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ABSTRACT

Recently gradient-free optimisation methods have become a major tool in rein-
forcement learning and memory-efficient LLM fine-tuning. Under the standard
setting of uniformly bounded noise variance an optimal accelerated algorithm has
been derived. However, the assumption of bounded variance is strict and usually
is not fulfilled in practice. Therefore, we will relax it, allowing the noise distribu-
tion to be heavy-tailed and, thus, broadening the class of problems to be solved.
We propose gradient-free algorithms with zeroth-order oracle under adversarial
noise with unbounded variance, for non-smooth convex and convex-concave op-
timisation problems. We apply clipping operator to deal with heavy-tailedness
and batching to allow efficient computation via parallelization. Our analysis pro-
vides asymptotic bounds for such key parameters as iteration complexity, oracle
complexity and maximal adversarial noise level.

1 INTRODUCTION

In this paper, we consider two types of non-smooth stochastic optimisation problems. The first one
is (strongly)-convex problems

min
x∈Q

{
f(x)

∆
= Eξ∼D [f(x, ξ)]

}
, (1)

where Q ⊆ Rd is convex set, ξ is a random variable from distribution D. Such problems often arise
in machine learning, where fξ(x) represents the loss function on the data sample ξ [36].

Another one is convex-concave saddle optimisation problems

min
x∈X

max
y∈Y

{
f(x, y)

∆
= Eξ∼D [f(x, y, ξ)]

}
, (2)

where X ⊆ Rdx and Y ⊆ Rdy are convex sets, and ξ satisfies the same condition from equation 1.
To simplify the presentation, we introduce an embedded variable z ∆

= (x, y)T ∈ X ×Y ∆
= Z and an

operator

F (z)
∆
= F (x, y) =

(
∇xf(x, y)
−∇yf(x, y)

)
. (3)

Saddle point problems are closely related to equilibrium search and game theory, which in turn
are applied to economics [34] and variational inequalities [23]. In such problems, different mod-
els/players competitively minimize their loss functions, e.g., see adversarial example games [4],
hierarchical reinforcement learning [41, 39], and generative adversarial networks [18].

1.1 MOTIVATION

The vast majority of optimisation algorithms are based on the assumption of the first-order oracle
availability. This means that an oracle returns the value of the objective function gradient (possibly
affected by noise) at the requested point. However, in some cases, the gradient may be inaccessible
(e.g., in the case of non-smoothness of the objective function [33, 17]) or computationally inefficient.
Therefore, the gradient-free (also called zeroth-order) optimisation is used, where oracle the value
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of the function instead of gradient at a given point. Methods based on such an oracle are widely
demanded in a variety of areas in deep machine learning: reinforcement learning [10, 16, 40],
especially in the multi-armed bandits [15, 5, 2]; distributed learning [1, 42, 29]; and also in the
“black-box” [31, 7] settings. Also, these methods are actively applied in scientific purposes. For ex-
ample, in mathematical modelling problems and computational mathematics [22], in bio-chemical
and medical research [30, 21]. Due to various factors, such as discretisation, randomness within the
model, or adversity, gradient-free oracle is assumed to be noisy.

Usually to effectively deal with the tails heaviness, the clipping operator is used [18]. It is essentially
a projection onto an euclidean ball, which mitigates the affection from noisy oracle’s output, and
recently is ubiquitously used in first-order probabilistic algorithms [35, 8, 19].

Probabilistic approach. It was shown in [20], convergence in expectation may give inaccurate re-
sults in some cases, in particular, in the presence of adversarial noise. As we study noise with heavy-
tails, we will stick to probabilistic algorithms whose convergence is evaluated for some threshold
1 − β, β ∈ (0, 1]. These algorithms are more sensitive to noisy oracles, and have recently become
increasingly popular [8, 19, 11, 35]. However, there are very few gradient-free algorithms with one-
point gradient approximation [32], and there are no algorithms that allow the noise variance to be
unbounded.

In the standard setting, the noise has light tails (e. g. sub-Gaussian), i. e. for some random variable
ξ from distribution D the condition E

[
exp

(
∥ξ−E[ξ]∥2

2/σ2
)]

≤ exp(1) is fulfilled. However, when
it comes to the zeroth-order oracles this presumption usually can not be applied. Therefore, in this
paper we relax burdensome assumption of noise light-tailedness, considering only its α-moment to
be bounded, where α ∈ (1, 2]. This allows to enlarge problem’s class that we study. From a practical
point of view, noise with unbounded variance is actively studied by the machine learning community.
For example, it has been shown in [43, 9] that such noise usually arises in data distribution when
training LLMs and GANs, and is common to the reward distribution in multi-armed bandits [5].

1.2 CONTRIBUTION

In this paper, we present algorithms ZO-clipped-SSTM-OPF and
R-ZO-clipped-SSTM-OPF for one-point feedback gradient approximation, complement-
ing the recent work [26]. For saddle problems, a gradient-free algorithm ZO-clipped-SEG
is proposed and analysed for different gradient approximations. For each algorithm, we obtain
estimates for three main criteria: (i) the number of iterations to converge to a given accuracy with
some pre-specified probability, (ii) the number of oracle calls, (iii) the maximal admissible noise
level. Achieved asymptotic boundaries are optimal in terms of accuracy ε in deterministic case [32].
Table 1 contains the results obtained in the convergence theorems of the proposed methods.

1.3 PAPER ORGANISATION

This paper is organised as follows. Section 2 introduces definitions, assumptions and techniques.
Section 3 contains the pseudocode and convergence analysis for (R-)ZO-clipped-SSTM-OPF
(Algorithms 1, 2) and ZO-clipped-SEG (Algorithm 3). Also, in this section we introduce zeroth-
order oracle, corrupted by deterministic adversarial noise, and an evaluation on the maximum al-
lowable noise level. In the section 4 we provide numerical experiments on the synthetic task (least
squares problem), affected by heavy-tailed noise from Levi’s distribution and demonstrate its supe-
riority compared to non-accelerated/non-clipped methods.

2 PRELIMINARIES

In this section, we introduce the notation, the assumptions used in our analysis and main techniques,
which improve algorithm’s convergence.

Notation. We use ⟨x, y⟩ :=
∑d

i=1 xiyi to denote standard inner product of x, y ∈ Rd, where
xi and yi are the i-th component of x and y respectively. We denote Euclidean norm in Rd as
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Algorithm Setup Assumptions GA IC OC

Alg. 1 Convex (1) Ass. 2.1 (µ = 0), 2.3, 2.11 OPF
(
d1/4

ε

) (
d

ε2

) α
α−1

Alg. 1, [27] Convex (1) Ass. 2.1 (µ = 0), 2.3, 2.11 TPF
(
d1/4

ε

) (√
d

ε

) α
α−1

Alg. 2 Convex (1) Ass. 2.1 (µ > 0), 2.3, 2.11 OPF
(

d1/4

√
µε

) (
d√
µε3

) α
α−1

Alg. 2, [27] Convex (1) Ass. 2.1 (µ > 0), 2.3, 2.11 TPF
(

d1/4

√
µε

) (√
d

µε

) α
α−1

Alg. 3 Saddle (2) Ass. 2.1 (µ = 0), 2.3, 2.11 OPF
(
d1/2

ε2

) (
d

ε2

) α
α−1

Alg. 3 Saddle (2) Ass. 2.1 (µ = 0), 2.3, 2.11 TPF
(
d1/2

ε2

) (√
d

ε

) α
α−1

Table 1: Summary of all algorithms, proposed in this paper. The “Setup” and “Assumptions”
columns contains the setups and assumptions used about the objective function (defined in sec-
tion 2) respectively. The “GA” column shows which gradient approximation was used – the one-
point (OPF) (see equation 11) or the two-point one (see equation 12). The “IC” and “OC” columns
are responsible iterative and oracle complexities, represented as asymptotic bounds, depending on
the dimensionality of the problem d and the desired accuracy of ε.

∥x∥2 :=
√
⟨x, x⟩. We use the notation Bd

2 (r) :=
{
x ∈ Rd : ∥x∥2 ≤ r

}
to denote Euclidean ball,

Sd
2 (r) :=

{
x ∈ Rd : ∥x∥2 = r

}
to denote Euclidean sphere. Operator E[ · ] denotes full expectation.

2.1 ASSUMPTIONS ON OBJECTIVE FUNCTION

Assumption on the target subset. Although we consider an unconstrained optimisation problem,
the analysis does not require the assumptions on the function f to be extended to the entire space.
It is sufficient to introduce assumptions only on some convex set Q ⊂ Rd, since it will be shown
in Sections Section 3 that the produced by proposed algorithms values stay in some ball around the
solution, which allows us to consider sufficiently larger classes of problems.
Assumption 2.1 (Strong convexity). Function f(x, ξ) : Q × D → R is µ-strongly convex if there
exists a convex subset Q ⊂ Rd and a constant µ ≥ 0 such that, for all x1, x2 ∈ Q and fixed ξ, the
following holds for all values of λ ∈ [0, 1]:

f(λx1 + (1− λ)x2, ξ) ≤ λf(x1, ξ) + (1− λ)f(x2, ξ)−
µ

2
λ(1− λ) ∥x1 − x2∥22 , (4)

It also follows from Assumption 2.1 that the function f(x) is µ-strongly convex on the set Q. Before
proceeding to the main assumption of our paper, let us first introduce the following definition.
Definition 2.2 (Expansion of objective set). We will call Qτ a τ -expansion of set Q if for some
τ > 0 it is true that

Qτ = Q⊕Bd
2 (1), (5)

where the operation ⊕ is a Minkowski sum.

Now, using the Definition of 2.2 we introduce the main assumption on the objective function about
its Lipschitzness and α-moment boundedness.
Assumption 2.3 (Lipschitz-continuity and boundedness of α-moment). A function f(x, ξ) is
Lipschitz-continuous with constant M2(ξ) > 0 on the extension set Qτ , if for all x1, x2 ∈ Qτ

is satisfied
|f(x1, ξ)− f(x2, ξ)| ≤ M2(ξ) ∥x1 − x2∥2 . (6)

Furthermore, there exists α ∈ (1, 2] and M2 > 0 such that Eξ [M2(ξ)
α] = Mα

2 .
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Note that for α = 2 the latter condition becomes equivalent to the condition of uniformly bounded
variance. However, when α < 2 such an assumption is not fulfilled and heavy-tails appears.

2.2 NON-SMOOTH OPTIMISATION

When solving problems with a non-smooth objective function, the Gaussian (random) smoothing
scheme proposed in [14] is used. It allows us take into a consideration a smoothed function f̂τ (x)
with a number of properties to which gradient analysis is applicable (i.e., with a first-order oracle),
as well as to do batch-parallel gradient computations. Such an approximation of the non-smooth
function f(x, ξ) has the form

f̂τ (x) = Eu,ξ [f(x+ τu, ξ)] , (7)

where u ∼ U(Bd
2 (1)) is sampled from a uniform distribution on a unit Euclidean ball. The following

lemma shows key properties of smoothing.

Lemma 2.4 ([17], Theorem 2.1). Let there exist such Q ⊂ Rd and τ > 0 such that Assumptions 2.1
and 2.3 are satisfied, then the function f̂τ (x) defined in equation 7 has the following properties:

1. It is convex and M2-Lipschitz on the set Q, and it is fulfilled that

sup
x∈Q

|f̂τ (x)− f(x)| ≤ τM2. (8)

2. It is differentiable on the set Q, and its gradient is equal to

∇f̂τ (x) =
d

τ
Ee [f(x+ τe)e] , (9)

where e ∼ U(Sd
2 (1)).

3. It is L-Lipschitz continuous with L =
√
dM2τ

−1 on the set Q, i.e., for all x1, x2 ∈ Q it is
fulfilled ∥∥∥∇f̂τ (x1)−∇f̂τ (x2)

∥∥∥
2
≤ L ∥x1 − x2∥2 . (10)

The standard way of constructing a gradient-free algorithm is based on the application of gradient
approximations. In these approximations the exact value of the gradient g(x, ξ) is replaced by
its approximation g(x, ξ, e) using schemes from computational math. We will consider two basic
estimates of g(x, ξ, e) [16, 29, 27]:

Definition 2.5 (Approximation schemes). Consider following approximations of g(x, ξ):

1. One-point feedback (OPF):

g(x, ξ, e) =
d

τ
f(x+ τe, ξ)e; (11)

2. Two-point feedback (TPF):

g(x, ξ, e) =
d

2τ
(f(x+ τe, ξ)− f(x− τe, ξ)) e. (12)

Remark 2.6. The advantage of equation 11 is half the number of zeroth-order oracle calls for each
gradient estimate computation. However, it requires an additional constraint in Assumption 2.7.

Assumption 2.7 (Boundedness of objective function). There exists a subset Q and constant G > 0
such that for x ∈ Q

Eξ [f(x, ξ)
α] ≤ Gα.

We now show that the proposed approximation schemes in Definition 2.5 are unbiased estimates of
the gradient ∇f̂τ (x) of the smoothed function f̂τ (x), and also have bounded α-moment.

Lemma 2.8 (Properties of approximation schemes). Schemes equation 11, equation 12 have fol-
lowing properties:
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1. vector g(x, ξ, e) is an unbiased estimate of the gradient of the smoothed function ∇f̂τ (x):

Eξ,e [g(x, ξ, e)] = ∇f̂τ (x); (13)

2. norm of the vector g(x, ξ, e) in α-th degree is bounded in expectation:

Eξ,e [∥g(x, ξ, e)∥α2 ] ≤ σα, (14)

Detailed proof can be seen in Appendix A. Next, for computational efficiency, we define the batch-
ing technique, which allows us to compute g(x, ξ, e) in parallel. Similarly to the Lemma 2.8, the
unbiasedness and boundedness of the batched version of the gradient can be shown.

Definition 2.9 (Batching). Let B be the size of the batch, {ξi}Bi=1 and {ei}Bi=1 be independent
realisations of random variables. Then the batched gradient approximation is a vector

gB
(
x, {ξi}Bi=1, {ei}Bi=1

)
=

1

B

B∑
i=1

g(x, ξi, ei). (15)

Lemma 2.10 ([26], Lemma 3). The batched gradient approximation gB
(
x, {ξi}Bi=1, {ei}Bi=1

)
is an

unbiased estimate of the gradient of the smoothed function f̂τ (x):

∇f̂τ (x) = Eξ,e [g(x, ξ, e)] = E{ξi}B
i=1,{ei}B

i=1

[
gB
(
x, {ξ}Bi=1, {ei}Bi=1

)]
, (16)

and has a finite α-moment:

E
[∥∥gB

(
x, {ξi}Bi=1, {ei}Bi=1

)
− E

[
gB
(
x, {ξi}Bi=1, {ei}Bi=1

)]∥∥α
2

]
≤ 2σα

Bα−1
. (17)

Moreover, as shown in [35], when Q ̸= Rd, the L-smoothness of the smoothed function ∇τ (x) on
a larger set is required to fulfil the conditions of the Assumption 2.11.

Assumption 2.11 (Extended smoothness). There exists a set Q ⊆ Rd and constants τ, L > 0 such
that for all x ∈ Q and x∗ = argmin

x∈Q
f̂τ (x)

∥∥∥∇f̂τ (x)
∥∥∥2
2
≤ 2L

∣∣∣f̂τ (x)− f̂τ (x
∗)
∣∣∣ . (18)

3 MAIN RESULTS

This section contains main results of our work. We implement gradient-free approach in first-order
methods presented in the work [35] under Assumption 2.3 of noise with unbounded noise variance.
To deal with it we apply the clipping operator, introduced in the article [18].

clip(g, λ) =

{
g

∥g∥2
min(∥g∥2 , λ), g ̸= 0,

0, g = 0.
(19)

By clipping, we artificially limit the norm of the gradient vector estimation, which allows us to
reduce the affection of stochasticity and noise. The core algorithm for convex and strongly-convex
cases is Stochastic Similar Triangles Method [12]. We complement the analysis made in the article
[26] and consider a one-point gradient approximation scheme equation 11.

The method produces a sequence
{
xk, yk, zk

}K
k=1

with
parameters αk+1 = k+2

2aL , Ak+1 = Ak + αk. For
gradient descent step batched and clipped gradient ap-
proximation gk is used. The initial values are set as
x0 = y0 = z0 and A0 = α0 = 0. For pseudocode see
Appendix B.

xk+1 =
Aky

k + αk+1z
k

Ak+1
,

zk+1 = zk − αk+1g
k,

yk+1 =
Aky

k + αk+1z
k+1

Ak+1
,
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3.1 CONVEX CASE

For convex functions we use the Assumption 2.1 with µ = 0. In order to simplify the formulation
of the convergence theorem, we will present an abridged version, see the full one, together with the
proof, in Appendix B.1. Here and below notation R =

∥∥x0 − x∗
∥∥2
2

denotes the distance from the
starting point to the optimum, BR(x

∗) is used for an Euclidean ball of radius R with center at x∗

and ∼-notation hides a logarithmic factor in asymptotic bounds.
Theorem 3.1 (Convergence of the ZO-clipped-SSTM-OPF). Let Assumptions 2.3, 2.11 and 2.1
are held with parameter µ = 0 on B3R(x

∗). Then for some level β ∈ (0, 1], accuracy ε > 0, batch

size B, parameters A = 4K/β ≥ 1, a = Θ
(
A2,

√
dGK

α+1
α A

α−1
α /M2RB

α−1
α

)
, λk = Θ(R/αk+1A),

L =
√
dM2τ

−1 and τ = ε/4M2, we guarantee that with probability at least 1 − β the Algorithm 1
will achieve desired accuracy f(yK)− f(x∗) < ε after

K = Õ

(
max

{
d1/4M2R

ε
,
1

B

(
dGM2R

ε2

) α
α−1

})
iterations (20)

and K ·B oracle calls. Moreover, with the same probability
{
xk, yk, zk

}K
k=0

remains in B2R(x
∗).

Remark 3.2. The optimal values of the parameter L and τ are due to the properties of the smoothed
function f̂τ (x) by Lemma 2.4. We also note that in order to solve the direct problem equation 1 with
desired accuracy ε, it is necessary to solve the smoothed one with accuracy at least ε/2. This
observation will be further used in the proof of the Theorem 3.1 in Appendix B.1.
Corollary 3.3. Omitting the logarithmic factor depending on β, we obtain a match with the optimal
result in non-smooth deterministic setting (see [6]) for the first term, while the second one is optimal
in ε for α ∈ (1, 2] and zeroth-order oracle (see [32]). We also note that increasing the size of the
batches is logical only under the condition that the left term is smaller than the right one, thus a
following boundary on batch size B can be obtained:

B ≤

(
d

3α+1
4 GαM2R

εα+1

) 1
α−1

. (21)

3.2 STRONGLY-CONVEX CASE

For strongly-convex objective functions Assumption 2.1 is fulfilled with µ > 0. A stan-
dard approach in this case is to use the restart technique. That is, at the t-th restart, the
R-ZO-clipped-SSTM-OPF algorithm uses the returned value x̃t, as a starting point, and then
performs Kt+1 iterations of the ZO-clipped-SSTM-OPF algorithm.
Theorem 3.4 (Convergence of the R-ZO-clipped-SSTM-OPF). Let Assumptions 2.3, 2.11
and 2.1 are held with parameter µ > 0 on B3R(x

∗). Let also N =
⌈
log2

µR2

2ε

⌉
be the

number of restarts. Then at each restart t = 1, . . . , N of R-ZO-clipped-SSTM-OPF the
algorithm ZO-clipped-SSTM-OPF is run with batch size Bt (chosen via equation 21) for

Kt = Θ̃

⌈
max

{√
LtR2

t−1

εt
, 2
Bt

(
dGM2Rt−1

ε2t

) α
α−1

}⌉
iterations with parameters At = lnKtN/β,

at = Θ

(
max

{
A2

t ,
(
dG

α+1
α

t A
α−1
α

t

)
/
(
τtLtRtB

α−1
α

t

)})
, λt

k = Θ(Rt/αt
k+1At), Lt =

√
dM2τ

−1,

τt = εt/4M2, εt = µR2
t−1/4 and Rt−1 = R/2(t−1)/2. We guarantee for some level β ∈ (0, 1], accuracy

ε > 0, that with probability at least 1 − β the algorithm R-ZO-clipped-SSTM will achieve the
desired accuracy f(xN )− f(x∗) < ε after the

N∑
t=1

KtBt = Õ

max

d1/4M2R√
µε

,

(
dGM2√

µε3

) α
α−1


 (22)

oracle calls. Moreover, all values after the t-th restart will remain in B2Rt−1
(x∗).

The obtained complexity bound is optimal (up to logarithms) high-probability complexity bound
under heavy-tailed noise Assumption 2.3 for the smooth strongly convex problems, due to the first
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term cannot be improved in view of the deterministic lower bound [32], and the second term is
optimal according [43].

3.3 SADDLE POINT PROBLEMS

Now, we switch to the saddle point problems setup equation 2 and introduce gradient-free algorithm
ZO-clipped-SEG. It will be based on the first-order one, presented in the paper [35] for varia-
tional inequalities, utilizing the idea of same-step stochastic extra-gradient method [28]. Since this
class of problems is broader, than the researched one, the relation of properties and metrics will
be shown. To begin with, we introduce Gap metric, defined for variational inequalities (VIPs) and
saddle point problems (SPPs), respectively.

Definition 3.5 (Gap metric). Let z̃ ∆
= (x̃, ỹ)⊤ is a point from set Z ∆

= X×Y ⊆ Rdx+dy , respectively.
Then, we define the gap metric for variational inequalities GapVIP for all z ∈ Z and operator F as

GapVIP
Z (z̃) = max

z∈Z
⟨F (z), z̃ − z⟩ . (23)

Also, for all points x ∈ X , y ∈ Y the gap metric for saddle point problems GapSPP is defined as

GapSPP
X×Y(x̃, ỹ) = max

(x,y)⊤∈X×Y
[f(x̃, x)− f(ỹ, y)]. (24)

It can be easily shown, that for all z̃ ∈ Z the following inequality holds (see [24])

GapSPP
Z (z̃) ≤ GapVIP

Z (z̃). (25)

As we consider non-smooth optimization, we cannot utilize the gradient of the objective function f
when defining operator F via equation 3. Therefore, we use the same gradient approximations for
gradients (with e = (ex,−ey)

⊤, where ex ∼ Sd
2 (1), ey ∼ Sd

2 (1)) and apply the same assumptions
and techniques introduced in Section 2 to the function f(z, ξ) subject to embedded variable z.

The update rules of the ZO-clipped-SEG can be
written as follows. Here F̃ stands for clipped and
batched operator F , ξk1 , ξ

k
2 ∼ Dk and ek1 , e

k
2 ∼ Sd

2 (1)
are sampled independently.

z̃k = zk − γF̃ (zk, ξk1 , e
k
1)

zk = z̃k − γF̃ (z̃k, ξk2 , e
k
2)

Theorem 3.6 (Convergence of the ZO-clipped-SEG). Let Assumptions 2.3 with µ = 0, 2.1
and 2.11 be satisfied on the set B4R(z

∗). Then for some level β ∈ (0, 1], accuracy ε, parameters

A = ln 6(K+1)/β, γ = Θ
(
min

{
(AL)−1,R/

(
σK

1
α A

α−1
α

)})
, λk = Θ(R/γA), L =

√
dM2τ

−1, τ =

ε/4M2 and σ defined by the equations equation 34-equation 35, we guarantee that with probability at

least 1− β the algorithm 3 will achieve desired accuracy GapSPP
BR(z∗)

(
1
K

K∑
k=0

z̃k

)
≤ ε after where

K = O

(
max

{√
dM2

2R
2

ε2
ln

√
dM2

2R
2

ε2β
,

(
σR

ε

) α
α−1

ln
σR

εβ

})
iterations. (26)

Pseudocode, together with the full version and proof can be found in the Appendix B.3. Obtained
iterative boundary is optimal for deterministic case [3, 37]. However, substituting σ from the Lemma
2.4, one can note a non-optimal oracle complexity. The optimal estimate in the case of unbounded
variance for the gradient-free oracle is dε−

α
α−1 , which differs from the estimate achieved in [32],

being optimal in terms of d for OPF scheme and optimal in terms of ε for TPF one. Nonetheless,
as far as we know, the proposed asymptotic boundary is the first one for convex-concave saddle
problems.

3.4 ZEROTH-ORDER ORACLE CORRUPTED BY ADVERSARIAL NOISE

In the “black-box” optimization setting, the zeroth-order oracle is usually affected by some deter-
ministic adversarial noise δ(x, ξ).
Definition 3.7 (Biased zeroth-order oracle). The gradient-free oracle returns the value of the func-
tion f(x, ξ) at the requested point x, with some noise δ(x, ξ):

fδ(x, ξ) = f(x, ξ) + δ(x, ξ). (27)

7
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This formulation is natural since inaccuracies can arise, for example, due to discretisation of the
values of f(x, ξ), or in case of differential privacy. Such oracles have been widely studied with
deterministic [29, 11, 38] or stochastic [29, 20] noise functions δ. We will also introduce a common
assumption on boundedness of δ.
Assumption 3.8 (Bounded noise). There exists ∆ > 0 such that for all x ∈ Q and fixed ξ ∼ D

∥δ(x, ξ)∥2 ≤ ∆. (28)

It is a standard assumption used in setups of adversarial attacks. The larger ∆ is, the cheaper it is to
invoke the oracle, since the function value can be calculated with less accuracy. However, a noise
term affects the gradient approximations. Therefore, to guarantee the convergence rates presented
in the Theorems 3.1, 3.4 and 3.6, it is necessary for the gradient approximations to be unbiased and
the variance should not depend on the noise level, i.e., the deterministic term should dominate the
noise one. From this statement we derive the boundaries for maximal admissible noise level.
Lemma 3.9 (Maximal admissible noise level). To guarantee the convergence rate presented in the
Theorems 3.1, 3.4 and 3.6, the noise level ∆ must fulfil the following constraints:

Noisy OPF: ∆ ≲ min

{
G,

ε2√
dM2R

}
, (29)

Noisy TPF: ∆ ≲
ε2√
dM2R

. (30)

Remark 3.10 (µ-strongly convex case). Following the result, obtained in the work [11], for µ-
strongly convex case the ε2/

√
dM2R is changed to

√
µε3/

√
dM2.

4 EXPERIMENTS

Figure 1: Comparison of ac-
celerated and non-accelerated
gradient-free methods with the
following parameter choice:
ZO-SGD-OPF: B = 10, a = 10−6;
ZO-SSTM-OPF: B = 10, a = 10−6;
ZO-clipped-SGD-OPF: B =
10, a = 10−6, λ = 0.1;
ZO-clipped-SSTM-OPF: B = 10,
a = 10−6, λ = 1.0.

This part contains the results of numerical experiments
for the ZO-clipped-SSTM-OPF method. We solve
the quadratic minimisation problem:

min
x∈Rd

∥Ax− b∥2 + ⟨ξ, x⟩ , (31)

where ξ is a random vector with jointly independent com-
ponents sampled from the Levy α-stable distribution with
α = 1.5 and A ∈ Rn×d, b ∈ Rn (in the experiment
d = 8, n = 100). For the problem equation 31, the As-
sumption 2.1 with µ ≥ 0 and the Assumption 2.3 with the
Lipschitz constant M2(ξ) = ∥A∥2 + ∥ξ∥2 are fulfilled.

We compare a non-accelerated methods ZO-SGD-OPF
and its clipped version ZO-clipped-SGD-OPF (see
[19]) with the accelerated versions ZO-SSTM-OPF
and ZO-clipped-SSTM-OPF with one-point feed-
back gradient approximation scheme. In order to
find the optimal parameters for batch size B, learning
rate γ and clipping parameter λ we apply grid search
on the following grid: B ∈ {1, 2, 5, 10, 50}, γ ∈{
10−3, 10−4, 10−5, 10−6, 10−7

}
, λ ∈ {10, 1, 0.1, 0.01}.

From the graphs in Fig. 1 we can observe, that clipping
technique allows methods to converge to lower error floor.

5 CONCLUSION

In this article we complement the research conducted in [26], introducing the analysis of one-point
feedback gradient approximation scheme for convex and strongly convex setups. Also we present a
new gradient-free algorithm ZO-clipped-SEG to solve non-smooth convex-concave saddle point
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problems. For all algorithms we prove their optimality in terms of desired accuracy ε or problem
dimensionality d. Moreover, we provide an analysis of maximal admissible level of noise (maybe
adversarial) and numerical experiments, showing the superiority of clipping technique when the
noise distribution is heavy tailed.

For future work we aim for providing zeroth-order analysis for composite convex optimization prob-
lems and decentralized learning.
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A TECHNICAL LEMMAS

Lemma A.1 (Lemma 2.8). Schemes equation 11, equation 12 have following properties:

1. vector g(x, ξ, e) is an unbiased estimate of the gradient of the smoothed function ∇f̂τ (x):

Eξ,e [g(x, ξ, e)] = ∇f̂τ (x); (32)

2. norm of the vector g(x, ξ, e) in α-th degree is bounded in expectation:

Eξ,e [∥g(x, ξ, e)∥α2 ] ≤ σα, (33)

where parameter σ has following values for

OPF : σ =
dG

τ
, (34)

TPF : σ =

√
dM2

21/4
. (35)

Proof. The unbiasedness of the gradient estimates can be shown directly by the Definition 2.5:

1.1 For OPF scheme we have

Eξ,e [g(x, ξ, e)] = Eξ,e

[
d

τ
f(x+ τe, ξ)e

]
equation 9

= ∇f̂τ (x). (36)

1.2 For TPF, the reasoning is similar and is based on the symmetry of the distribution of the
vector e, and independence with ξ.

Eξ,e [g(x, ξ, e)] = Eξ,e)

[
d

2τ
(f(x+ τe, ξ)− f(x− τe, ξ))e

]
=

d

2τ
Ee [Eξ [f(x+ τe, ξ)e] + Eξ [f(x− τe, ξ)e]]

=
d

τ
Ee [f(x+ τe)e] = ∇f̂τ (x). (37)

2.1 To prove the boundedness of the gradient norm for the OPF we use an Assumption 2.7:

Eξ,e [∥g(x, ξ, e)∥α2 ] = Eξ,e

[∥∥∥∥dτ f(x+ τe, ξ)e

∥∥∥∥α
2

]
=

(
d

τ

)α

Eξ,e [∥f(x+ τe, ξ)∥α2 ∥e∥α2 ]

≤
(
d

τ

)α

Eξ,e [∥f(x+ τe, ξ)∥α2 ]Ee [∥e∥α2 ]

∥e∥2=1

=

(
d

τ

)α

Eξ,e [∥f(x+ τe, ξ)∥α2 ]

Ass.2.7
≤

(
dG

τ

)α

. (38)

2.2 For two-point feedback, the estimate was proved via a corollary of the concentration lemma
for Lipschitz functions in [26]:

Eξ,e [∥g(x, ξ, e)∥α2 ] ≤

(√
dM2

21/4

)α

. (39)
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B CONVERGENCE ANALYSIS

In this section, we provide a complete formulation of the convergence theorems, presented in the
paper. The proofs follow the same steps as in the one proposed in [35], using the properties of
smoothed objective function and unbiasedness/boundedness of introduced gradient approximation
schemes. It is also important to note that although convergence of methods is considered on bounded
sets (BkR(x

∗), where k = 3 or 4), an assumption on extended smoothness should be applied.

B.1 MISSING PROOFS FOR ZO-CLIPPED-SSTM-OPF

Algorithm 1: ZO-clipped-SSTM-OPF
Input: x0 ∈ Q — starting point

K — iteration number
B — batch size
a — step size
τ — smoothing parameter
{λk}K−1

k=0 — clipping parameters

0.1 Set y0 = z0 = x0;

0.2 Set starting parameters A0 = α0 = 0, L =
√
dM2/τ;

for k = 0 to K − 1 do
1. Update parameters αk+1 = k+2/2γL, Ak+1 = Ak + αk+1;

2. xk+1 = Aky
k+αk+1z

k

Ak+1
;

3. Sample
{
ξki
}B
i=1

∼ D and
{
eki
}B
i=1

∼ U(Sd
2 (1)) independently;

4. Compute gB
(
x, {ξki }Bi=1, {eki }Bi=1

)
via equation 15;

5. Apply clipping gk+1 = clip
(
gB
(
x, {ξki }Bi=1, {eki }Bi=1

))
from equation 19;

6. zk+1 = zk − αk+1gk+1;

7. yk+1 = Aky
k+αk+1z

k+1

Ak+1
;

end
Output: yK

Theorem B.1 (Full version of Theorem 3.1). Let Assumptions 2.3, 2.11 and 2.1 are held with
parameter µ = 0 on B3R(x

∗). Then for β ∈ (0, 1] and K > 0 such that ln 4K/β ≥ 1 and following
parameter selection

a ≥ max

48600 ln2
(
4K

β

)
,
1800dG(K + 1)K

1
α ln

α−1
α 4K

β

τLRB
α−1
α

 , (40)

λk =
R

30αk+1 ln
4K
β

, (41)

after K iterations the Algorithm 1 satisfies with probability at least 1− β

f(yK)− f(x∗) ≤ τM2 +
6aLR2

K(K + 3)
. (42)

Moreover, with the same probability all values
{
xk, yk, zk

}K
k=0

remain in ball B2R(x
∗). In particu-

lar, when in inequality 40 an equality is achieved, then the output of ZO-clipped-SSTM satisfies

f(yK)− f(x∗) ≤ 2M2τ +O

max

LR2 ln2
(

4K
β

)
K2

,
dGR ln

α−1
α 4K

β

τ(BK)
α−1
α


 , (43)
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meaning that to achieve desired accuracy f(yK) − f(x∗) < ε with probability at least 1 − β and
τ = ε/4M2, L = dM2/τ algorithm ZO-clipped-SSTM requires

K = Õ

(
max

{
d1/4M2R

ε
,
1

B

(
dGM2R

ε2

) α
α−1

})
iterations. (44)

Proof. We use the result obtained in Theorem F.1 [35] for the smoothed function f̂τ (x) and one-
point feedback approximation scheme. The additional randomisation used in f̂τ (x) does not affect
the convergence result. Then according to it, with probability at least 1 − β after K > 0 iterations
of Algorithm 1 all values of

{
xk, yk, zk

}K
k=0

are inside the region B2R(x
∗) and

f̂τ (y
K)− f̂τ (x

∗) ≤ 6aLR2

K(K + 3)
. (45)

Applying the property from the Lemma 2.4 we obtain

f(yK)− f(x∗) ≤ τM2 +
6aLR2

K(K + 3)
. (46)

After substituting parameter a into equation 42 we get

f(yK)− f(x∗) ≤ 2τM2 +
6aR2

K(K + 3)

= 2τM2 +O

max

LR2 ln2
(

4K
β

)
K(K + 3)

,
dGR2(K + 1)K

1
α ln

α−1
α 4K

β

τ(K + 3)B
α−1
α




α>1

= 2τM2 +O

max

LR2 ln2
(

4K
β

)
K2

,
dGR ln

α−1
α 4K

β

τ(BK)
α−1
α


 . (47)

In order to achieve accuracy ε with probability at least 1 − β, we need to choose K such that each
term of the maximum in equation 47, given the optimal parameters, is asymptotically equal to O(ε).
Finally we obtain

K = O

(
max

{
d1/4M2R

ε
ln

√
dM2

2R
2

ε2β
,
1

B

(
dGM2R

ε2

) α
α−1

ln

(
1

Bβ

(
dGM2R

ε2

) α
α−1

)})
.

B.2 MISSING PROOFS FOR R-ZO-CLIPPED-SSTM-OPF

Algorithm 2: R-ZO-clipped-SSTM-OPF
Input: x0 ∈ Q — starting point

N — number of restarts

{Kt}Nt=1 — number of iterations per restart

{Bt}Nt=1 — batch size per restart

{at}Nt=1 — step size of Algorithm 1 per restart

{τt}Nt=1 — smoothing parameters{
λ1
k

}K1−1

k=0
, . . . ,

{
λN
k

}KN−1

k=0
— clipping parameters

Set x̂0 = x0;
for k = 1 to N do

x̃t = ZO-clipped-SSTM-OPF
(
x̂k,Kt, Bt, γt, at, {λt

k}
Kt−1

k=0

)
;

end
Output: x̃N
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Theorem B.2 (Full version of Theorem 3.4). Let Assumptions 2.3, 2.11 and 2.1 are held with
parameter µ > 0 on B3R(x

∗). Let also N =
⌈
log2

µR2

2ε

⌉
be the number of restarts. Then at each

restart t = 1, . . . , N of R-ZO-clipped-SSTM-OPF the algorithm ZO-clipped-SSTM-OPF
is run with batch size Bt (chosen via equation 21) for

Kt =

max

1080

√√√√LtR
2
t−1

εt
ln

2160
√

LtR
2
t−1N

√
εtβ

,
2

Bt

(
41200dGM2Rt−1

ε2t

) α
α−1

ln

 4N

Btβ

(
21600dGM2Rt−1

ε2t

) α
α−1





(48)

with the following parameter values

at ≥ max

48600 ln2
(
4Kt

β

)
,
1800dG(Kt + 1)K

1
α
t ln

α−1
α 4Kt

β

τtB
α−1
α

t LtRt

 , (49)

λt
k =

Rt

30αt
k+1 ln

4Kt

β

, Lt =

√
dM2

τt
, τt =

εt
4M2

, (50)

εt =
µR2

t−1

4
, Rt−1 =

R

2(t−1)/2
, At = ln

(
4KtN

β

)
≥ 1. (51)

To achieve the accuracy ε with probability at least 1 − β (with β ∈ (0, 1]) the algorithm
R-ZO-clipped-SSTM requires

N∑
t=1

KtBt = Õ

max

d1/4M2R√
µε

,

(
dGM2√

µε3

) α
α−1


 oracle calls. (52)

With the same probability all values after the t-th restart will remain in ball B2Rt−1
(x∗).

Proof. The convergence proof of the R-clipped-SSTM method is presented for Theorem F.2 in
[35]. We use the results of equation 44 and equation 21 for each restart in calculating the number of
oracle calls.

N∑
t=1

KtBt =

N∑
t=1

O

({
d1/4M2Rt−1

εt
ln

(
d1/4M2Rt−1

√
N

εtβ

)
,

(
σRt−1√

εt

) α
α−1

ln

(
N

Bβ

(
σRt−1

εt

) α
α−1

)})
(53)

For the sake of brevity, let’s denote the first term in the maximum as ①, the second as ②, and analyse
each of them separately.

① =

N∑
t=1

O

(
max

{
d1/4M2Rt−1

εt
ln

(
d1/4M2Rt−1

√
N

εtβ

)})

=

N∑
t=1

O

(
max

{
d1/4M2

Rt−1µt
ln

(
d1/4M2

√
N

Rt−1µtβ

)})

= O

(
max

{
N∑
t=1

2
t/2 d

1/4M2

Rµ
ln

(
d1/4M2

√
N

Rµβ

)})

= O

(
max

{
d1/4M2

Rµ
ln

(
d1/4M2

√
N

Rµβ
ln

(
µR2

ε

))})

= O

(
max

{
d1/4M2√

µε
ln

(
d1/4M2

√
N

√
µεβ

ln

(
µR2

ε

))})

= Õ
(
max

{
d1/4M2√

µε

})
. (54)
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② =

N∑
t=1

O

(
max

{(
σRt−1√

εt

) α
α−1

ln

(
N

Bβ

(
σRt−1

εt

) α
α−1

)})

=

N∑
t=1

O

(
max

{(
σ

µRt−1

) α
α−1

ln

(
N

Bβ

(
σ

µRt−1

) α
α−1

)})

=

N∑
t=1

O

(
max

{(
σ

µRt−1

) α
α−1

ln

(
N

Bβ

(
σ

µRt−1

) α
α−1

)})

= O

(
max

{(
σ

µR

) α
α−1

ln

(
N

Bβ

(
σ

µR

) α
α−1

)})

= O

(
max

{(
σ

√
µε

) α
α−1

ln

(
N

Bβ

(
σ

√
µε

) α
α−1

ln

(
µR2

ε

))})

= Õ

({(
σ

√
µε

) α
α−1

})
. (55)

Substituting ①, ②, and σ = 4dGM2/ε, we conclude the proof:

N∑
t=1

KtBt = Õ

max

d1/4M2R√
µε

,

(
dGM2√

µε3

) α
α−1




B.3 MISSING PROOFS FOR ZO-CLIPPED-SEG

Algorithm 3: ZO-clipped-SEG
Input Input:

z0 ∈ Z — starting point
K — number of iterations
γ — step of the algorithm
τ — smoothing parameter
{λk}K−1

k=0 — clipping parameters

for k = 0 to K do
1. Compute F (zk, ξk1 , e

k
1), where ξk1 ∼ Dk, ek1 ∼ Sd

2 (1) sampled independently;

2. Apply clipping F̃ (zk, ξk1 , e
k
1) = clip

(
F (zk, ξk1 , e

k
1)
)
;

3. z̃k = zk − γF̃ (zk, ξk1 , e
k
1);

4. Compute F (z̃k, ξk2 , e
k
2), where ξk2 ∼ Dk, ek2 ∼ Sd

2 (1) sampled independently;

5. Apply clipping F̃ (z̃k, ξk2 , e
k
2) = clip

(
F (z̃k, ξk2 , e

k
2)
)
;

6. zk = z̃k − γF̃ (z̃k, ξk2 , e
k
2);

end

Output: z̃Kavg = 1
K+1

K∑
k=0

z̃k

Theorem B.3 (Full version of theorem 3.6). Let Assumptions 2.3, 2.11 and 2.1 be held on the set
B4R(z

∗) and

0 < γ ≤ min

{
1

160L ln 6(K+1)
β

,
20

2−α
α R

10800
1
α (K + 1)

1
ασ ln α−1

α
6(K+1)

β

}
, (56)

λk ≡ λ =
R

20γ ln 6(K+1)
β

, τ =
ε

4M2
, L =

√
dM2

τ
, (57)
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for some β ∈ (0, 1] and K > 0 such that ln 6K/β ≥ 1. Then after K iterations the iterates produced
by ZO-clipped-SEG with probability at least 1− β satisfy

GapSPP
BR(z∗)(z̃avg) ≤ 2M2τ +

9R2

2γ(K + 1)
and {zk}Kk=1 ∈ B3R(z

∗), {z̃k}Kk=1 ∈ B3R(z
∗). (58)

In particular, when γ equals the minimum from equation 56, then to achieve the desired accuracy ε
with probability at least 1− β ZO-clipped-SEG requires

K = O

(
max

{√
dM2

2R
2

ε2
ln

√
dM2

2R
2

ε2β
,

(
σR

ε

) α
α−1

ln
σR

εβ

})
iterations. (59)

Proof. Let us use the result of Theorem G.2 [35] for the smoothed function f̂(z) and the approxi-
mation of the operator F . Then according to it, with probability at least 1−β after K > 0 iterations
of Algorithm 3

GapVIP
R (z̃Kavg) ≤

9R2

2γ(K + 1)
(60)

for the smoothed function f̂(z). Moreover {zk}Kk=1 remains in the ball B3R(z
∗) and {z̃k}Kk=1 in the

ball B3R(z
∗). Using the relation between gap metrics (see equation 25) and the result of Lemma 2.4,

the following holds:

GapSPP
R (z̃Kavg) ≤ 2M2τ +

9R2

2γ(K + 1)
. (61)

Thus, for non-smooth function the next inequality is fulfilled:

GapSPP
R (z̃Kavg) ≤ 2M2τ +O

max

LR2 ln K
β

K
,
σR ln

α−1
α K

β

K
α−1
α


 . (62)

Then in order to achieve accuracy ε with probability at least 1− β Algorithm 3 requires

K = O

(
max

{√
dM2

2R
2

ε2
ln

√
dM2

2R
2

ε2β
,

(
σR

ε

) α
α−1

ln
σR

εβ

})
iterations. (63)

Corollary B.4. . Let us substitute the σ values obtained in Lemma 2.8 for the schemes OPF and
TPF operator F approximation schemes, respectively, into the result of Theorem 3.6.

1. For the one-point approximation of the F operator:

K = Õ

(
max

{√
dM2

2R
2

ε2
,

(
dGM2R

ε2

) α
α−1

})
; (64)

2. For the two-point approximation of the F operator:

K = Õ

max


√
dM2

2R
2

ε2
,

(√
dM2R

ε

) α
α−1


 . (65)

C MISSING PROOFS FOR NOISY ORACLE

For the sake of simplicity, we will introduce noisy gradient approximations schemes:

Noisy one-point feedback:

.g(x, ξ, e) =
d

τ
fδ(x+ τe, ξ)e; (66)
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Noisy two-point feedback:

.g(x, ξ, e) =
d

2τ
(fδ(x+ τe, ξ)− fδ(x− τe, ξ)) e. (67)

In our analysis we will use supplementary lemma, which estimates the influence caused by the
deterministic noise on bias and variance of gradient schemes.

Lemma C.1 (Noise accumulation). If the gradient is computed using the schemes equation 66 or
equation 67, then the for all r ∈ Rd holds:

Eξ,e [⟨g(x, ξ, e), r⟩] ≥
〈
∇f̂τ (x), r

〉
− d∆Ee [⟨e, r⟩]

τ
. (68)

Moreover, an extra factor appears in α-moment estimation:

Noisy OPF: Eξ,e [∥g(x, ξ, e)∥α2 ] ≤
1

2

(
2d

τ

)α

(Gα +∆α), (69)

Noisy TPF: Eξ,e [∥g(x, ξ, e)∥α2 ] ≤ 2α−1

[(√
dM2

21/4

)α

+

(
d∆

τ

)α
]
. (70)

Proof. 1. Firstly, we will show this result for noisy OPF scheme.

g(x, ξ, e) =
d

τ
fδ(x+ τe, ξ)e

=
d

τ
(f(x+ τe, ξ) + δ(x+ τe, ξ))e. (71)

Substitute this in the left-hand side of equation 68:

Eξ,e [⟨g(x, ξ, e), r⟩] =
d

τ
(Eξ,e [f(x+ τe, ξ)e] + Eξ,e [δ(x+ τe, ξ)e]) . (72)

The first term can be estimated by Lemma 2.4:

d

τ
Eξ,e [⟨f(x+ τe, ξ)e, r⟩] = d

τ
Ee [⟨Eξ [f(x+ τe, ξ)e] , r⟩]

=
d

τ
Ee [⟨f(x+ τe)e, r⟩]

=
〈
∇f̂τ (x), r

〉
. (73)

Applying the Assumption 3.8 we get the estimate of the second term.

d

τ
Eξ,e [⟨δ(x+ τe, ξ)e, r⟩] ≥ −d∆

τ
Ee [⟨e, r⟩] . (74)

Substituting the obtained results into equation 72 we get the desired one. The same steps
can be applied to the two-point approximation. The only difference is the replacement of
the argument x− τe by x+ τe due to the symmetry of the distribution of e.

Eξ,e [⟨g(x, ξ, e), r⟩] =
d

2τ
Eξ,e [(f(x+ τe, ξ)− f(x− τe, ξ)) e]

+
d

2τ
Eξ,e [(δ(x+ τe, ξ)− δ(x− τe, ξ)) e]

≤ d

τ
Eξ,e [f(x+ τe, ξ)e] +

d

τ
Eξ,e [δ(x+ τe, ξ)] . (75)
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2. Since the two-point gradient approximation scheme was researched in [25], we will analyse
only the one-point one.

Eξ,e [∥g(x, ξ, e)∥α2 ] =
(
d

τ

)α

Eξ,e [∥fδ(x+ τ, e, ξ)∥α2 ]

=

(
d

τ

)α

Eξ,e [∥f(x+ τ, e, ξ) + δ(x+ τ, ξ)∥α2 ]

≤ 2α−1

(
d

τ

)α

(Eξ,e [∥f(x+ τ, e, ξ)∥α2 ] + Eξ,e [∥δ(x+ τ, ξ)∥α2 ])

≤ 2α−1

(
d

τ

)α

(Gα +∆α)

≤ 1

2

(
2d

τ

)α

(Gα +∆α). (76)

We now present an auxiliary lemma from the [13].
Lemma C.2. Let e be a random vector from a uniform distribution on the unit Euclidean sphere
Sd
2 (1). Then, for arbitrary r ∈ Rd, the following holds

Ee [⟨e, r⟩] ≤
∥r∥2√

d
. (77)

Lemma C.3 (Lemma 3.9). To guarantee the convergence rate presented in the Theorems 3.1, 3.4
and 3.6, the noise level ∆ must fulfil the following constraints:

Noisy OPF: ∆ ≲ min

{
G,

ε2√
dM2R

}
, (78)

Noisy TPF: ∆ ≲
ε2√
dM2R

. (79)

Proof. To implement the results from [35], it is necessary for noisy gradient approximations to be
unbiased and have bounded variance. Thus, using the results from Lemma C.2 and Lemma C.1, one
can get √

d∆ ∥r∥2
τ

≥ Eξ,e

[〈
g(x, ξ, e)−∇f̂τ (x), r

〉]
. (80)

In our analysis smoothing parameter is equal to τ = Θ
(
εM−1

2

)
, so substituting in the equation 80

we get √
d∆M2 ∥r∥2

ε
≥ Eξ,e

[〈
g(x, ξ, e)−∇f̂τ (x), r

〉]
. (81)

To ensure that the bias does not accumulate at the α-th moment of the gradient approximation, it is
necessary for the noise term to be asymptotically smaller than the main term obtained in Lemma 2.8.

1. For OPF we get ∆α ≲ Gα =⇒ ∆ ≲ G.

2. For TPF we get
(√

dM2

21/4

)α
≲
(
d∆
τ

)α
=⇒ ∆ ≲ ε√

d
.

It is easy to notice, that the asymptotic bound for TPF is weaker, then the one obtained from bias
analysis. Therefore, we obtain next constraints for ∆:

Noisy OPF: ∆ ≲ min

{
G,

ε2√
dM2R

}
, (82)

Noisy TPF: ∆ ≲
ε2√
dM2R

. (83)
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D ADDITIONAL EXPERIMENTS

Consider a classical convex-concave bilinear optimisation problem

min
x∈Rdx

max
y∈Rdy

xTCy + ⟨ξ, z⟩ (84)

where ξ is a random dx + dy-dimensional vector from α-stable Levy distribution with α = 1.5,
∆ = 10 and z is an embedded variable from the Definition 3.5. This problem is also known as a
matrix game (see [38]). In our experiment, we set n = 100, dx = dy = 10.

As in the Section 4, we compare several with different approximation schemes (OPF or TPF) and
with and without clipping.in order to find optimal parameter values, we set the batchsize B = 10,
and then gridsearched γk in the set {1, 10, 100} and τ ∈ {0.1, 1, 10}. The best convergence had
been shown for the following parameter values:

1. ZO-SEG-OPF: γk ≡ 10, B = 10, τ = 1;
2. ZO-SEG-TPF: γk ≡ 10, B = 10, τ = 1;
3. ZO-clipped-SEG-OPF: γk ≡ 100, B = 10, τ = 1, λ = 0.1;
4. ZO-clipped-SEG-TPF: γk ≡ 100, B = 10, τ = 1, λ = 0.1.

The results of the comparison can be observed in the Figure 2.

Figure 2: Comparison of the zeroth-order stochastic extrgradient methods using different gradient
approximation schemes and clipping technique.

As can be seen, in the case of OPF-scheme, clipping technique offers a significant advantage, al-
lowing the method to start converging to higher accuracy. Also in the case of two-point gradient
approximation, a smaller amplitude of oscillations near the error floor is noticeable.
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