
Checklist306

1. For all authors...307

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s308

contributions and scope? [Yes]309

(b) Did you describe the limitations of your work? [Yes]310

(c) Did you discuss any potential negative societal impacts of your work? [N/A]311

(d) Have you read the ethics review guidelines and ensured that your paper conforms to312

them? [Yes]313

2. If you are including theoretical results...314

(a) Did you state the full set of assumptions of all theoretical results? [N/A]315

(b) Did you include complete proofs of all theoretical results? [N/A]316

3. If you ran experiments...317

(a) Did you include the code, data, and instructions needed to reproduce the main experi-318

mental results (either in the supplemental material or as a URL)? [Yes] Everything is319

in the github repo, but in light of anonymization I have put it in a zip file320

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they321

were chosen)? [Yes] All are in the code repo, more details can be found in the CRAR322

paper, also see appendix E.323

(c) Did you report error bars (e.g., with respect to the random seed after running experi-324

ments multiple times)? [Yes] Standard deviations and standard error are used.325

(d) Did you include the total amount of compute and the type of resources used (e.g., type326

of GPUs, internal cluster, or cloud provider)? [Yes] See appendix E327

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...328

(a) If your work uses existing assets, did you cite the creators? [Yes] Cited CRAR329

(b) Did you mention the license of the assets? [No] License is in repo330

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]331

The new code and data is in the github repo332

(d) Did you discuss whether and how consent was obtained from people whose data you’re333

using/curating? [N/A] No external data is used334

(e) Did you discuss whether the data you are using/curating contains personally identifiable335

information or offensive content? [N/A]336

5. If you used crowdsourcing or conducted research with human subjects...337

(a) Did you include the full text of instructions given to participants and screenshots, if338

applicable? [N/A]339

(b) Did you describe any potential participant risks, with links to Institutional Review340

Board (IRB) approvals, if applicable? [N/A]341

(c) Did you include the estimated hourly wage paid to participants and the total amount342

spent on participant compensation? [N/A]343

A Analysis local minimum344

In the following sections we provide arguments of 1) why the failing transfers of the low-dimensional345

maze specifically end up in the swapped embedding space local minimum previously visualised and346

2) why it gets stuck in this local minimum.347

A.1 Swapped embedding local minimum348

When we look at the embedding space of the converged base model in Figure 11 and look at the349

environment and the position of the agent in Figure 3, we can conclude that the state space with the350

agent on position (2,3) is mapped to the embedding value: (-0.6, 0.2). For the sake of keeping the351

example as simple as possible we will round these value to (-0.5, 0). Meaning that the agent has an352

encoding function that converts the state (which is a 8 by 8 matrix where, for the non-inverse variant,353

11

1.0 0.5 0.0 0.5 1.0
X1

1.0

0.5

0.0

0.5

1.0

X 2

 Estimated transitions (action 0, 1, 2 and 3):

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
X1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

X 2

 Estimated transitions (action 0, 1, 2 and 3):

Figure 11: Visualisation of the embedding space learned by the CRAR agent in the low dimensional
environment without any rewards (base model 2). The image on the left is the original model learned
from scratch, whereas the image on the right is the (failed) fined-tuned model trained in the inverse
environment.

an element has the value 1, 0 or 0.5 indicating a wall, path or player position, respectively) with the354

player position at (2,3), to the embedding value: (-0.5, 0). This is visualised on the left side of Figure355

12.

Figure 12: Visualisation of the swapped embedding space phenomena. The first row contains the
matrices of the actual input values, for the original (left) and inverse (right) environment (as visualised
in Figure 3). The second row contains the resulting embedding associated to that input when passed
through the simple encoding function.

356

A solution of such an encoding function could simply be: embeddingX=state(2,3)*-1, embeddingY=0,357

which results in: -0.5=0.5*-1, 0=0. Now given this function we can feed the inverse state to this358

function and see what happens. Remember that the inverse environment simply replaced the 1, 0 and359

0.5 tile values by -1, 0, and -0.5. Now if we take the same positions of all tiles but in the inverse360

fashion, such as depicted by the right image of Figure 3 and feed it to the encoding function just361

defined. We get the following result 0.5=-0.5*-1, 0=0. Meaning that we previously had an embedding362

of (-0.5, 0) and now have an embedding of (0.5,0) for the same hidden state namely having a state363

with the player at position (2,3). Which indeed results in the switched sides in the embeddings364

12

previously seen. This ofcourse assumes that the simple function can be extrapolated to other states365

with different player locations as well, which is quite trivial.366

From Figure 13 we can observe that the losses are quite similar between the failed transfer and367

the converged base model (only the transition loss is slightly bigger). This confirms that although368

the embedding space is swapped, the losses are still small. Also note that the reward (R), gamma369

(discount) and Q (model free) losses are all 0 because there is no reward and no terminal state.370

0 10 20 30 40
Number of steps (x500)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ss

R
gamma
Q
T
disentangle_t
disambiguate1
disambiguate2

0 50 100 150 200 250
Number of steps (x500)

0.0

0.1

0.2

0.3

0.4

Lo
ss

R
gamma
Q
T
disentangle_t
disambiguate1
disambiguate2

Figure 13: Visualisation of the losses over time. The left image shows the losses of the base agent,
and the right image shows the losses of the failed fine-tuned agent in the target domain. Notice the
difference in the transition loss

A.2 Stuck local minimum.371

Now that it is clear why they often end up in the local minimum with switched sides in the embedding372

space, we can focus on why they keep stuck in this local optimum. We argue that a combination373

of two problems cause it to get stuck in the local optimum, namely 1) small losses for the initial374

weight initialisation in combination with a steep slope between this point and the global optimum375

and 2) lesser degree of freedom in the optimization process due to the frozen dynamics model. In the376

following paragraphs these will be explained.377

First of all, let’s take a more in-depth look why the losses are so small. We can feed the state of the378

inverse environment through the simple encoding function and then use the resulting embedding and379

an action to feed it through the transition function. We can then calculate the transition loss based380

on this new state embedding and the embedding of the actual expected state. Remember that the381

transition loss is simply the difference between the predicted embedding based on the state and an382

action, and the embedding of the actual state where you would end up in given the action. In Figure383

14 we can observe the end result of this process.384

We take the same player location (2,3) as before, thus the base model embedding is (-0.5,0) and the385

inverse embedding is (0.5,0) (illustrated with the yellow cross). Which if we wouldn’t use rounding386

we find the actual corresponding inverse embedding (0.5, -0.25), as can be seen in the Figure 11.387

When we apply the transition function (given by the lines in Figure 11) to this embedding and the388

action ’up’, we end up in the embedding value (0.5,0.25). Whereas if we actually get the inverse389

embedding of the state with a player location of (1,3), we first observe the base embedding: (-0.5,390

0.5), then determine the simple encoding function for this state -0.5=0.5*-1, 0.5=0.5, and then finally391

calculate the inverse embedding by feeding it through the simple encoding function: 0.5=-0.5*-1,392

-0.5=-0.5, resulting in embedding value: (0.5, -0.5). Now we can approximate the transition loss by393

determining the distance between (0.5,0.25) and (0.5, -0.5). We can observe that this is quite small,394

and this is approximately the maximum transition loss that will be encountered, since it will never be395

more than two edges away (at the sides of the environment its even only one edge away).396

We conclude that because of the switched sides the structure in the positions of the embedding values397

is maintained, and therefore the transition function will predict the embedding value of the opposite398

neighbour, resulting in a loss of maximum of two edge-lengths away (which for an embedding space399

with range -1 <> 1 and 6 positions is on average 0.33 * 2). However many embedding states (28 out400

13

Figure 14: The first row contains the matrices with the actual input values, for the original player
location (left) and for the player location when taken the up action (right). The yellow cross indicates
the embedding value generated for the state with the original player location, red indicates the
embedding value after applying the transition function when given the embedding value of the yellow
cross and the up action, and the purple cross indicates the embedding value of the actual expected
state. Note that the transition loss is the distance between the purple and red cross.

of 64) reside near a side; which only have a loss of one edge length. Regarding all the other losses:401

these will be same as the base model since the positions of the states are very similar and the other402

losses mainly look at the distances between the states.403

It is easy to see that this small loss will result in a low point in the loss landscape. However a low404

point does not directly mean a local optimum, for example there can still lead a path downwards from405

this low point directly to the global optimum (lowest point). However we informally argue that this is406

not the case, and that there possible is quite a steep slope between the global minimum and the local407

minimum. So given 1) the normal environment and the converged base model and 2) the inverse408

environment and a failed fine-tuned model, we just showed that the embedding values are inversed for409

the same hidden state, for this we also showed that the losses are quite small because the structure of410

the values is maintained. Therefore the global optimum is at embedding value x and the (suboptimal411

inversed) local minimum is at value -x, and thus an embedding value i ∈ Z : −x < i < x will result412

in bigger losses because the structure is no longer maintained. More concretely, if we consider for a413

hidden state the embedding value of the base model Eb and the embedding of the failed transfer Et a414

pair (Eb, Et), then it is easy to see that for all pairs the middle value of the two values of a pair is415

always 0 (Eb = x,Et = −x, 0 = x− x). Then if all embedding states need to converge past value 0416

(which is the direct path between the stuck local minimum -x and the global optimum x) it is easy to417

see that for example the Disambiguate1 and the Disentangle loss will be at the highest point.418

The second problem arises by the fact that the frozen dynamics model offers less freedom in the419

optimization process. We argue that the lack of freedom in combination with the first problem of420

getting caught in the local minimum will cause it to be stuck. We first describe this second problem421

in an intuitive manner, after which we provide it in a formal proof format. If we consider that the422

encoder and the dynamics weights have two separate loss landscapes. Then when the dynamics423

model weights change (e.g. get updated), then for a given input the loss changes (and its gradients424

w.r.t. the weights), which means that the loss landscape of the encoder model changes since the loss425

gets backpropagated through the dynamics model to the encoder(and even if the loss doesn’t change426

but the weights do, the backpropagated gradients can change), see Theorem and Proof 2. Now if427

we consider a scenario where the encoder weights are stuck in a local minimum (which can happen428

14

because the loss function is non-convex), we can imagine that the dynamics model will keep trying429

to converge to an optimum solution which keeps changing the loss landscape of the encoder model430

which might help in escaping the local minimum, either by 1) making the local minimum of the431

encoder model a global minimum by changing the dynamics so that the model as a whole performs432

optimal, or 2) that by chance a random change in the encoder loss landscape opens a path out of the433

local minima towards the global optimum. However, when we freeze the dynamics model we lose434

this degree of freedom, and this in combination with the poor encoder weight initialisation, described435

before, with small but suboptimal losses causes it to get stuck.436

theorem Given a model ŷ which consist of an encoder and a dynamics model where the loss of the437

output of this model will be backpropagated through the dynamics model into the encoder. Then the438

changes in the dynamics model will change the loss landscape of the encoder model (this of course439

could be generalized to any model architecture with two sequential models with a shared loss).440

proof Given our model ŷ1 = w1x + b1 where w1 and b1 contain all our weights and biases of441

our encoder and dynamics model. To simplify the proof we use a simple squared error as our loss442

function (instead of the CRAR losses): L1 = (y − ŷ1)2 which is the same as L1 = (w1x+ b1 − y)2.443

Where y is the target value. Then given a small change in the weights (e.g. after an update step) of444

our dynamics model which gives a different model ŷ2 = w2x+ b2, where ŷ1 6= ŷ2 because w1 6= w2.445

Then given that the output of the models is different, it follows that the loss for a given input (x)446

is different between the two models, because: (ŷ1 − y)2 6= (ŷ2 − y)2, thus L1 6= L2. Then it also447

follows that the gradients of the losses with respect to the weights(∂L1

∂w1
= 2x(w1x + b1 − y)) are448

different: ∂L1

∂w1
6= ∂L2

∂w2
because 2x(w1x+ b1 − y) 6= 2x(w2x+ b2 − y) since w1 6= w2. Given that449

the encoder is part of the model and that the losses and gradients are different between the models, we450

can conclude that the loss landscape of the encoder model changes as the dynamics model changes451

its weights. Which implies that if we freeze the dynamics model weights, the encoder loss landscape452

will not change by means of changes in the dynamics model.453

To future illustrate this reduced freedom in the optimization process, consider the loss landscape of454

Figure 15, and take for x the set of weights of the encoder model, for y the the set of weights of the455

dynamics model, and for z the loss function (w.r.t. the weights of the encoder and dynamics model).456

Which of course is an oversimplification since the plot is displaying the y- and x-axis as an numerical457

variable, instead of a set of numerical values, but for this point it suits the needs as we can assume458

that both models only contain a single weight. Using this visualisation it is easy to see that if we459

freeze the dynamics model we can remove the y-axis since this is now a single constant value instead460

of a possible range of values, meaning that we reduce the degree of freedom of the optimization461

process by one dimension.462

Figure 15: Visualisation of a loss landscape of a
neural network[15].

We conclude that the combination of the two463

problems cause it to get stuck in a local opti-464

mum: the weight initialisation causes it to imme-465

diately find the swapped-sides-embedding solu-466

tion with small losses and a steep slope between467

this solution and the global optimum, thus find-468

ing it self in a local minimum (problem 1), and469

the dynamics model is not able to alleviate this470

problem by changing the loss landscape because471

it is frozen (problem 2). Further concluding472

that freezing the dynamics model can result in a473

sub optimal solution, worse than the pre-trained474

model or training from scratch. The sub optimal475

performance is caused by the incompatible em-476

bedding space and thus poor task performance.477

We argue that due to randomness in the learning478

process sometimes the transfer escapes the local479

optimum and thus succeeds, and sometimes it480

gets stuck and thus fails.481

15

B Losses of high-dimensional transfers482

As before we find that the losses are quite small for the failing transfers (Figure 16). However, it can483

be noted that the reward, transition and q losses remain slightly higher. This indicates that the model484

did not converge to the same global optimum, and thus did not converge to the same embedding485

space. Remarkable here is that the losses are very small, but the agent is not able to perform the task486

at all (score of -5). This phenomena is caused by that the agent doesn’t explicitly optimize the reward,487

it optimizes the implicit losses. This means that even if the agent is able to accurately estimate the488

reward for a state action pair, then the model could still have trouble collecting the rewards: for489

instance with the transition model being stuck in the swapped sides local minimum.490

Figure 16: Visualisation of the losses associated to (from left to right): a base model, a successful
transfer, and a failing transfer.

C Study of Approach Variations491

Transfer and
freeze

Transfer and
fine-tune

Random
initialization Q model Dynamics

model Reward model

Encoder

Figure 17: Variation 1: re-learn the encoder from scratch

D Study of learning rate492

In the final experiment we experiment with different learning rates for the transfers (using the original493

proposed approach). We use the following learning rates: 0.00001, 0.00005, 0.0001, 0.0005, 0.001494

and 0.005. To exclude the effect of different starting models, we use a single base model: basemodel2.495

Using this single base model, we will execute six transfers per learning rate, so a total of 36 transfers.496

From Figure 18 we can observe that 0.001, 0.0005 and 0.00005 mostly have successful transfers,497

with 0.00005 having the biggest variance. We find that 0.005, 0.0001 and 0.00001 mostly fail, but498

0.0001 and 0.00001 have quite a big variance. We conclude that the main trend we can observe499

from this experiment is that in the middle of the learning rates they perform quite well, but to the500

more extremes: 0.005 and 0.00001 they fail, which is as expected. The only exception being 0.0001,501

which appears to perform worse than both its neighbouring learning rates, even after increasing its502

sample size. We attribute this strange occurrence to the small sample sizes (e.g. 5e-05 might appear503

to perform much better than it actually should). Therefore the experiment results provide a general504

understanding of the behaviour of the different learning rates, but learning rate specific performance505

should be taken with a grain of salt.506

E Hyperparameters and compute resources per experiment507

For each experiment the used computing resources and the total usage time of the compute resource508

for the experiment are given:509

16

Figure 18: Visualisation of the average and the standard deviation of the score of 36 transfers, with
the same base model but six different learning rates with six seeds each. In the left plot the data is
grouped by the learning rate, and in the right group the data is grouped by the seed. The six extra
samples for learning rate 0.0001 have been obtained using six different seeds, these have been omitted
from the right plot due to irrelevance.

• Low dimensional maze: Nvidia GTX 1050Ti for 10 days.510

• High dimensional maze:511

– Original approach with 5 different base models (section 5.2.1): 4 nodes with an Intel®512

Xeon® Bronze 3104 with 256GB memory and 4xNvidia 1080Ti for 2 days513

– Visualisation of embedding per base model (section 5.2.2): Nvidia GTX 1050Ti for 30514

minutes515

– Performance of different approach (section 5.2.3): 4 nodes with an Intel® Xeon®516

Bronze 3104 with 256GB memory and 4xNvidia 1080Ti for 2 days517

17

