergence in-
creases, and the match accuracy decreases.
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λ: 0.5

λ: 0.1

Figure A13: Impact of Regularization on Regression. Here we vary the λ for the l1 penalty on
the regression model. We use the first 200 classes of ImageNet for these visualizations. In the
left column, we visualize the distribution of similarity values for each value of λ. In the center,
we visualize the number of non-zero coefficients. In the right column, we visualize the similarity
vs. importance plots for λ = 0.1 and λ = 0.5. We find that, as expected, increasing the l1 penalty
reduces similarity by increasing the number of zeroed coefficients. In all experiments in the paper,
we use an l1 penalty of 0.1.

B ADDITIONAL IMPLEMENTATION DETAILS

B.1 CONCEPT EXTRACTION

For each model considered in this study, we provide information about concept extraction in Tab. A2.
First, images are resized to 224x224 and then processed into 16 evenly spaced 64x64 pixel patches.
Patches are then resized back to the image resolution of the network. We sample 100 images per
model for concept extraction. All models taken from the timm library were trained with Inception
style random cropping. Custom trained models were trained using random resized cropping with
horizontal flipping. This ensures that the resized patches are in-domain for the network. To pro-
duce an activation matrix A that can be decomposed, the outputs of the network are processed. The
ResNets (He et al., 2016) produce outputs with a batch b, channel c, height h and width w dimen-
sion. To create a matrix that can be decomposed, we use global average pooling over the h and w
dimensions. The ViTs (Dosovitskiy, 2021) produce outputs with a batch b, sequence s, and feature
dimension d. We select the class token from the sequence dimension resulting in a two-dimensional
matrix. We use NNMF for ResNets since they contain ReLU layers and can produce positive only
activations. NNMF restricts the U and W matrix to be positive. For, ViT models, we use Semi-
NMF (Ding et al., 2008) which allows for both positive and negative values in the W matrix, but
requires positive values in the U matrix. We use a non-negative least squares solver to fit coefficients
to a new set of data points:

min
U1

∥A1 −U1W1∥
2

2
,

subject to U1 ≥ 0.
(5)

B.1.1 CONCEPT INTEGRATED GRADIENTS

Integrated gradients measures the importance of each pixel by averaging the gradients of the input
image, as the input image is varied from a baseline value to its true value (Sundararajan et al.,
2017). To compute concept integrated gradients the formulation is modified. Let h1 represent the
head of M1, i.e., the final layer(s), and A1 be the output activations from the layer preceding h1. As
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k = 20

k = 10

Figure A14: Impact of Number of Concepts on Similarity. Here we vary k, the number of con-
cepts in the dictionary and explore the impact on the similarity distribution. We use the first 200
classes of ImageNet for these visualizations. In the left column, we plot the distribution of similarity
scores for 5, 10, 15, and 20 concepts. In the center column, we visualize the distribution of recon-
struction errors for different number of concepts. As expected, increasing the number of concepts
results in lower reconstruction errors. In the right column, we visualize similarity vs. importance for
10 and 20 concepts. We observe that increasing the number of concepts disproportionately increases
the number of dissimilar concepts. For all results in the paper we use 10 concepts.

described earlier, we factorize A1 ≈ U1W1. We denote row vectors of U1 as ri
1
∈ Rows(U1), such

that ri
1
∈ R

1×d. To link model predictions to learned concepts, we compute model predictions as

ẑi
1
= h1(r

i
1
W1), (6)

where ẑi
1
∈ R

1×d is a row vector of prediction probabilities. Then, to compute concept integrated
gradients, we average over the gradients as we linearly step from a baseline vector rb = 0 to ri

1

ϕ(ri
1
) = (ri

1
− rb)×

∫

1

0

∇ri
1

h1

((

αrb + (1− α)(ri
1
− rb

))

W)dα. (7)

Thus, for each class and concept we have a single value that represents the importance of that concept
to model decisions. We implement concept integrated gradients based on the implementation in the
xplique library (Fel et al., 2022a). For all experiments we integrate over 30 steps.

B.2 CONCEPT SIMILARITY

Correlation. Pearson and Spearman are computed using scikit-learn (Pedregosa et al., 2011). We
use 50 images for each class from the training set of the model. Images are resized to 224×224. We
use a patch size of 64×64 resulting in 16 patches per image. Thus, Pearson and Spearman correlation
is computed using 800 total patches per class. The patches are resized and passed through the model
to generate activations at a given layer.

Regression. We use lasso-regression (Tibshirani, 1996) with a 0.1 weight on the l1 penalty. We
visualize the effect of this parameter on similarity in Fig. A13. Regression models are trained on the
activations from at least 5 images (80 patches) and at most 200 images (3200 patches) sourced from
the original training split of the dataset. For each concept and class, we train five lasso-regression
models on different equally sized folds. The regression model weights are averaged and then the
model is evaluated on images from the validation/test split of the original dataset. The inputs and
targets are standardized to have a mean of zero and a standard deviation of one. The regression is
trained using the Celer library (Massias et al., 2018). Finally, the predicted coefficients are unnor-
malized before the Pearson and Spearman correlation are computed. To compute feature importance
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scores for regression models, we use the permutation feature importance implementation from scikit-
learn (Pedregosa et al., 2011). We use the default parameters with 5 repeats and the random state set
to 0.

Layerwise Comparisons. We list all of the layers used in the layerwise comparisons in Tab. A4.

Spearman Correlation. In all experiments, we found Spearman correlation to be very similar to
Pearson correlation, thus we have excluded these results.

Visualizing Dis-similar Concepts. We select one patch per image in order of maximum concept
coefficient. The top n patches for the real images are excluded from the pool of images used to
visualize the under-predicted and over-predicted coefficients.

B.3 COMPUTATIONAL COST

All experiments were conducted using on a machine with an AMD Ryzen 7 3700X 8-Core Processor
and a single GeForce RTX 4090 GPU. In Table A3, we detail the computational cost of each step of
our proposed method. For a comparison between a ResNet-18 and a ResNet-50 on all 1000 classes
of ImageNet, RSVC takes approximately 20 hours.

Table A1: Model performance.

Model timm Model ImageNet
Accuracy

NaBirds
Accuracy

ResNet-18 resnet18.a2 in1k 70.6% −
ResNet-50 resnet50.a2 in1k 79.8% −
ViT-S vit small patch16 224.augreg in21k ft in1k 81.3% −
ViT-L vit large patch16 224.augreg in21k ft in1k 85.8% −
DINO ViT-B vit base patch16 224.dino − 71.2%
MAE ViT-B vit base patch16 224.mae − 71.2%

Table A2: Concept extraction.

Model Layer Post-
processing

Method Number of
Concepts

Patch Size Recon.
Error (Last

Layer)

ResNet-18 GAP NNMF 10 64 176.2
ResNet-50 GAP NNMF 10 64 205.5
ViT-S Class Token Semi-NMF 10 64 926.9
ViT-L Class Token Semi-NMF 10 64 1650.8
DINO ViT-B Class Token Semi-NMF 10 64 191.0
MAE ViT-B Class Token Semi-NMF 10 64 656.5

Table A3: Computational cost for ResNet18 vs. ResNet-50 on ImageNet.

Step sec/it Total Time

Activation Extraction (RN50) 1.50 25m
Concept Extraction (RN50) 2.00 33m
Concept Comparison (CMCS) Last Layer 9.00 2h30m
Concept Comparison (MCS) All Layers 14.56 4h
Concept Int. Grad 41.56 11h 30m
Regression Evaluation 2.30 38m
Total Time - 19h36m
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Table A4: Selected layers.

Model Layers

ResNet-18 act1, layer1.0.act1, layer1.0.act2, layer1.1.act1, layer1.1.act2, layer2.0.act1,
layer2.0.act2, layer2.1.act1, layer2.1.act2, layer3.0.act1, layer3.0.act2,
layer3.1.act1, layer3.1.act2, layer4.0.act1, layer4.0.act2, layer4.1.act1,
layer4.1.act2

ResNet-50 act1, layer1.0.act1, layer1.0.act2, layer1.0.act3, layer1.1.act1, layer1.1.act2,
layer1.1.act3, layer1.2.act1, layer1.2.act2, layer1.2.act3, layer2.0.act1,
layer2.0.act2, layer2.0.act3, layer2.1.act1, layer2.1.act2, layer2.1.act3,
layer2.2.act1, layer2.2.act2, layer2.2.act3, layer2.3.act1, layer2.3.act2,
layer2.3.act3, layer3.0.act1, layer3.0.act2, layer3.0.act3, layer3.1.act1,
layer3.1.act2, layer3.1.act3, layer3.2.act1, layer3.2.act2, layer3.2.act3,
layer3.3.act1, layer3.3.act2, layer3.3.act3, layer3.4.act1, layer3.4.act2,
layer3.4.act3, layer3.5.act1, layer3.5.act2, layer3.5.act3, layer4.0.act1,
layer4.0.act2, layer4.0.act3, layer4.1.act1, layer4.1.act2, layer4.1.act3,
layer4.2.act1, layer4.2.act2, layer4.2.act3

ViT-S block0, block1, block2, block3, block4, block5, block6, block7, block8, block9,
block10, block11

ViT-L block0, block1, block2, block3, block4, block5, block6, block7, block8, block9,
block10, block11, block12, block13, block14, block15, block16, block17,
block18, block19, block20, block21, block22, block23

DINO ViT-B block0, block1, block2, block3, block4, block5, block6, block7, block8, block9,
block10, block11

MAE ViT-B block0, block1, block2, block3, block4, block5, block6, block7, block8, block9,
block10, block11
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