MATERIALS AND METHODS

ENCODERS

Different encoders can be used interchangeably for EffOCR’s character localization module (hereafter,
“localizer”) and character recognizing module (hereafter “recognizer”). We use the following;:

EffOCR-C (Base): ConvNeXt (Tiny) (Liu et al., 2022) for both the localizer and recognizer.
Both models are initialized from the officially released checkpoint with specifications:
{size: "tiny"}

EffOCR-T (Base): XCiT (Small) (Ali et al., 2021) for both the localizer and recognizer. Both
models are initialized from the officially released checkpoint with specifications:
{size: "small", depth: 12, patch_size: 8, resoultion: 224}

EffOCR-C (Small) and EffOCR-Word (Small): YOLOv5 (Small) (Jocher, 2020) for the
localizer and MobileNetV3 (Small) for the recognizer. YOLOV5 is initialized from the officially
released YOLOv5s checkpoint, and MobileNetV3 is initially from the PyTorch Image Models
(“¢imm”) (Wightman, 2019) produced checkpoint with specifications:

{size: "small", channel multiplier: 0.50}

For ablations, we also examine:

Swin (Tiny) (Liu et al., 2021) for both the localizer and recognizer. Both models are initialized
from the officially released checkpoint with specifications:
{size: "tiny", patch_size: 4, window: 7, resolution: 224}

ViTDet (Base) (Li et al., 2022) for the localizer and a vanilla vision transformer, ViT (Base), for
the recognizer. Both models are initialized from the officially released checkpoint with specifica-
tions:

{size: "base", patch_size: 16, resolution: 224}

These architectures were selected for the following reasons:

EffOCR-C (Base): ConvNeXt is a new state-of-the-art CNN backbone, in contrast to the other
three vision transformer encoders.

EffOCR-T (Base): XCiT was chosen because of its comparative advantage in modeling fine-
grained features via the ability to accommodate smaller patch sizes through a linear complexity
attention mechanism, which may be especially suitable for character images with small spatial
extents (as measured in pixels).

EffOCR-C (Small) and EffOCR-Word (Small): MobileNetV3 (Small) and YOLOv5
(Small) were collectively chosen to produce a speed optimized EffOCR, as both architectures
are popular, easily customizable, and speed-optimized by design.

The Swin transformer was selected because of its state-of-the-art performance on object detection
tasks.

The original ViT embeddings perform well for image retrieval, and have become a new baseline
for image retrieval (El-Nouby et al., 2021).

The inference speed advantages offered by a smaller transformer encoder, such as MobileViT, are much
more modest than that offered by MobileNetV3, and hence an EfOCR-T (small) model is not developed,
although it would be straightforward to do so should users desire it. In tests, a MobileViTv2 (small)
Recognizer model was approximately 6.5 times slower than a comparable MobileNetv3 Recognizer.

As the deep learning literature advances and new models are developed, EffOCR’s modular framework
and simple training recipes make it straightforward to swap in new encoders, granting the model a degree
of future-proofness.



These models are all trained on a single A6000 GPU card, with hyperparameters selected using the 15%
validation split, save for the models with XCiT (Small) or ViT (Base) encoders, which were trained on
two A6000 GPU cards.

CHARACTER LOCALIZATION

All models use an MMDetection (Chen et al., 2019) backend for localization, except for the ViTDet
ablation, which uses Detectron2 (Wu et al., 2019) and YOLOv5 (Small) (Jocher, 2020) for EfOCR-C
(Small), which uses its own custom training scripts. Only one EffOCR configuration, EfOCR-C (Small),
has a localizer that uses a one-stage object detection framework: YOLOv5 (Small) (Jocher, 2020). All
others use a two-stage object detector, specifically a Cascade R-CNN (Cai & Vasconcelos, 2019). One
stage object detection is faster, and hence makes sense for the small model, where a central objective is
fast inference speed.

The localizers built with ConvNeXt (EffOCR-C Base), XCiT (EffOCR-T Base), and Swin (ablation) are
trained on 8,000 textlines of synthetic data for 40 epochs at a constant learning rate of le — 4 and fine-
tuned on benchmark data for 100 epochs at a 2.5e — 5 constant learning rate, all with anchor generator
scales [2,8,32]. ViTDet is trained on 8,000 textlines of synthetic data for 40 epochs with a constant
learning rate of le — 4, and then fine-tuned for 100 epochs on benchmark data with a le — 5 constant
learning rate. The YOLO localizer is trained on 8,000 textlines of synthetic data for 30 epochs at a
constant learning rate of le — 2 and fine-tuned on benchmark data for 30 additional epochs, still at a
constant le — 2 learning rate.

The synthetic data used for pre-training the localizers and comparison models was created using a custom
synthetic data generator.

This generator was used to create six synthetic dataset variants, each consisting of 10,000 synthetic lines
with an 80%-10%-10% train-test-validation split. The six dataset variants are: horizontal English with
character sequences generated at random, horizontal Japanese with character sequences generated at
random, vertical Japanese with character sequences generated at random, horizontal English with text
sequences generated from Wikipedia, horizontal Japanese with text sequences generated from (Japanese)
Wikipedia, and vertical Japanese with text sequences generated from (Japanese) Wikipedia. Localizers for
detecting Greek text were pretrained on synthetic English data due to broad similarities between lines.
Text sequence based synthetic datasets were used to pre-train seq2seq models that rely on language
context, e.g., TrOCR and CRNN; character sequence based synthetic datasets were used to pre-train
non-seq2seq models, e.g., EfOCR and SVTR.

CHARACTER RECOGNITION

The EffOCR recognizer is trained using the Supervised Contrastive (“SupCon”) loss function (Khosla
et al., 2020), a generalization of the InfoNCE loss (Oord et al., 2018) that allows for multiple positive and
negative pairs for a given anchor. In particular, we work with the “outside” SupCon loss formulation
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as implemented in PyTorch Metric Learning (Musgrave et al., 2020), where 7 is a temperature parameter,
i indexes a sample in a “multiviewed” batch (in this case multiple fonts/augmentations of characters with
the same identity), P(i) is the set of indices of all positives in the multiviewed batch that are distinct
from i, A(7) is the set of all indices excluding 4, and z is an embedding of a sample in the batch (Khosla
et al., 2020).

To create training batches for the recognizer, EffOCR uses a custom m per class sampling algorithm
without replacement adapted from the PyTorch Metric Learning repository (Musgrave et al., 2020). This
metric learning batch sampling algorithm also implements batching and training with hard negatives,
where the negative samples in a batch are selected to be semantically close to one another, and thus
contrasts made between anchors and hard negatives may be especially informative for the model to
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update on. Indeed, one of the main advantages of contrastive training is that it allows the learning
process to exploit hard negative mining.

More specifically, the custom batch sampling algorithm samples m character variants for each class
(character) - drawn from both target documents and augmented digital fonts. We choose m = 4 and the
batch size is 128, meaning 4 styles/representations of each of 32 different characters appear in each batch.
The model learns to map character crops of the same identity to similar dense vectors in a semantically
rich, high-dimensional vector space, and vice versa. There is no natural definition of an epoch in the
context of batch-based sampling for contrastive learning with data augmentation in the way EffOCR
formulates this procedure. For EffOCR recognizer training, an epoch is defined as some number P passes
through all unique characters N in the character set under consideration, i.e., N = 13,738 for Japanese,
N =91 for English, and N = 186 for Polytonic Greek. Empirically, a good setting for Japanese is P = 1,
so the total number of classes in an epoch is 13,738, for English P = 10, so the total number of classes in
an epoch is 910, and for Greek P = 4, so the total number of classes in an epoch is 744. Sampling for each
class occurs without replacement, for better coverage of character variants. Because of this, the number
of passes P matters, as it determines the number of character variants used for contrastive training in
each epoch.

Every character crop that appears in the training set is embedded using a model first trained without
hard negative mining/sampling, and for each we find its 8 nearest neighbors. The EffOCR recognizer
is then trained again from scratch, with batches being sampled with an m per class sampler (without
replacement) that is further modified to randomly intersperse hard negative sets (8 nearest neighbor
characters, m = 4 variants of each) throughout batches.

EffOCR is trained on digital font renders from readily available fonts (13 for Japanese, 14 for English,
and 8 for Greek), along with a modest number of labeled crops from the target datasets.! The digital
fonts are augmented by randomly applying affine transformations (translation and scaling); background
coloring, color jittering, color inversion, and grayscaling; and Gaussian blurring. The model trains on
digital fonts and labeled crops together, since the objective is to learn general purpose embeddings that
would map target crops nearby to digital renders. All recognizer models except MobileNetV3 use an
AdamW optimizer with weight decay of 5e — 4, a SupCon loss with temperature of 0.1, a learning rate of
2e — 5, and a batch size of 128. MobileNetv3 uses the same parameters except a learning rate of 2e — 3.
The Japanese datasets are trained for 60 epochs and the English and Greek datasets for 30.

After recognizer training is completed, the recognizer is used as an encoder to create an offline index of
exemplar character embeddings to be searched at inference time for the purposes of character recognition.
Specifically, the exemplar character embedding index is created by embedding image renders for all the
unicode characters supported by the Google Noto Serif font series, i.e., Noto Serif CJK JP Regular for
models trained for Japanese OCR and Noto Serif Regular for models trained for English and Greek OCR.
The Google Noto series is chosen as an exemplar font due to both its extremely wide coverage of glyphs
and the simplicity of its style, though, by virtue of EfOCR’s training, other fonts could be used as well.
At inference time, FAISS (Johnson et al., 2019) is used to perform an inner product similarity search
that compares character embeddings in the sample being inferenced to exemplar character embeddings
in this offline index; identities are assigned to inferenced characters using the identity of that character’s
nearest neighbor in the offline exemplar index, i.e., k-NN classification with k = 1.

For case sensitive applications, EffOCR, character recognition for English text can also be lightly post-
processed to help better differentiate uppercase and lowercase letters from one another: one can force a
character to be uppercased or lowercased through simple rules based statistics about the dimensions of
bounding boxes (in the sample undergoing inference). This procedure is irrelevant for results reported in
this text, however, for which CER is measured uncased.

'Fonts for Japanese included: Dela Gothic One Regular; Hachi Maru Pop Regular; Hina Mincho Regular;
Komorebi Gothic; Kosugi Regular; New Tegomin Regular; Noto Serif CJK JP Regular; Reggae One Regular;
Shippori Mincho B1 Regular; Stick Regular; taisyokatujippoi7T5; Tanugo Regular; and Yomogi Regular. Fonts
for English included: Anton Regular; Cutive Mono Regular; EB Garamond Regular; Fredoka Regular; IM Fell
DW Pica Regular; NewYorker-jLv; Noto Serif Regular; Oldnewspapertypes-449D; Orbitron Regular; Special Elite
Regular; Ultra Regular; VT323 Regular; ZaiConsulPolishTypewriter-MVAxw; and ZaiCourierPolski1941-Yza4q.
Fonts for Polytonic Greek included EB Garamond Regular; Noto Serif Regular; SBL Greek; Gentium Book Plus
Regular; Gentium Plus Regular; Gentium Plus Italic; Orbiton Regular; Ultra Regular; and
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Greek text is also case-sensitive and CER from Greek data is also presented uncased, although upper-
and lowercase Greek characters bear less resemblance than in English. Two additional rules were also
applied when evaluating Greek text: apostrophes (’) and accents (‘) were considered equivalent, and the
stigma ligature was considered equivalent to the terminal sigma (<) character.

Checkpoints/weights for all recognizers are supported by implementations from timm (Wightman, 2019).

WORD RECOGNITION

We train word recognition as a nearest neighbor image retrieval problem. The training dataset for the
model consists of digital renders of words created using 43 fonts, silver quality data from the target dataset
created by applying the EfOCR-C (Small) model to a random sample of days, and a small number of
randomly selected hand labeled word crops. We limited the number of crops with model-generated labels
to 20 - so each word can have 0-20 silver-quality crops depending upon its frequency of occurrence in our
random sample. This limit is binding for common words, e.g., "the”.

The recognizer is trained using the Supervised Contrastive (“SupCon”) loss function (Khosla et al., 2020),
as above. To create training batches for the recognizer, we use a custom m per class sampling algorithm
without replacement, adapted from the PyTorch Metric Learning repository (Musgrave et al., 2020).
The m word variants for each class (word) are drawn from both target documents and augmented digital
fonts. We select m = 4 and the batch size is 1024, meaning 4 styles of each of 256 different words appear
in each batch. For training without hard negatives, we define an epoch as letting the model see each
word (case-sensitive) exactly m = 4 times. Sampling for each class occurs without replacement until all
variants are exhausted.

In order to converge faster with limited compute, we also implement offline-hard negative mining, batching
similar negatives and their corresponding positive anchors together - thus making the contrasts between
the positive and negative pairs within a batch especially informative. To create hard negative sets, we
render each word using a reference font (Noto-Serif Regular) and embed it to create a reference index.
We find £ = 8 nearest neighbors for each word using this index and the model trained without hard
negatives, which yields sets of 8 words that have a similar appearance when rendered with the reference
font. We use only the reference font to create these sets because using crops corresponding to all 43 fonts
for each word is computationally costly and creates more hard negative sets than we can use in training.
We also use each word crop from the target dataset (both silver quality annotations generated with model
predictions and gold quality human-annotated predictions) to create hard negative sets. Hence, the total
number of hard-negative sets equals the number of words in our dictionary (generated with the reference
font) plus the number of word crops from the newspaper data in the training set.

Each hard negative set contains 8 words, with m = 4 views per word, which means we can fit 32 randomly
sampled hard negative sets within each batch. An epoch is defined as seeing each hard negative set once.
Since the number of synthetic views of an image is much larger than the number of target newspaper
crops, whenever newspaper crops are available we force the m views of a word to contain an equal number
of synthetic and target crops.

We use a MobileNetV3 (Small) encoder pre-trained on ImageNet1lk sourced from the timm (Wightman,
2019) library, more specifically, the model mobilenetv3_small_050. We use 0.1 as the temperature for
SupCon loss and AdamW as the optimizer with Pytorch defaults for all parameters other than weight
decay (5e-4) and learning rate. We used Cosine Annealing with Warm Restarts as the learning rate
scheduler with a maximum learning rate of 2e — 3, a minimum learning rate of 0, time to first restart (7p)
as the number of batches in an epoch, and restart factor, T;,,;: of 2 using the implementation provided
in Pytorch.

While fonts and newspaper crops for each word act as an augmentation on the skeleton of the word, we
also add more image-level transformations to improve generalization. These include Affine transformation
(only slight translation and scaling allowed), Random Color Jitter, Random Autocontrast, Random
Gaussian Blurring, Random Grayscale, Random Solarize, Random Sharpness, Random Invert, Random
Equalize, Random Posterize and Randomly erasing a small number of pixels of the image. Additionally,
we pad the word to make the image square while preserving the aspect ratio of the word render. We
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do not use common augmentations like Random Cropping or Center Cropping, to avoid destroying too
much information.

The model trained without hard negatives was trained for 50 epochs and with hard negatives, it was
trained for 40 epochs. For selecting the best checkpoint, we use 1-CER (OCR Character Error Rate) as
the validation metric on the validation set. We chose the model that performed best in terms of CER
when detecting only words on the validation set. This means that if a word is outside of our dictionary,
it is forcefully matched to the nearest neighbor in the dictionary. The best model achieved a CER of
4.9% with word-only recognition.

At inference time, words are recognized by retrieving their nearest neighbor from the offline embedding
index created with the reference font, using a Facebook Artificial Intelligence Similarity Search backend
(Johnson et al., 2019). The code to train the model and generate training data, as well as the model
checkpoints, are made publicly available.

COMPARISONS

To examine sample efficiency, we train alternative architectures from scratch, on the same number of
synthetic text lines used to train EfOCR. Specifically, the comparison architectures are, as applicable,
initialized with “default” pre-trained checkpoints that have not yet been exposed to an OCR task, e.g.,
masked language model pre-trained weights for text transformers or ImageNet pre-trained weights for
CNNs and vision transformers. These comparison architectures are then trained on 8,000 synthetic
text lines per the applicable synthetic dataset variant (see: Methods - Synthetic Data) as a form of
standardized OCR-task-specific pre-training. They are then fine-tuned on the same benchmark datasets
used to assess EffOCR, but with varying train-test-validation splits: 70%-15%-15%, 50%-25%-25%, 20%-
40%-40%, 5%-47.5%-47.5%, and 0%-50%-50% (i.e., zero-shot).

The hyperparameters used for initializing and training comparison models are as follows:

e The EasyOCR implemented CRNN (Shi et al., 2016) comparison is trained from a random ini-
tialization (as is the default in EasyOCR) for 100,000 iterations on the horizontal English text se-
quence and horizontal Japanese text sequence synthetic datasets, respectively. The learning rate
is fixed at 1.0 with an Adadelta optimizer and the batch size is 128, per the EasyOCR configura-
tion defaults. The architecture uses VGG for feature extraction, a BILSTM for seq2seq/language
modeling, and a CTC loss, as also is the EasyOCR default. A new prediction head is used to
match the character set associated with EffOCR for Japanese. The resulting model is then fine-
tuned for 30,000 iterations with a batch size of 64, and all other hyperparameters the same, on
the benchmark datasets of varying splits.

e The SVTR (Du et al., 2022) comparison is first trained from a random initialization for 500
epochs with an Adam optimizer with cosine-scheduled learning rate of 0.001 and batch size of 32
on horizontal English character sequence and horizontal Japanese character sequence synthetic
datasets, respectively. All these hyperparameters are PaddleOCR defaults, which are also used
for fine-tuning on the benchmark dataset splits.

e The TrOCR (Li et al., 2021a) comparison models are initialized from the appropriate vision
transformer and language transformer pre-trained encoder and decoder checkpoints: for TrOCR,
(Base) this is the officially released BEIT (Base) checkpoint and the officially released RoBERTa
(Large) checkpoint used by the TrOCR authors for model initialization; for TrOCR (Small) these
are similarly the officially released checkpoints for DeiT (Small) and MiniLM used by the TrOCR
authors for their model initialization. These checkpoints are exported directly from the TrOCR
GitHub repository (Li et al., 2021b) using a modified script originally authored by Hugging Face
(Wolf et al., 2020), such that training is possible in native PyTorch with Huggingface model
implementations. TrOCR (Base) is trained on the horizontal English synthetic text sequence
dataset for 60 epochs at a fixed learning rate of 5e — 7 with a batch size of 16; TrOCR (Small) is
trained for 40 epochs, with all other hyperparameters the same. (The learning rate was selected
based on experiments with the validation set.) The resulting models are then fine-tuned with
the same hyperparameters on the various benchmark dataset splits.



To evaluate how existing solutions perform when fine-tuned on the EffOCR benchmark datasets, existing
pre-trained checkpoints from the EasyOCR CRNN, PaddleOCR SVTR, and TrOCR, (Base) and TrOCR
(Small) models are fine-tuned on the baseline 70%-15%-15% split of the benchmark datasets. Specifically,
the 15% validation set is used for hyperparameter tuning and the 15% test set is used to construct the
results reported in the study.

For all comparison models, training hyperparamters are the same as used during the sample efficiency
assessments with standardized synthetic pre-training, save that prediction heads for relevant models are
left as they are by default. Model initialization differs, accordingly: TrOCR (Base) and TrOCR (Small)
use microsoft/trocr-base-stagel and

microsoft/trocr-small-stagel checkpoints, respectively; EasyOCR CRNN uses the most recently re-
leased japanese_g2.pth and english g2.pth checkpoints; and PaddleOCR SVTR uses the most recently
released japan PP-OCRv3_rec_train and

en PP-0CRv3_rec_train best accuracy checkpoints.

INFERENCE SPEED COMPARISONS

For digitizing large-scale collections, fast inference on a CPU is necessary, due to the high costs of GPU
compute. All comparisons are made on four 2200 MHz CPU cores, selected to represent a plausible
and relatively affordable research compute setup. To standardize measurements of speed, each model
generated predictions on the same 15% test set. All EfOCR models are implemented with ONNX
Runtime for cross-compatibility and speed.

Inference speed is inherently dependent on implementation and it is plausible that the other open-source
architectures may be updated in the future to achieve faster inference speeds. A strong correlation between
model size and inference speed is apparent and intuitive, highlighting the utility of the EFOCR-C (Small)
model for digitizing knowledge - like the Chronicling America collection - at scale.

A random sample of 10 LoCCA scans shows an average of 1944 column x lines per scan (historical
newspapers used small fonts and contained few images), which implies the cost at current prices to
digitize the LoCCA collection at the line level using GCV would be over 23 million US dollars.

Using FS4 VM instances in Microsoft Azure to process all content in the LoCCA collection for one
randomly selected day per decade, on average it took 17.21 seconds to process 1,000 lines with EffOCR-C
(small). At current prices, this translates to a cost of $0.000908 per one thousand lines, as compared to
GCV’s current prices of $1.50 (first 5 million units) and $0.60 (above 5 million units) per thousand lines
to process Chronicling America at the line level.

BENCHMARK DATASET CREATION

Figure S-1 illustrates the documents used to create this study’s benchmarks. The OCR systems evaluated
in this study take lines (cells in tables or individual lines from columns in prose) as inputs. These
segments were created using a Mask R-CNN (He et al., 2017) model custom-trained with Layout Parser
(Shen et al., 2021), an open-source package that provides a unified, deep learning powered toolkit for
recognizing document layouts. Mask R-CNN was applied to the three Japanese publications considered
and to ten different newspapers randomly selected from Chronicling America. Segments were selected at
random for inclusion in this study’s benchmark datasets. Table S-1 provides dataset statistics.

To create the character region and text annotations, three highly skilled annotators - undergraduate and
graduate students - annotated each segment. All discrepancies were then hand checked and resolved by
the study authors. Each of the datasets has a 70%-15%-15% train-validate-test split used for baseline
evaluations. The validation set was used for model development, whereas the test set was used only once,
to create the results reported in this study.



SUPPLEMENTARY RESULTS

ABLATIONS

To elucidate which components of EffOCR are essential for its performance, several ablations are ex-
amined in Table S-2: using a simple feedforward neural network classifier head for recognition instead
of performing k-nearest neighbors classification?, training with and without hard negatives, disabling
training on synthetic data for the recognizer and localizer, and the use of alternative vision encoders. All
ablations use a fixed set of hyperparameters that are associated with a specific localizer-recognizer con-
figuration; these hyperparameters are outlined in the sections on Character Localization and Character
Recognition.

Modeling character-level classification as an image retrieval problem weakly dominates the classification
performance when using a standard multilayer perceptron with softmax procedure for classification. OCR
as retrieval is chosen as the baseline not only due to its performance, but because it also allows for adding
new characters at inference time (just embed a new exemplar character and add it to the offline index)
- common in historical and archaeological settings - and because efficient similarity search technologies
like FAISS (Johnson et al., 2019) provide fast inference.

Removing hard negatives increases the character error rate substantially, particularly for Japanese, which
has many characters with highly similar visual appearances, e.g., some multi-stroke kanji are nearly
identical to one another and differ only in the slants of some strokes. Using hard negatives in constrastive
training effectively incentivizes the model to distinguish between these very visually similar characters.

Training on only labels from the target documents leads to a large deterioration in performance for
Japanese. This is as expected, given that only a fraction of kanji characters appear in the small training
datasets. The deterioration in performance is modest for English, where there are far fewer characters.
The opposite is true for character localization. Localization for English is a harder problem than for
Japanese because character silhouettes and aspect ratios are more variable.

Two additional vision transformer encoders are explored: Swin (Tiny) (Liu et al., 2021) for both the
localizer and recognizer and ViTDet (Base) (Li et al., 2022) for the localizer and a vanilla vision trans-
former, ViT (Base), for the recognizer. The performance is similar to the base EFOCR-C and EfOCR-T
models.

OUuT-OF-DISTRIBUTION PERFORMANCE

To evaluate how EffOCR does out-of-distribution, we compare EffOCR-Word (Small) to other solutions
on a highly diverse, out-of-distribution dataset sampled randomly from 64 randomly selected (out of 638)
document record groups in the U.S. National Archives. This is a challenging dataset, with examples
shown in Figure S-2.

EffOCR performs similarly to other open-source OCR engines (CER = 12.6), having only been exposed to
highly out-of-distribution newspapers during training (Table S-3. GCV performs significantly better than
any open-source solution, but with 14 billion documents in the National Archives, the cost of digitizing
any appreciable share of them would be astronomical.

USING EFFOCR TO LIBERATE DATA AT SCALE

EffOCR can convert the publications examined in this study (Jinji Koshinjo, 1954; Teikoku Koshinjo,
1957; Jinji Koshinjo, 1939) into a knowledge graph showing relationships through shareholding patterns,
family ownership, financing, boards, occupational histories, family connections, spatial locations, and
supply chains.

2Implicitly, retrieving the nearest neighbor character from an index of offline exemplar character embeddings,
as the EffOCR recognizer does by default, is k-NN classification with k = 1.
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Figure S-3 provides an illustrative example of one component of this graph, showing supply chain networks
in 1956 that were constructed by using EffOCR to digitize the customers and suppliers of Japan’s 7,000
largest firms. Fine-grained control through EffOCR allowed detecting an atypical character separating
firms in the customer-supplier lists - required for accurate digitization - that other OCR solutions did
not systematically recognize, as well as accurate digitization of firm names. Each node in the graph is a
firm, whose size is proportional to its degree centrality in the supply chain network. Shading denotes the
big-three firms in pre-war Japan (Mitsui, Mitsubishi, and Sumitomo), as well as other firms - comprising
Japan’s largest conglomerates - targeted by the Holding Company Liquidation Commission in the late
1940s. The graph underscores that the largest pre-war firms remained the most central in Japanese supply
chain networks in the 1950s, despite various policies in the late 1940s designed to curb their influence
(of Staff, 1945; Commission), 1973; Hadley, 2015; Cohen, 1987).



SUPPLEMENTARY TABLES

Horiz. Jap. Tables Vert. Japanese Tables Vert. Jap. Prose Chronicling America

Train Lines 1309 898 459 291
Val Lines 280 192 98 62
Test Lines 281 193 100 64
Total 1870 1283 657 417
Train Chars 3089 3296 5832 7438
Val Chars 673 677 1063 1708
Test Chars 682 701 1111 1727
Total 4444 4674 8006 10873

Table S-1: This table reports the number of annotated lines and characters in the training, validation,
and test sets of this study’s four benchmarks.

Feed Forward Hard Neg. No Synthetic Data Encoder
EffOCR-C (Base) Neural Net off Recognizer  Localizer Swin (Tiny) ViT (Base)
Horizontal Japanese 0.006 0.006 0.041 0.594 0.009 0.009 0.010
Vertical Japanese (tables) 0.007 0.010 0.087 0.700 0.016 0.016 0.010
Vertical Japanese (prose) 0.030 0.038 0.076 0.788 0.032 0.036 0.027
Chronicling America 0.023 0.037 0.045 0.027 0.068 0.025 0.037

Table S-2: This table provides the character error rate. Feed Forward Neural Net models the recognizer
as a classification problem with a feed forward neural network, Hard Neg. Off does not include hard
negatives in recognizer training, No Synthetic Data turns off synthetic data training in the recognizer
and localizer, respectively, and Swin (Tiny) and ViT (Base) are alternative vision encoders.

OCR Model Character Error Rate
EffOCR-Word (Small) 0.126
Tesseract OCR (Best) 0.118
EasyOCR CRNN 0.129
PaddleOCR SVTR 0.160
Google Cloud Vision OCR 0.018
TrOCR (Base) 0.103
TrOCR (Small) 0.537

Table S-3: Zero Shot Performance on National Archives Dataset. This table reports off-the-shelf
performance of different OCR, architectures on a diverse dataset of US National Archives documents.



SUPPLEMENTARY FIGURES

Horizontal Japanese English Newspapers Vertical Japanese Prose
ol b e e Al

Ceows ATONTGVY S

=k

EENE

¥
-4
|

Government's Posifon in the
 ChinaJapan Question.

| GROVER'S MESSAGE 0 EXPLAIN e g

W o=
g
ﬁ-.

€5

! —
m.m'ﬂlmyl’m
That Wo Have Tried to Ald In Matne
talnlog the Peuce of the World—The

]

mg'ﬂ'g'ﬂ'
T w
&
I
i

F
5
H
£
:
:
=3
:

o Congress would throw light
e pmpibeprrhonagr
 fore any rexolution of Inquiry, As
the Secretary of State, unlike the other
::‘N:‘ officers, ::lul no annual re-
Congress, the President’s message
ordinurily deals with the affairs in which
“this government has any part, and as
the recent negotiations with China and
Japan are the most important questions
the department has had in some time, it
T
non|
present there um ini t‘lan‘

1ot u! officially that ll:lmlmoul

b
POl Yt e

=
wa

ﬁ
B8
7
o
=

o
*® By
it
%

HAEML ERE
B A e T B A RS M E

B S T B A R R R

B4 1ESAC AR i By |

N
8|

-
ir
I
g
i1
z

=

U (@)= FREORABEBACH BB
Tl o AR A R K OR R 3 DR SRR R S

CORS! 4 BIER) S0 | @D @B

9

%:ﬂ’mngE‘
ot f}

QIM Ngﬁf

Haaaas
A v A R

8 5
it
£
£
£z
;_'

3
:
HF EEm

=
3

PO M M
‘ B
¢
FEEE
il
e
]
&I

g
§
i
£
i
{

=
3

S8
GF DEED - SR

HE

R
e

HE=SOREN (B

=4
¢
EOR) BE

=
=3
| BN

pEE =3
§or 20
o
= s
(B
| it |
| FIERD>AE ISR
535

BTG TN =R

e e T
¥
EREEN I3
ZHRBZEE

S~ Y SEGUE
SERIFER R

2 SRSt Bm
Bt [ HE_SE00 TS

B ® 3=
ERB 3|

EE¥Ed 3o
=1+ Rl BB
SO T IS z

T HIE SHAEES

= )
B R = EME
RUELHE (1230w
SRS |
EHEEHEE BERN
)
Yo

| SHEETEES L

WSS R EEEES
B

- @B

“a
BlD FEE+LN

HN ISSHIERE
- B

‘ Polytonic Greek _ ‘
gy Eoyov dpd ye of 8o obror moNizal éxl Tob Snocion mvel
azog 3 ThY Evépyeiay Tob K. Xpnotidou Aobovépeba pévoy &
7 Depouslo xa 8 Tadtng tows mpofiklé Tu xadby, ddhe 7 &
fi¢ oixlug Tol K. Kadhyd oiﬁ‘:"é\if(‘o; ofe’ &Mog e g€ op.&
v febavln, xai @y f peroropposive Tob K. Kaddayd Stv pa
£ANNov EvreTadpévoy pe elye, v Epunvedo Emishnmg dro TH

Figure S-1: Dataset Description. Representative samples of the publications examined in this study.
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example of the statements that have
emanated from the Bureau of

General Laws. Although the Commissioner of Banks

General Laws. Although the Commissioner of
Banks

TO WIPE OUT THE SWEAT SHOP,

DUTIES DEKEGATEBYHO SUCH OFFICERS BY LAW.

DUTIES DELEGATED TO SUCH OFFICERS BY LAW.

DUTIES OF PATROILS«

DUTIES OF PATROLS.

R, W. DODDS. Lt Col. IGD

Chart 1, Page 16 shows "Monthly Revenue Deposited in U. S,

Chart 1, Page 16 shows “Monthly Revenue
Deposited in U,S,

LOS ANGELES /2

Figure S-2: Diversity in the National Archives Dataset. This figure shows examples sampled from
the National Archives Zero-Shot evaluation dataset, along with EffOCR predicted transcriptions.
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Company
Non-HCLC-Targeted
@ Mitsubishi
® Mistui
® Sumitomo
Other HCLC-Targeted

Figure S-3: Supply Chain Networks (Japan, 1956). Each node in the graph is a firm, whose size
is proportional to its degree centrality in the supply chain network. Shading denotes three of the largest
firms in pre-war Japan - Mitsui, Mitsubishi, and Sumitomo - as well as other firms - comprising Japan’s
largest conglomerates - targeted by the Holding Company Liquidation Commission (HCLC) in the late
1940s.
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