
Supplementary Material for383

Learning Reusable Manipulation Strategies384

385

Table of Contents386
387

A Method Detail 11388

A.1 Planning Algorithm . 11389

A.2 Briefly Dynamic Manipulation . 11390

A.3 Basis Operations . 12391

A.4 Samplers for Generic Operations . 12392

B Experiment Detail 14393

B.1 Mechanism Learning Setup . 14394

B.2 Sampler Learning . 14395
396
397
398

A Method Detail399

A.1 Planning Algorithm400

Algorithm 2 shows the bi-level search algorithm we use. In the discrete search level, we enumerate401

both basis operations as well as mechanism operations. During the continuous parameter search402

phase, for basis operations instantiated from mechanisms, we use the mechanism-specific sampler403

rather than the generic sampler for continuous parameters.404

Algorithm 2 Bilevel Search Algorithm

1: procedure BILEVELSEARCH(s0, g, operator schemas)
2: plan gen← SymbolicSearch(s0, g, operator schemas) ▷ Explore discrete plans
3: for all plan ∈ plan gen do ▷ For all candidate sequences of basis operations
4: CONTINUOUSSEARCH(s0, g, plan)
5: procedure CONTINUOUSSEARCH(s0, g, plan)
6: grounded plan← ∅; s← s0
7: for all op ∈ plan do
8: for all arg ∈ op.args do
9: arg← InvokeSampler(op.sampler) ▷ Generate continuous parameters

10: if CheckPrecondition(op, s) then
11: s← T (s, op) ▷ Simulate the operator with sampled parameters.
12: grounded plan← grounded plan ∪ {op}
13: else break
14: if IsGoalAchieved(grounded plan, g) then
15: return grounded plan ▷ Return the first plan that achieves the goal
16: return empty

A.2 Briefly Dynamic Manipulation405

The system can handle robot-object and object-object contact without assuming quasi-static motion.406

For example, when placing objects on surfaces, we consider subsequent pose changes: objects placed407

on inclined surfaces may slide down, and heavy objects placed on levers can alter the pose of the408

lever. Formally, we assume a briefly-dynamic manipulation setting, where the robot controller is409

11

Case 1: non-rigid attachments
between objects while moving.

Case 2: object pose change after
placement due to physics.

Case 3: support object pose change
after new objects being placed.

Before After Before After

Figure 7: Illustration of three briefly-dynamic manipulation scenarios in the paper.

(:action move-with-contact
:parameters (?tool - item ?target - item ?support - item

?param - contact-move-param ?qt - trajectory)
:precondition (and

(holding ?tool)
(support ?target ?support)
(valid-contact-move-param ... ?param) ;; points, normal
(valid-contact-move-trajectory ... ?param ?qt)) ;; robot trajectory

:effect (and
(assign (robot-config) ...) ;; update robot position
(assign (pose ?tool) ...) ;; update tool position
(assign (pose ?target) ...) ;; update target position

Hand

Ladle

FloorSpoon

Grasp: 𝒈

Contact: (𝒑, 𝒏)

Support: (𝒑, 𝒏)

Figure 8: The modeling of the robot basis operation move-with-contact using a STRIPS-like syntax.

position control-based, and manipulated objects may experience acceleration and velocity until they410

reach a stable configuration. Figure 7 illustrates a few examples of briefly-dynamic manipulation411

tasks handled by our sampler and planner.412

A.3 Basis Operations413

In our manipulation context, each schema represents either a robot action that does not change the414

contact mode graph (e.g., moving the arm without object collisions) or a primitive action that modifies415

the contact mode (e.g., grasping an object). Table 1 shows the complete list of basis operators used in416

this paper.417

The precondition and the effect of an action schema describe the contact relationships between objects418

before and after the execution. Fig. 8 showcases a concrete example. The action schema involves419

three objects: the object being held ?tool, the target object that is in contact with the tool object420

?target, and the object that is currently supporting the target object ?support. Additionally, there are421

two continuous parameters: ?param specifies the contact between ?target and ?tool, including the422

contact surface and contact normal; ?qt specifies the robot arm trajectory as a sequence of joint-space423

waypoints. This action updates the robot joint angles, and the poses of ?tool and ?target. Given the424

discrete and continuous parameters, we use a joint-space position controller to execute the actions425

and use the execution results to update the state variables.426

We will present the implementation details for the samplers associated with each operator in the427

next section (Appendix A.4). At a high level, these samplers are designed to be very generic: for428

grasping, it randomly samples two parallel surfaces on objects; for object-object contact, it randomly429

samples two surfaces on the object and then transforms the object held by the robot so that two430

surface normals point to each other.431

A.4 Samplers for Generic Operations432

Recall that there are three types of continuous variables to be sampled for the basis operators described433

in Table 1: grasping poses relative to an object (represented as SE(3) poses of the end-effector relative434

to the object), placement poses (represented as SE(3) poses in the support object frame), contacts435

12

between two objects (represented as the SE(3) pose of object 1 in the frame of object 2), and robot436

arm trajectories (represented as a sequence of arm trajectories). Here, we supplement the list of437

samplers we use to generate these continuous parameters. They are designed to be generic, relying438

solely on geometry and not specific object semantics (e.g., soup ladle grasping).439

Grasp (G). The grasp sampler, G(O, To), accepts the object’s shape and current pose, O and To440

respectively, and identifies two “parallel” surfaces on the object mesh, represented as (p1, n1) and441

(p2, n2), where p1 and p2 are two points and n1 and n2 are surface normals. The definition of442

being parallel is that: (p1 − p2) · n1 = 1 and n1 · n2 = −1. It then computes a corresponding443

robot end-effector pose Tee such that Tee centered at the midpoint between p1 and p2, and Tee is444

perpendicular to n1. It then checks the distance between two surfaces so that the parallel gripper can445

hold the object at Tee. Finally, it checks the reachability of Tee using an inverse-kinematics solver.446

Placement (P). The placement position sampler, P (O1,O2, To2), considers the shapes of both the447

holding object, O1, and the target support object, O2, and the pose of O2. It randomly samples two448

surfaces, represented as (p1, n1) and (p2, n2), one on each object such that n2 · (0, 0, 1)T > 0.9 (i.e.,449

n2 is close to the +z direction). Next, it solves for a transform T on O1 such that Tp1 = To2p2 and450

Tn1 = −To2n2 (essentially place p1 on O1 at p2 and pointing towards n2).451

Object Contact (C). For both robot-object and object-object contact, the object contact sampler,452

C(O1,O2, To2,Os, Ts) takes five arguments, including the current holding object O1 (or the robot453

gripper itself when not holding anything), the object to contact O2 and its current pose To2, and the454

object that supports O2: Os and its pose Ts. It first randomly samples two surfaces, represented as455

(p1, n1) and (p2, n2) on O1 andO2 respectively. Since we do not consider pushingO2 “towards” the456

supporting object Os, we additionally require that n2 is perpendicular to ns, which is the direction of457

the support force from Os to O2. Next, it solves for a transform T on O1 such that Tp1 = To2p2 and458

Tn1 = −To2n2 (essentially place p1 on O1 at p2 and pointing towards n2 to excert force).459

Trajectory (T). For grasping and placement trajectories, the trajectory sampler, T (Tinit, Ttarget),460

considers the initial and target end-effector pose of the robot gripper. It first uses an inverse kinematic461

solver to solve for two robot configurations at the designated end-effector pose qinit and qtarget. Next,462

we compute a collision-free trajectory (except for collisions with the object being held and the object463

to contact) using a Bidirectional Rapidly-exploring Random Tree (BiRRT) algorithm.464

For move-with-contact trajectories, the trajectory sampler, T (Tinit, p1, n1, p2, n2), accepts the initial465

configuration of the robot, ginit, and the contact surfaces on the two objects sampled using the object466

contact sampler C: (p1, n1) and (p2, n2). It proceeds to randomly sample a “push” distance, d,467

along the contact normal direction, n1, from a uniform distribution in the range [0.05, 0.25] meters.468

Subsequently, the sampler generates the arm trajectory by invoking the BiRRT algorithm to follow a469

set of waypoints corresponding to a linear Cartesian-space motion along n1 by distance d.470

13

B Experiment Detail471

B.1 Mechanism Learning Setup472

Our evaluation encompasses six distinct mechanisms, grouped into two categories: the first four tasks473

assess “tool-use.”474

(Edge) pushing objects to the edge of a table for pickup. There are four object models used in this475

mechanism: plate, calculator, caliper, and document.476

(Hook) using tools to reach for distant objects. There are five objects that can be used as the “hook:”477

wooden L-shape stick, soup ladle, hammer, spoon, and caliper.478

(Lever) flipping objects using heavy objects as levers. There are four “heavy” objects that can be used479

to flip the plate: box, spoon, dipper, and walnut.480

(Poking) using tools to poke objects out of a tunnel. There are three object models that can be used as481

the “poking” tool: wooden stick, spatula, and spoon.482

The remaining two tasks fall under the “reasoning about stability” category.483

(Center-of-Mass) achieving stable object placement on another object. There are three object models484

to be placed on the small block: plate, calculator, and document.485

(Slope-and-Blocker) using objects as blockers to prevent objects from falling off inclined surfaces.486

There are three object models that can be used as the blocker: wooden stick, wooden L-shape stick,487

and spoon.488

For each environment, we first manually defined a canonical pose for each object such that the489

mechanism is feasible. Next, for each training and testing instance, we randomly apply small490

translations (a uniform distribution within ± 5 centimeters) and small rotations (uniform within ± 15491

degrees) to the canonical pose of each movable object.492

B.2 Sampler Learning493

Taking a closer look at the importance of sampler learning, Fig. 9 illustrates a breakdown of the494

number of samples required for the “hook use” mechanism using our planning algorithm, with the495

generic sampler and with the learned sampler. Fig. 3b shows the inferred macro definition for this496

mechanism, and here we count the number of samples produced by each individual sampler. In this497

case, most of the samplers are produced to generate candidate grasping poses of the tool and possible498

contacts between the tool and the target (i.e., how to reach the tool).499

14

Grasp Trajectory

of Tool

Tool Moving
Trajectory

Tool-Target
Contact

Grasp of Tool

 Placement
Trajectory

Placement

of Tool

Grasp of Target

Grasp Trajectory
of Target

Generic Smapler
Learned Sampler

0 20 40 60 80 100 120
of Generated Samples

Figure 9: Breakdown of samples produced by different samplers for the hook-using task.

15

	Introduction
	Planning with Contacts and Mechanisms
	Basic Domain Representation
	Mechanisms
	Planning with Basis Operators and Mechanisms

	Learning New Mechanisms
	Extraction of Preconditions and Operation Sequence
	Sampler Learning
	Implementation

	Experiments
	Learning Mechanisms from Single Demonstrations
	Planning with Learned Mechanisms

	Related Work
	Limitations and Conclusions
	Bibliography
	
	Method Detail
	Planning Algorithm
	Briefly Dynamic Manipulation
	Basis Operations
	Samplers for Generic Operations

	Experiment Detail
	Mechanism Learning Setup
	Sampler Learning

