
APPENDIX
A Other related works
Here we will briefly review the history and recent studies that are related to our work. For the
historical introductions, we mainly refer to den Boer [2015] as a survey. For bandit approaches, we
will review some works that apply bandit algorithms to settle pricing problems. For the structural
models, we will introduce different modules based on the review in Chan et al. [2009]. Based on the
existing works, we might have a better view of our problem setting and methodology.

A.1 History of Pricing
It was the work of Cournot [1897] in 1897 that firstly applied mathematics to analyze the relationship
between prices and demands. In that work, the price was denoted as p and the demand was defined as a
demand function F (p). Therefore, the revenue could be written as pF (p). This was a straightforward
interpretation of the general pricing problem, and the key to solving it was estimations of F (p)
regarding different products. Later in 1938, the work Schultz et al. [1938] proposed price-demand
measurements on exclusive kinds of products. It is worth mentioning that these problems are “static
pricing” ones, because F is totally determined by price p and we only need to insist on the optimal
one to maximize our profits.

However, the static settings were qualified by the following two observations: on the one hand, a
demand function may not only depends on the static value of p, but also be affected by the trend
of p’s changing [Evans, 1924, Mazumdar et al., 2005]; on the other hand, even if F (p) is static, p
itself might change over time according to other factors such as inventory level [Kincaid and Darling,
1963]. As a result, it is necessary to consider dynamics in both demand and price, which leads to a
“dynamic pricing” problem setting.

A.2 Dynamic Pricing as Bandits
As is said in Section 2, the pricing problem can be viewed as a stochastic contextual bandits problem
[see, e.g., Langford and Zhang, 2007, Agarwal et al., 2014]. Even though we may not know the form
of the demand function, we can definitely see feedback of demands, i.e. how many products are
sold out, which enables us to learn a better decision-making policy. Therefore, it can be studied in
a bandit module. If the demand function is totally agnostic, i.e. the evaluations (the highest prices
that customers would accept) come at random or even at adversary over time, then it can be modeled
as a Multi-arm bandit (MAB) problem [Whittle, 1980] exactly. In our paper, instead, we focus on
selling different products with a great variety of features. This can be characterized as a Contextual
bandit (CB) problem [Auer et al., 2002, Langford and Zhang, 2007]. The work Cohen et al. [2020],
which applies the “EXP-4” algorithm from Auer et al. [2002], also mentions that “the arms represent
prices and the payoffs from the different arms are correlated since the measures of demand evaluated
at different price points are correlated random variables”. A variety of existing works, including
Kleinberg and Leighton [2003], Araman and Caldentey [2009], Chen and Farias [2013], Keskin and
Zeevi [2014], Besbes and Zeevi [2015], has been approaching the demand function from a perspective
of from either parameterized or non-parameterized bandits.

However, our problem setting is different from a contextual bandits setting in at least two perspectives:
feedback and regret. The pricing problem has a specially structured feedback between full information
and bandits setting. Specifically, rt > 0 implies that all policies producing v < vt will end up
receiving r′t = v, and rt = 0 implies that all policies producing v > vt will end up receiving r′t = 0.
However, the missing patterns are confounded with the rewards. Therefore it is non-trivial to leverage
this structure to improve the importance sampling approach underlying the algorithm of Agarwal
et al. [2014]. We instead consider the natural analog to the linear contextual bandits setting [Chu
et al., 2011]9 and demonstrate that in this case an exponential improvement in the regret is possible
using the additional information from the censored feedback. As for regret, while in contextual
bandits it refers to a comparison with the optimal policy, it is here referring to a comparison with
the optimal action. In other words, though our approaches (both in EMLP and in ONSP) are finding
the true parameter θ∗, the regret is defined as the “revenue gap” between the optimal price and our
proposed prices. These are actually equivalent in our fully-parametric setting (where we assume a

9But do notice that our expected reward above is not linear, even if the valuation function is.
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linear-valuation-known-noise model), but will differ a lot in partially parametric and totally agnostic
settings.

A.3 Structural Model
While a totally agnostic model guarantees the most generality, a structural model would help us better
understand the mechanism behind the observation of prices and demands. The key to a structural
pricing model is the behavior of agents in the market, including customers and/or firms. In other
words, the behavior of each side can be described as a decision model. From the perspective of
demand (customers), the work Kadiyali et al. [1996] adopts a linear model on laundry detergents
market, Iyengar et al. [2007] and Lambrecht et al. [2007] study three-part-tariff pricing problems on
wireless and internet services with mixed logit models. Besanko et al. assumed an aggregate logit
model on customers in works Besanko et al. [1998] and Besanko et al. [2003] in order to study the
competitive behavior of manufacturers in ketchup market. Meanwhile, the supply side is usually
assumed to be more strategic, such as Bertrand-Nash behaviors [Kadiyali et al., 1996, Besanko et al.,
1998, Draganska and Jain, 2006]. For more details, please see Chan et al. [2009].

B Proofs
B.1 Proof of Lemma 2
Proof. Since v∗ = argmax g(v, u), we have:

∂g(v, u)

∂v
|v=v∗ = 0

⇔1− F (v∗ − u)− v∗ · f(v∗ − u) = 0

⇔1− F (v∗ − u)

f(v∗ − u)
− (v∗ − u) = u

Define φ(ω) = 1−F (ω)
f(ω) − ω, and we take derivatives:

φ′(ω) =
−f2(ω)− (1− F (ω))f ′(w)

f2(w)
− 1 =

d2 log(1− F (ω))

dω2
· (1− F (ω))2

(f(ω))2
− 1 < −1,

where the last equality comes from the strict log-concavity of (1 − F (ω)). Therefore, φ(ω) is
decreasing and φ(+∞) = −∞. Also, notice φ(−∞) = +∞, we know that for any u ∈ R, there
exists an ω such that φ(ω) = u. For u ≥ 0, we know that g(v, u) ≥ 0 for v ≥ 0 and g(v, u) < 0 for
v < 0. Therefore, v∗ ≥ 0 if u ≥ 0.

B.2 Proofs in Section 5.1
B.2.1 Proof of Lemma 5
Proof. We again define φ(ω) = 1−F (ω)

f(ω) − ω as in Appendix B.1. According to Equation 5, we have:

∂g(v, u)

∂v
|v=J(u) = 0

⇒1− F (J(u)− u)− J(u) · f(J(u)− u) = 0

⇒φ(J(u)− u) = u

⇒J(u) = u+ φ−1(u)

⇒J ′(u) = 1 +
1

φ′(φ−1(u))
.

(19)

The last line of Equation 19 is due to the Implicit Function Derivatives Principle. From the result
in Appendix B.1, we know that φ′(ω) < −1,∀ω ∈ R. Therefore, we have J ′(u) ∈ (0, 1), u ∈ R,
and hence J(0) ≤ J(u) < u + J(0) for u ≥ 0 and u + J(0) ≤ J(u) ≤ J(0) for u ≤ 0. Since
u ∈ [−B,B], we may assume that v ∈ [0, B + J(0)] without losing generality. In the following part,
we will frequently use this range.
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Denote u := x⊤
t θ, u

∗ = x⊤
t θ

∗. According to Equation 7, we know that:

Regt(θ) = g(J(u∗), u∗)− g(J(u), u∗)

= −∂g(v, u∗)

∂v
|v=J(u∗)(J(u

∗ − J(u))) +
1

2

(
−∂2g(v, u∗)

∂v2
|v=ṽ

)
(J(u∗)− J(u))2

≤ 0 +
1

2
max

ṽ∈[0,B+J(0)]

(
−∂2g(v, u∗)

∂v2
|v=ṽ

)
· (J(u∗)− J(u))2

=
1

2
max

ṽ∈[0,B+J(0)]
(2f(ṽ − u∗) + ṽ · f ′(ṽ − u∗)) · (J(u∗)− J(u))2

≤ 1

2
(2Bf + (B + J(0)) ·Bf ′)(J(u∗)− J(u))2

≤ 1

2
(2Bf + (B + J(0)) ·Bf ′)(u∗ − u)2

=
1

2
(2Bf + (B + J(0)) ·Bf ′)(θ∗ − θ)⊤xtx

⊤
t (θ

∗ − θ).

Here the first line is from the definition of g and Reg(θ), the second line is due to Taylor’s Expansion,
the third line is from the fact that J(u∗) maximizes g(v, u∗) with respect to v, the fourth line
is by calculus, the fifth line is from the assumption that 0 < f(ω) ≤ Bf , |f ′(ω)| ≤ Bf ′ and
v ∈ [0, B + J(0)], the sixth line is because of J ′(u) ∈ (0, 1),∀u ∈ R, and the seventh line is from
the definition of u and u∗.

B.2.2 Proof of Lemma 7
Proof. We take derivatives of lt(θ), and we get:

lt(θ) =1t

(
− log(1− F (vt − x⊤

t θ))
)
+ (1− 1t)

(
− log(F (vt − x⊤

t θ))
)

∇lt(θ) =1t

(
− f(vt − x⊤

t θ)

1− F (vt − x⊤
t θ)

)
· xt + (1− 1t)

(
f(vt − x⊤

t θ)

F (vt − x⊤
t θ)

)
· xt

∇2lt(θ) =1t ·
f(vt − x⊤

t θ)
2 + f ′(vt − x⊤

t θ) · (1− F (vt − x⊤
t θ))

(1− F (vt − x⊤
t θ))

2
· xtx

⊤
t

+ (1− 1t) ·
f(vt − x⊤

t θ)
2 − f ′(vt − x⊤

t θ)F (vt − x⊤
t θ)

F (vt − x⊤
t θ)

2
· xtx

⊤
t

=1t ·
−d2 log(1− F (ω))

dω2
|ω=vt−x⊤

t θ · xtx
⊤
t + (1− 1t)

−d2 log(F (ω))

dω2
|ω=vt−x⊤

t θ · xtx
⊤
t

⪰ inf
ω∈[−B,B+J(0)]

min

{
d2 log(1− F (ω))

dω2
,

d2 log(F (ω))

dω2

}
=Cdownxtx

⊤
t ,

(20)
which directly proves the first inequality. For the second inequality, just notice that

∇lt(θ)∇lt(θ)
⊤ =1t

(
f(vt − x⊤

t θ)

1− F (vt − x⊤
t θ)

)2

xtx
⊤
t + (1− 1t)

(
f(vt − x⊤

t θ)

F (vt − x⊤
t θ)

)2

xtx
⊤
t

⪯ sup
ω∈[−B,B+J(0)]

max{
(
f(ω)

F (ω)

)2

,

(
f(ω)

1− F (ω)

)2

}xtx
⊤
t

=Cexpxtx
⊤
t .

(21)

The only thing to point out is that f(ω)
F (ω) and f(ω)

1−F (ω) are all continuous for ω ∈ [−B,B + J(0)], as
F (ω) is strictly increasing and thus 0 < F (ω) < 1, ω ∈ R.

B.2.3 Proof of Lemma 9
Proof. In the following part, we consider a situation that an epoch of n ≥ 2 rounds of pricing is
conducted, generating lj(θ) as negative likelihood functions, j = 1, 2, . . . , n. Define a “leave-one-
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out”negative log-likelihood function

L̃i(θ) =
1

n

n∑
j=1,j ̸=i

lj(θ),

and let
θ̃i := argmin

θ
L̃i(θ).

Based on this definition, we know that θ̃i is independent to li(θ) given historical data, and that θ̃i are
identically distributed for all i = 1, 2, 3, . . . , n.

In the following part, we will firstly propose and proof the following inequality:

1

n

n∑
i=1

(li(θ̃i)− li(θ̂)) ≤
Cexp

Cdown

d

n
= O(

d

n
), (22)

where θ̂ is the short-hand notation of θ̂k as we do not specify the epoch k in this part. We now cite a
lemma from Koren and Levy [2015]:

Lemma 13. Let g1, g2 be 2 convex function defined over a closed and convex domain K ⊆ Rd, and
let x1 = argminx∈K g1(x) and x2 = argminx∈K g2(x). Assume g2 is locally δ-strongly-convex at
x1 with respect to a norm || · ||. Then, for h = g2 − g1 we have

||x2 − x1|| ≤
2

δ
||∇h(x1)||∗.

Here || · ||∗ denotes a dual norm.

The following is a proof of this lemma.

Proof. (of Lemma 13) According to convexity of g2, we have:

g2(x1) ≥ g2(x2) +∇g2(x2)
⊤(x1 − x2). (23)

According to strong convexity of g2 at x1, we have:

g2(x2) ≥ g2(x1) +∇g2(x1)
⊤(x2 − x1) +

δ

2
||x2 − x1||2. (24)

Add Equation (23) and (24), and we have:

g2(x1) + g2(x2) ≥ g2(x2) + g2(x1) + (∇g2(x1)−∇g2(x2))
⊤(x2 − x1) +

δ

2
||x2 − x1||2

⇔ (∇g2(x1)−∇g2(x2))
⊤(x1 − x2) ≥

δ

2
||x1 − x2||2

⇔ (∇g1(x1) +∇h(x1)−∇g2(x2))
⊤(x1 − x2) ≥

δ

2
||x1 − x2||2

⇔ ∇h(x1)
⊤(x1 − x2) ≥

δ

2
||x1 − x2||2

⇒ ||∇h(x1)||∗||x1 − x2|| ≥
δ

2
||x1 − x2||2

⇒ ||∇h(x1)||∗ ≥ δ

2
||x1 − x2||.

(25)
The first step is trivial. The second step is a sequence of g2 = g1 + h. The third step is derived by the
following 2 first-order optimality conditions: ∇g1(x1)

⊤(x1−x2) ≤ 0, and ∇g2(x2)
⊤(x2−x1) ≤ 0.

The fourth step is derived from Holder’s Inequality:

||∇h(x1)||∗||x1 − x2|| ≥ ∇h(x1)
⊤(x1 − x2).

Therefore, the lemma holds.
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In the following part, we will set up a strongly convex function of g2. Denote H =
∑n

t=1 xtx
⊤
t .

From Lemma 7, we know that

∇2L̂(θ) ⪰ Cdown
1

n
H.

Here L̂(θ) is the short-hand notation of L̂k(θ) as we do not specify k in this part. Since we do not
know if H is invertible, i.e. if a norm can be induced by H , we cannot let g2(θ) = L̂(θ). Instead, we
change the variable as follows:

We first apply singular value decomposition to H , i.e. H = UΣU⊤, where U ∈ Rd×r, U⊤U =
Ir, Σ = diag{λ1, λ2, . . . , λr} ≻ 0. After that, we introduce a new variable η := U⊤θ. Therefore,
we have θ = Uη + V ϵ, where V ∈ Rd×(d−r), V ⊤V = Id−r, V

⊤U = 0 is the standard orthogonal
bases of the null space of U , and ϵ ∈ R(d−r). Similarly, we define η̃i = U⊤θ̃i and η̂ = U⊤θ̂.
According to these, we define the following functions:

fi(η) := li(θ) = li(Uη + V ϵ)

F̃i(η) := L̃i(θ) = L̃i(Uη + V ϵ)

F̂ (η) := L̂(θ) = L̂(Uη + V ϵ).

(26)

Now we prove that F̂ (η) is locally-strongly-convex. Similar to the proof of Lemma 7, we have:

∇2F̂ (η) =
1

n

n∑
i=1

∇2fi(η)

=
1

n

n∑
i=1

∂2li
∂(x⊤

i θ)
2
(
∂x⊤

i θ

∂η
)(
∂x⊤

i θ

∂η
)⊤

=
1

n

n∑
i=1

∂2li
∂(x⊤

i θ)
2
(
∂x⊤

i (Uη + V ϵ)

∂η
)(
∂x⊤

i (Uη + V ϵ)

∂η
)⊤

=
1

n

n∑
i=1

∂2li
∂(x⊤

i θ)
2
(U⊤xi)(U

⊤xi)
⊤

⪰ 1

n

n∑
i=1

CdownU
⊤xix

⊤
i U

=
1

n
CdownU

⊤(

n∑
i=1

xix
⊤
i )U

⊤

=
1

n
CdownU

⊤HU

=
1

n
CdownU

⊤UΣU⊤U

=
1

n
CdownΣ

≻0

(27)

That is to say, F̂ (η) is locally Cdown

n -strongly convex w.r.t Σ at η. Similarly, we can verify that
F̃i(η) is convex (not necessarily strongly convex). Therefore, according to Lemma 13, let g1(η) =
F̃i(η), g2(η) = F̂ (η), and then x1 = η̃i = U⊤θ̃i, x2 = η̂ = U⊤θ̂. Therefore, we have:

||η̂ − η̃i||Σ ≤ 1

Cdown
||∇fi(η̃i)||∗Σ . (28)
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Now let us show the validation of this theorem:

li(θ̃i)− li(θ̂) =fi(η̃i)− fi(η̂)

≤
↑

convexity

∇fi(η̃i)
⊤(η̃i − η̂)

≤
↑

Holder inequality

||∇fi(η̃i)||∗Σ ||η̃i − η̂||Σ

≤
↑

Lemma 13

1

Cdown
(||∇fi(η̃i)||∗Σ)2.

(29)

And thus we have

n∑
i=1

li(θ̃i)− li(θ̂) ≤
1

Cdown

n∑
i=1

||∇fi(η̃i)||∗Σ)2

≤ 1

Cdown

n∑
i=1

(
p

Φ
)2maxx

⊤
i UΣ−1U⊤xi

=
Cexp

Cdown
Cexp

n∑
i=1

tr(x⊤
i UΣ−1U⊤xi)

=
Cexp

Cdown
Cexp

n∑
i=1

tr(UΣ−1U⊤xix
⊤
i )

=
Cexp

Cdown
Cexptr(UΣ−1U⊤

n∑
i=1

xix
⊤
i )

=
Cexp

Cdown
Cexptr(UΣ−1U⊤H)

=
Cexp

Cdown
Cexptr(UΣ−1U⊤UΣU⊤)

=
Cexp

Cdown
Cexptr(UU⊤)

=
Cexp

Cdown
Cexptr(U

⊤U)

=
Cexp

Cdown
Cexptr(Ir)

=
Cexp

Cdown
Cexpr

≤
Cexp

Cdown
d.

(30)

Thus the Inequality 22 is proved. After that, we have:
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Eh[L(θ̃n)]− L(θ∗)

=Eh[L(θ̃n)]− Eh[L̂(θ
∗)]

≤Eh[L(θ̃n)]− Eh[L̂(θ̂)]

=
1

n

n∑
i=1

Eh[L(θ̃i)]− Eh[L̂(θ̂)]

=
1

n

n∑
i=1

Eh[li(θ̃i)]− Eh[L̂(θ̂)]

=
1

n

n∑
i=1

Eh[li(θ̃i)]−
n∑

i=1

Eh[li(θ̂)]

=
1

n

n∑
i=1

Eh[li(θ̃i)− li(θ̂)]

≤
Cexp

Cdown

d

n

=O(
d

n
)

Thus we has proved that Eh[L(θ̃n)]− L(θ∗) ≤ Cexp

Cdown
· d
n . Notice that θ̃n is generated by optimizing

the leave-one-out likelihood function L̃n(θ) =
∑n−1

j=1 lj(θ), which does not contain ln(θ), and that
the expected likelihood function L(θ) does not depend on any specific result occurring in this round.
That is to say, every term of this inequality is not related to the last round (xn, vn,1n) at all. In other
words, this inequality is still valid if we only conduct this epoch from round 1 to (n− 1).

Now let n = τ + 1, and then we know that θ̃τ+1 = θ̂. Therefore, the theorem holds.

B.3 Proof of Lower bound in Section 5.3
Proof. We assume a fixed u∗ such that x⊤θ∗ = u∗,∀x ∈ D. In other words, we are considering
a non-context setting. Therefore, we can define a policy as Ψ : {0, 1}t → R+, t = 1, 2, . . . that
does not observe xt at all. Before the proof begins, we firstly define a few notations: We denote
Φσ(ω) and pσ(ω) as the CDF and PDF of Gaussian distribution N (0, σ2), and the corresponding
Jσ(u) = argmaxv v(1− Φσ(v − u)) as the pricing function.

Since we have proved that J ′(u) ∈ (0, 1) for u ∈ R in Appendix B.2.2, we have the following
lemma:

Lemma 14. u − Jσ(u) monotonically increases as u ∈ (0,+∞),∀σ > 0. Also, we know that
Jσ(0) > 0,∀σ > 0.

Now consider the following cases: σ1 = 1, σ2 = 1 − f(T ), where limT→∞ f(T ) = 0, f ′(T ) <
0, 0 < f(T ) < 1

2 . We will later determine the explicit form of f(T ).

Suppose u∗ satisfies Jσ1(u
∗) = u∗. Solve it and get u∗ =

√
π
2 . Therefore, we have u ∈ (0, u∗) ⇔

J1(u) > u, and u ∈ (u∗,+∞) ⇔ J1(u) < u. As a result, we have the following lemma.

Lemma 15. For any σ ∈ ( 12 , 1), we have:

Jσ(u
∗) ∈ (0, u∗) (31)
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Proof. Firstly, we have:
Jσ(u) = argmax

v
vΦσ(u− v)

= argmax
v

vΦ1(
u− v

σ
)

= argmax
ω= v

σ

σωΦ1(
u

σ
− ω)

=σ argmax
ω

Φ1(
u

σ
− ω)

=σJ1(
u

σ
).

When σ ∈ ( 12 , 1), we know u∗

σ > u∗. Since J1(u
∗) = u∗ and that u ∈ (u∗,+∞) ⇔ J1(u) < u, we

have u∗

σ > J1(
u∗

σ ). Hence

u∗ > σJ1(
u∗

σ
) = Jσ(u

∗). (32)

Therefore, without losing generality, we assume that for the problem parameterized by σ2, the price
v ∈ (0, u∗). To be specific, suppose v∗(σ) = Jσ(u

∗). Define Ψt+1 : [0, 1]t → (0, u∗) as any policy
that proposes a price at time t+ 1. Define Ψ = {Ψ1, Ψ2, . . . , ΨT−1, ΨT }.

Define the sequence of price as V = {v1, v2, . . . , vT−1, vT }, and the sequence of decisions as
1 = {11,12, . . . ,1T−1,1T }. Denote V t = {v1, v2, . . . , vt, }.

Define the probability (also the likelihood if we change u∗ to other parameter u):

QV,σ
T (1) =

T∏
t=1

Φσ(u
∗ − vt)

1tΦσ(vt − u∗)1−1t . (33)

Define a random variable Yt ∈ {0, 1}t, Yt ∼ QV t,σ
t and one possible assignment

yt = {11,12, . . . ,1t−1,1t} . For any price v and any parameter σ, define the expected reward
function as r(v, σ) := vΦσ(u

∗ − v). Based on this, we can further define the expected regret
Regret(σ, T, Ψ):

Regret(σ, T, Ψ) = E[
T∑

t=1

r(Jσ(u
∗), σ)− r(Ψt(yt−1), σ)] (34)

Now we have the following properties:

Lemma 16. 1. r(v∗(σ), σ)− r(v, σ) ≥ 1
60 (v

∗(σ)− v)2;

2. |v∗(σ)− u∗| ≥ 2
5 |1− σ|;

3. |Φσ(u
∗ − v)− Φ1(u

∗ − v)| ≤ |u∗ − v| · |σ − 1|.

Proof. 1. We have:

∂r(v, σ)

∂v
|v=v∗(σ) = 0

∂2r(v, σ)

∂v2
=

1

σ2
(v2 − u∗v − 2σ2)pσ(u

∗ − v)

Since v ∈ (0, u∗), we have (v2 − u∗v − 2σ2) < −2σ2. Also, since σ ∈ (1/2, 1), we have

pσ(u
∗ − v) > 1√

2π
· e−

(u∗)2

2·(1/2)2 = 1√
2πeπ

> 0.017. Therefore, we have

∂2r(v, σ)

∂v2
< −2 ∗ 0.017 < − 1

30
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As a result, we have:

r(v ∗ (σ), σ)− r(v, σ) = −(v ∗ (σ)− v)
∂r(v, σ)

∂v
|v=v∗(σ) −

1

2
(v ∗ (σ)− v)2

∂2r(v, σ)

∂v2
|v=ṽ

= 0− 1

2
(v ∗ (σ)− v)2

∂2r(v, σ)

∂v2
|v=ṽ

≥ 1

2
· 1

30
(v ∗ (σ)− v)2.

(35)

2. According to Equation 32, we know that:

v∗(σ) = σJ1(
u∗

σ
)

For u ∈ (u∗,+∞), J1(u) < u. According to Lemma 14, we have:

J ′
1(u) = 1 +

1

J1(u)(J1(u)− u)− 2

> 1 +
1

0− 2

=
1

2
.

Also, for u ∈ (u∗, u∗

σ ), we have:

J ′
1(u) = 1− 1

2 + J1(u)(u− J1(u))

≤
↑

0<J1(u)<u

1− 1

2 + u(u− 0)

≤
↑

u<u∗
σ <u∗

2

1− 1

2 + (u
∗

2 )2

= 1− 1

2 + π
8

<
3

5
.

Therefore, we have:

J1(u
∗)− Jσ(u

∗) = J1(u
∗)− σJ1(

u∗

σ
)

= J1(u
∗)− σJ1(u

∗) + σ(J1(u
∗)− J1(

u∗

σ
))

= J1(u
∗)(1− σ)− σ(J1(

u∗

σ
)− J1(u

∗))

> u∗(1− σ)− σ · 3
5
(
u∗

σ
− u∗)

= u∗(1− σ)− 3

5
σ(

1

σ
− 1)u∗

= u∗(1− σ)(1− 3

5
)

>
2

5
(1− σ).
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3. This is because:
|Φσ(u

∗ − v)− Φ1(u
∗ − v)| = |Φσ(u

∗ − v)− Φσ(σ(u
∗ − v))|

≤ max |pσ| · |(u∗ − v)− σ(u∗ − v)|

≤ 1√
2πσ

· |(u∗ − v)− σ(u∗ − v)|

≤
↑

σ> 1
2

(1− σ)|u∗ − v|.

In the following part, we will propose two theorems, which balance the cost of learning and that
of uncertainty. This part is mostly similar to [BR12] Section 3, but we adopt a different family of
demand curves here.

Theorem 17 (Learning is costly). Let σ ∈ (1/2, 1) and vt ∈ (0, u∗), and we have:

K(QV,1;QV,σ) < 9900(1− σ)2Regret(1, T, Ψ). (36)

Here vt = Ψ(yt−1), t = 1, 2, . . . , T .

Proof. First of all, we cite the following lemma that would facilitate the proof.

Lemma 18 (Corollary 3.1 in Taneja and Kumar, 2004). Suppose B1 and B2 are distributions of
Bernoulli random variables with parameters q1 and q2, respectively, with q1, q2 ∈ (0, 1). Then,

K(B1;B2) ≤
(q1 − q2)

2

q2(1− q2)
.

According to the definition of KL-divergence, we have:

K(QV,1
T ;QV,σ

T ) =

T∑
s=1

K(QV s,1
s ;QV s,σ

s |Ys−1).

For each term of the RHS, we have:

K(QV s,1
s , QV s,σ

s |Ys−1)

=
∑

ys∈{0,1}s

QV s,1
s (ys) log

(
QV s,1

s (1s|ys−1)

QV s,σ
s (1s|ys−1)

)

=
↑

split ys as ys−1 and inds

∑
ys−1∈{0,1}s−1

QV s−1,1
s−1 (ys−1) ·

∑
1s∈{0,1}

QV s,1
s (1s|ys−1) log

(
QV s,1

s (1s|ys−1)

QV s,σ
s (1s|ys−1)

)

=
∑

ys−1∈{0,1}s−1

QV s−1,1
s−1 (ys−1)K

(
QV s,1

s (·|ys−1), Q
V s,σ
s (·|ys−1)

)
≤
↑

Lemma 18

∑
ys−1∈{0,1}s−1

QV s−1,1
s−1 (ys−1)

(Φ1(u
∗ − vs)− Φσ(u

∗ − vs))
2

Φσ(u∗ − vs)(1− Φσ(u∗ − vs))

=
1

Φσ(u∗ − vs)(1− Φσ(u∗ − vs))

∑
ys−1∈{0,1}s−1

QV s−1,1
s−1 (ys−1)(Φ1(u

∗ − vs)− Φσ(u
∗ − vs))

2

≤
↑

(∗∗)

165 ·
∑

ys−1∈{0,1}s−1

QV s−1,1
s−1 (ys−1)(Φ1(u

∗ − vs)− Φσ(u
∗ − vs))

2

≤
↑

Lemma 16 Property 3

165 ·
∑

ys−1∈{0,1}s−1

QV s−1,1
s−1 (ys−1)(u

∗ − vs)
2(1− σ)2

= 165(1− σ)2EYs−1
[(u∗ − vs)

2].
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Here inequality (**) above is proved as follows: since vs ∈ (0, u∗) as is assumed, we have:

1

2
< Φσ(u

∗ − vs) <Φσ(u
∗)

=σ · Φ1(
u∗

σ
)

≤1 · Φ1(

√
π
2

1
2

)

≤Φ1(
√
2π)

≤0.9939 .

As a result, we have 1
Φσ(u∗−vs)(1−Φσ(u∗−vs))

≤ 1
0.9939×0.0061 = 164.7988 ≤ 165. Therefore, by

summing up all s, we have:

K(QV,1
T ;QV,σ

T ) =

T∑
s=1

K(QV s,1
s ;QV s,σ

s |Ys−1)

≤ 165(1− σ)2
T∑

s=1

EYs−1 [(u
∗ − vs)

2]

≤
↑

Lemma 16 Property 1

165× 60 · (1− σ)2
T∑

s=1

(r(u∗, 1)− r(vs, 1))

=
↑

definition of regret and vs=Ψ(ys−1).

9900(1− σ)2Regret(1, T, Ψ),

which concludes the proof.

Theorem 19 (Uncertainty is costly). Let σ ≤ 1− T− 1
4 , and we have:

Regret(1, T, Ψ) + Regret(σ, T, Ψ) ≥ 1

24000
·
√
T · e−K(QV,1;QV,σ). (37)

Here vt = Ψ(yt−1), t = 1, 2, . . . , T .

Proof. First of all, we cite a lemma that would facilitate our proof:

Lemma 20. Let Q0 and Q1 be two probability distributions on a finite space Y; with Q0(y), Q1(y) >
0,∀y ∈ Y . Then for any function F : Y → {0, 1},

Q0{F = 1}+Q1{J = 0} ≥ 1

2
e−K(Q0;Q1),

where K(Q0;Q1) denotes the KL-divergence of Q0 and Q1.

Define two intervals of prices:

C1 = {v : |u∗| ≤ 1

10T
1
4

} and C2 = {v : |Jσ(u∗)− v| ≤ 1

10T
1
4

}

Note that C1 and C2 are disjoint, since |u∗ − Jσ(u
∗)| ≥ 2

5 |1− σ| = 2
5T 1/2 according to Lemma 16

Property 2. Also, for v ∈ (0, u∗)\C2, the regret is large according to Lemma 16 Property 1, because:

r(v∗(σ), σ)− r(v, σ) ≥ 1

60
(v − v∗(σ))2 ≥ 1

6000T
1
2

.
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Then, we have:

Regret(1, T, Ψ) + Regret(σ, T, Ψ)

≥
T−1∑
t=1

E1[r(u
∗, 1)− r(vt+1, 1)] + Eσ[r(Jσ(u

∗), σ)− r(vt+1, σ)]

≥ 1

6000
√
T

T−1∑
t=1

P1[vt+1 /∈ C1] + Pσ[vt+1 /∈ {C2}]

≥
↑

Suppose Ft+1=1[vt+1∈C2]

1

6000
√
T

T−1∑
t=1

P1[Ft+1 = 1] + Pσ[Ft+1 = 0]

≥
↑

Lemma 20

1

6000
√
T

T−1∑
t=1

1

2
e−K(QV t,1

t ;QV t,σ
t )

≥
↑

K(QV t,1
t ;QV t,σ

t ) not decreasing

1

6000
√
T

T − 1

2
e−K(QV,1

T ;QV,σ
T )

≥ 1

24000

√
Te−K(QV,1

T ;QV,σ
T ).

According to Theorem 17 and Theorem 19, we can then prove Theorem 12. Let σ = 1− T− 1
4

2 (Regret(1, T, Ψ) + Regret(σ, T, Ψ))

≥Regret(1, T, Ψ) + (Regret(1, T, Ψ) + Regret(σ, T, Ψ))

≥ 1

9900T−1/2
K(QV,1;QV,σ) +

1

24000
·
√
T · e−K(QV,1;QV,σ)

≥ 1

24000

√
T
(
K(QV,1;QV,σ) + e−K(QV,1;QV,σ)

)
≥
↑

The fact ex≥x+1,∀x∈R

1

24000

√
T .

Thus Theorem 12 is proved valid.

C More Discussions
C.1 Dependence on B and Noise Variance
Here we use a concrete example to analyze the coefficients of regret bounds. Again, we assume that
Nt ∼ N (0, σ2). Notice that both Cs and Ca have a component of Cexp

Cdown
. In order to analyze Cexp

Cdown
,

we define a hazard function denoted as λ(ω) with ω ∈ R:

λ(ω) :=
p1(ω)

1− Φ1(ω)
=

p1(−ω)

Φ1(−ω)
, (38)

where Φ1 and p1 are the CDF and PDF of standard Gaussian distribution. The concept of hazard
function comes from the area of survival analysis. From Equation 11 and 13, we plug in Equation 38
and get:

Cdown ≥ inf
ω∈[−B

σ ,Bσ ]

{
1

σ2
λ(−ω)2 + ω · λ(−ω)

}
Cexp ≤ sup

ω∈[−B
σ ,Bσ ]

{
1

σ2
λ(−ω)2

}
.

(39)
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In Lemma 21, we will prove that λ(ω) is exponentially small as ω → +∞, and is asymptotically
close to −ω as ω → −∞. Therefore, Cdown is exponentially small and Cexp is quadratically large
with respect to B/σ. Although we assume that B and σ are constant, we should be alert that the
scale of B/σ can be very large as σ goes to zero, i.e. as the noise is “insignificant”. In practice
(especially when T is finite), this may cause extremely large regret at the beginning. A “Shallow
Pricing” method introduced by Cohen et al. [2020] (as well as other domain-cutting methods in
contextual searching) may serve as a good pre-process as it frequently conducts bisections to cut the
feasible region of θ∗ with high probability. According to Theorem 3 in Cohen et al. [2020], their
Shallow Pricing algorithm will bisect the parameter set for at most logarithmic times to ensure that B

σ
has been small enough (i.e. upper-bounded by O(poly log(T ))). However, this does not necessarily
means that we can use a O(log T )-time pre-process to achieve the same effect, since they run the
algorithm throughout the session while we only take it as a pre-process. Intuitively, at least under the
adversarial feature assumption, we cannot totally rely on a few features occurring at the beginning (as
they might be misleading) to cut the parameter set once and for all. A mixture approach of Shallow
Pricing and EMLP/ONSP might work, as the algorithm can detect whether current B

σ is larger than
a threshold of bisection. However, this requires new regret analysis as the operations parameter
domain are changing over time. Therefore, we claim in Section 7 that the regret bound is still open if
σ = Θ(T−α) for α ∈ (0, 1).

Lemma 21 (Properties of λ(ω)). For λ(ω) := p1(ω)
1−Φ1(ω) , we have:

1,
d

dω
λ(ω) > 0.

2, lim
ω→−∞

ωkλ(ω) = 0, ∀k > 0.

3, lim
ω→+∞

λ(ω)− ω = 0.

4, lim
ω→+∞

ω (λ(ω)− ω) = 1.

Proof. We prove the Lemma 21 sequentially:

1. We have:

λ′(ω) =
p21(−ω)− p′1(−ω)Φ1(−ω)

Φ1(−ω)2

=
p21(−ω)− ωp1(−ω)Φ1(−ω)

Φ1(−ω)2

=
p1(−ω) (p1(−ω)− ωΦ1(−ω))

Φ1(−ω)2
.

(40)

Therefore, it is equivalent to prove that p1(−ω)− ωΦ1(−ω) > 0.

Suppose f(ω) = p1(ω) + ωΦ1(ω). We now take its derivatives as follows:

f ′(ω) = p′1(ω) + (Φ1(ω) + ω · p1(ω))
= (−ω)p1(ω) + Φ1(ω) + ω · p1(ω)
= Φ1(ω)

> 0

(41)
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Therefore, we know that f(ω) monotonically increases in R. Additionally, since we have:

lim
ω→−∞

f(ω)

= lim
ω→−∞

p1(ω) + lim
ω→−∞

ωΦ1(ω)

=0 + lim
ω→−∞

1

σ2
· Φ1(ω)

1/ω

= lim
ω→−∞

· p1(ω)
−1/ω2

= lim
ω→−∞

·

(
− 1√

2π
· ω2

exp{ω2

2 }

)
=0

(42)

Therefore, we know that f(ω) > 0, ∀ω ∈ R, and as a result, λ′(ω) > 0.

2. We have:

lim
ω→−∞

ωkλ(ω)

= lim
ω→−∞

ωk p1(−ω)

Φ1(−ω)

=
lim

ω→−∞
ωkp1(−ω)

lim
ω→−∞

Φ1(−ω)

=
lim

ω→−∞
ωk( 1√

2π
exp{−ω2

2 })

1

=
0

1
=0.

(43)

3. We only need to prove that

lim
ω→+∞

λ(ω)− ω = 0.

Actually, we have:

lim
ω→+∞

λ(ω)− ω

= lim
ω→+∞

p1(−ω)− ωΦ1(−ω)

Φ1(−ω)

= lim
ω→−∞

p1(ω) + ωΦ1(ω)

Φ1(ω)
L’Hospital’s rule

↓
= lim

ω→−∞

(−ω)p1(ω) + Φ1(ω) + ωp1(ω)

p1(ω)

= lim
ω→−∞

Φ1(ω)

p1(ω)

= lim
ω→−∞

p1(ω)

(−ω)p1(ω)

=0

(44)
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4.
lim

ω→+∞
ω(λ(ω)− ω)

= lim
ω→+∞

ω (p1(−ω)− ωΦ1(−ω))

Φ1(−ω)

= lim
ω→−∞

−ωp1(ω)− ω2Φ1(ω)

Φ1(ω)
L’Hospital’s rule

↓
= lim

ω→−∞

−p1(ω)− ω(−ω)p1(ω)− ω2p1(ω)− 2ω · Φ1(ω)

p1(ω)

=− 1− 2 lim
ω→−∞

ωΦ1(ω)

p1(ω)

=− 1 + 2 lim
ω→+∞

1
λ(ω)
ω

=− 1 + 2

=1.

(45)

Thus the lemma holds.

C.2 Algorithmic Design
C.2.1 Probit and Logistic Regressions
A probit/logit model is described as follows: a Boolean random variable Y satisfies the following
probabilistic distribution: P[Y = 1|X] = F (X⊤β), where X ∈ R is a random vector, β ∈ R is a
parameter, and F is the cumulative distribution function (CDF) of a (standard) Gaussian/logistic
distribution. In our problem, we may treat 1t as Y , [xt

⊤, vt]
⊤ as X and [θ∗⊤,−1]⊤ as β, which

exactly fits this model if we assume the noise as Gaussian or logistic. Therefore, θ̂k = argminθ L̂k(θ)
can be solved via the highly efficient implementation of generalized linear models, e.g., GLMnet,
rather than resorting to generic tools for convex programming. As a heuristic, we could leverage
the vast body of statistical work on probit or logit models and adopt a fully Bayesian approach that
jointly estimates θ and hyper-parameters of F . This would make the algorithm more practical by
eliminating the need to choose the hyper-parameters when running this algorithm.

C.2.2 Advantages of EMLP over ONSP.
For the stochastic setting, we specifically propose EMLP even though ONSP also works. This
is because EMLP only “switch” the pricing policy θ̂ for log T times. This makes it appealing in
many applications (especially for brick-and-mortar sales) where the number of policy updates is a
bottleneck. In fact, the iterations within one epoch can be carried out entirely in parallel.

C.2.3 Agnostic Dynamic Pricing: Explorations versus Exploitation
At the moment, the proposed algorithm relies on the assumption of a linear valuation function (see
Appendix C.3 for more discussion on problem modeling). It will be interesting to investigate the
settings of model-misspecified cases and the full agnostic settings. The key would be to exploit
the structural feedback in model-free policy-evaluation methods such as importance sampling. The
main reason why we do not explore lies in the noisy model: essentially we are implicitly exploring
a higher (permitted) price using the naturally occurring noise in the data. In comparison, there is
another problem setting named “adversarial irrationality” where some of the customers will valuate
the product adaptively and adversarially10. Existing work Krishnamurthy et al. [2021] adopts this
setting and shows a linear regret dependence on the number of irrational customers, but they consider
a different loss function (See Related Works Section).

10An adaptive adversary may take actions adversarially in respond to the environmental changes. In com-
parison, what we allow for the “adversarial features” is actually chosen by an oblivious adversary before the
interactions start.
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C.3 Problem Modeling
C.3.1 Noise Distributions
In this work, we have made four assumptions on the noise distribution: strict log-concavity, 2nd −
order smooth, known, and i.i.d.. Here we explain each of them specifically.

• The assumption of knowing the exact F is critical to the regret bound: If we have this
knowledge, then we achieve O(log T ) even with adversarial features; otherwise, an Ω(

√
T )

regret is unavoidable even with stochastic features.

• The strictly log-concave distribution family includes Gaussian and logistic distributions as two
common noises. In comparison, Javanmard and Nazerzadeh [2019] assumes log-concavity that
further covers Laplacian, exponential and uniform distributions. Javanmard and Nazerzadeh
[2019] also considers the cases when (1) the noise distribution is unknown but log-concave,
and (2) the noise distribution is zero-mean and bounded by support of [−δ, δ]. For case (1),
they propose an algorithm with regret O(

√
T ) and meanwhile prove the same lower bound.

For case (2), they propose an algorithm with linear regret.

• The assumption that F is 2nd−order smooth is also assumed by Javanmard and Nazerzadeh
[2019] by taking derivatives f ′(v) and applying its upper bound in the proof. Therefore, we
are still unaware of the regret bound if the noise distribution is discrete, where a lower bound
of Ω(

√
T ) can be directly applied from Kleinberg and Leighton [2003].

• We even assume that the noise is identically distributed. However, the noise would vary among
different people. The same problem happens on the parameter θ∗: can we assume different
people sharing the same evaluation parameter? We may interpret it in the following two ways,
but there are still flaws: (1) the “customer” can be the public, i.e. their performance is quite
stable in general; or (2) the customer can be the same one over the whole time series. However,
the former explanation cannot match the assumption that we just sell one product at each time,
and the latter one would definitely undermine the independent assumption of the noise: people
would do “human learning” and might gradually reduce their noise of making decisions. To
this extent, it is closer to the fact if we assume noises as martingales. This assumption has
been stated in Qiang and Bayati [2016].

C.3.2 Linear Valuations on Features
There exist many products whose prices are not linearly dependent on features. One famous instance
is a diamond: a kilogram of diamond powder is very cheap because it can be produced artificially, but
a single 5-carat (or 1 gram) diamond might cost more than $100,000. This is because of an intrinsic
non-linear property of diamond: large ones are rare and cannot be (at least easily) compound from
smaller ones. Another example lies in electricity pricing [Joskow and Wolfram, 2012], where the
more you consume, the higher unit price you suffer. On the contrary, commodities tend to be cheaper
than retail prices. These are both consequences of marginal costs: a large volume consuming of
electricity may cause extra maintenance and increase the cost, and a large amount of purchasing
would release the storage and thus reduce their costs. In a word, our problem setting might not be
suitable for those large-enough features, and thus an upper bound of x⊤θ becomes a necessity.

C.4 Ex Ante v.s. Ex Post Regrets

In this work, we considered the ex ante regret Regea =
∑T

t=1 maxθ E[vθt ·1(vθt ≤ wt)]−E[vt·1(vt ≤
wt)], where vθt = J(x⊤

t θ) is the greedy price with parameter θ and wt = x⊤
t θ

∗ + Nt is
the realized random valuation. The ex post definition of the cumulative regret, i.e., Regep =

maxθ
∑T

t=1 v
θ
t 1(v

θ
t ≤ wt) − vt1(vt ≤ wt) makes sense, too. Note that we can decompose

E [Regep] = Regea + E[maxθ
∑T

t=1 v
θ
t 1(v

θ
t ≤ wt) −

∑T
t=1 v

θ∗

t 1(vθ
∗

t ≤ wt)]. While it might
be the case that the second term is Ω(

√
dT ) as the reviewer pointed out, it is a constant independent

of the algorithm. For this reason, we believe using Regea is without loss of generality, and it reveals
more nuanced performance differences of different algorithms.

For an ex post dynamic regret, i.e., Regd =
∑T

t=1 wt − vt · 1(vt ≤ wt), it is argued in Cohen
et al. [2020] that any policy must suffer an expected regret of Ω(T ) (even if θ∗ is known). We may
also present a good example lies in Nt ∼ N (0, 1), x⊤

t θ
∗ =

√
π
2 where the optimal price is

√
π
2
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as well but the probability of acceptance is only 1/2, and this leads to a constant per-step regret of
1
2

√
π
2 .

C.5 Ethic Issues
A field of study lies in “personalized dynamic pricing” [Aydin and Ziya, 2009, Chen and Gallego,
2021], where a firm makes use of information of individual customers and sets a unique price for
each of them. This has been frequently applied in airline pricing [Krämer et al., 2018]. However,
this causes first-order pricing discrimination. Even though this “discrimination” is not necessarily
immoral, it must be embarrassing if we are witted proposing the same product with different prices
towards different customers. For example, if we know the coming customer is rich enough and
is not as sensitive towards a price (e.g., he/she has a variance larger than other customers), then
we are probably raising the price without being too risky. Or if the customer is used to purchase
goods from ours, then he or she might have a higher expectation on our products (e.g., he/she has a
θ = aθ∗, a > 1), and we might take advantage and propose a higher price than others. These cases
would not happen in an auction-based situation (such as a live sale), but might frequently happen in a
more secret place, for instance, a customized travel plan.
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