
A Additional Analysis Results614

In the part, we present results that are not included in the main text due to the space limit.615

A.1 The Usefulness of Adversarial Noises at Different Epochs616

(a) MNLI-m (b) SST-2

Figure 8: Accuracy results from delaying the injection of adversarial noises at different epochs.

In Section 3.1, we mention that no adversaries are needed at the initial epochs of adaptation. To verify,617

we conduct experiments to measure the final accuracy corresponding to starting from regular training618

and switching to PGA-1 after ts epochs, where ts ∈ [T]. Figure 8 shows that enabling PGA-1 from619

the very beginning does not offer much improvement on accuracy. However, as we delay the injection620

of adversarial noises, the model accuracy starts to increase. By delaying the injection of adversarial621

noises, we observe improved test accuracy on downstream tasks. However, it also seems that the622

adversarial noise should not be injected too late, which may inadvertently affect the accuracy. It is623

possible that a more advanced method to adaptively choose the value of ts is desired. However, given624

that (1) the primary focus of this work is to demonstrate that it is possible and effective to accelerate625

the adaptation of transformer networks via large-batch adaptation and adversarial noises and (2) the626

search space of is quite small for most downstream tasks, we leave this as an interesting research627

question for future exploration.628

B Hyperparameters629

For all configurations, we fine-tune against the GLUE datasets and set the maximum number of630

epochs to 6. We use a linear learning rate decay schedule with a warm-up ratio of 0.1. For ScaLA, we631

set λ = 1, perturbation clipping radius ω = 10−5, step size ρ = 10−4, and ts={3,5}. These values632

worked well enough that we did not feel the need to explore more. For fairness, we perform a grid633

search of learning rates in the range of {1e-5, 3e-5, 5e-5, 7e-5, 9e-5, 1e-4, 3e-4} for small batch sizes634

and {5.6e-5, 8e-5, 1e-4, 1.7e-4, 2.4e-4, 2.8e-4, 4e-4, 5.6e-4, 1e-3} for large batch sizes. We keep the635

remaining hyperparameteres unchanged.636

C Hyperparameter Tuning Cost for Large-Batch Adaptation with ScaLA637

In this part, we investigate how large-batch adaptation affects the generalizability of transformer638

networks on downstream tasks. As there are various heuristics for setting the learning rates [42,639

14, 41, 52], and because few work studies the learning rate scaling effects on adapting pre-trained640

Transformer networks, we perform a grid search on learning rates {1e-4, 3e-4,5e-4, 7e-4, 9e-4,641

1e-3, 3e-3} and batch sizes {1K, 2K, 4K, 8K} while keeping the other hyperparameters the same to642

investigate how ScaLA affects the hyperparameter tuning effort.643

Table 5 shows the results of using the square root scaling rule to decide the learning rates for large644

batch sizes vs. accuracy results with tuned learning rate results, without and with ScaLA. The first645

row represents the best accuracy found through fine-tuning with a small batch size 32. The next646

16

two rows correspond to fine-tuning with batch size 1024 using tuned learning rates vs. using the647

scaling rule. The last two rows represent fine-tuning using ScaLA with batch size 1024, also using648

tuned learning rates vs. the scaling rule. Even with square-root scaling, the large-batch baseline still649

cannot reach the small-batch accuracy (88.7 vs. 89.4). Moreover, although tuning the learning rates650

lead to better results on some datasets such as MNLI-m (84.9 vs. 85.1) and SST-2 (92.9 vs. 93.5),651

the square-root scaling rule leads to better results on other tasks such as QNLI (90.8 vs. 90) and652

QQP (91.4/88.4 vs. 90.9/87.7). So the best learning rates on fine-tuning tasks are not exactly sqrt.653

However, given that ScaLA with square-root learning rate scaling achieves on average better results654

than the grid search of learning rates (89.4 vs. 89.7), we suggest to use sqrt scaling for learning rates655

to simplify the hyperparameter tuning effort for ScaLA.656

17

Table 5: Evaluation results on hyperparameter tuning vs. using square-root learning rate scaling.
MNLI-m QNLI QQP SST-2 Avg

Bsz=32 (tuned, baseline) 84.8 90.6 91/88 93.1 89.4
Bsz=1024 (tuned, baseline) 84.3 89.3 89.6/86.1 93 88.5
Bsz=1024 (scaling rule, baseline) 83.9 89.2 90.6/87.4 92.5 88.7
Bsz=1024 (tuned, ScaLA) 85.1 90 90.9/87.7 93.5 89.4
Bsz=1024 (scaling rule, ScaLA) 84.9 90.8 91.4/88.4 92.9 89.7

D Convergence Analysis657

In this section, we provide the formal statements and detailed proofs for the convergence rate. The658

convergence analysis builds on techniques and results in [7, 53]. We consider the general problem659

of a two-player sequential game represented as nonconvex-nonconcave minimax optimization that660

is stochastic with respect to the outer (first) player playing x ∈ X while sampling ξ from Q and661

deterministic with respect to the inner (second) player playing y ∈ Y, i.e.,662

min
x

max
y

Eξ∼Q[f(x, y, ξ)] := min
x

Eξ∼Q[g(x, ξ)] (3)

Since finding the Stackelberg equilibrium, i.e., the global solution to the saddle point problem,663

is NP-hard, we consider the optimality notion of a local minimax point [23]. Since maximizing664

over y may result in a non-smooth function even when f is smooth, the norm of the gradient665

is not particularly a suitable metric to track the convergence progress of an iterative minimax666

optimization procedure. Hence, we use the gradient of the Moreau envelope [8] as the appropriate667

potential function. Let µ ∈ Rh
+. The µ-Moreau envelope for a function g : X → R is defined as668

gµ(x) := minz g(z) +
∑h

i=1
1

2µi ∥xi − zi∥2. Another reason for the choice of this potential function669

is due to the special property [38] of the Moreau envelope that if its gradient ∇x[gµ(x)] almost670

vanishes at x, such x is close to a stationary point of the original function g.671

Assumptions: We assume that X =
⊔h

i=1 Xi is partitioned into h disjoint groups , i.e., in terms672

of training a neural network, we can think of the network having the parameters partitioned into673

h (hidden) layers. The measure Q characterizes the training data. Let ∇̂xf(x, y) denote the noisy674

estimate of the true gradient ∇xf(x, y). We assume that the noisy gradients are unbiased, i.e.,675

E[∇̂xf(x, y)] = ∇xf(x, y). For each group i ∈ [h], we make the standard (groupwise) boundedness676

assumption [11] on the variance of the stochastic gradients, i.e., E∥∇̂i
xf(x, y)−∇i

xf(x, y)∥2 ≤ σ2
i ,677

∀i ∈ [h]. We assume that f(x, y) has Lipschitz continuous gradients. Specifically, let f(x, y) be678

α-smooth in x where α := (α1, . . . , αh) denotes the h-dimensional vector of (groupwise) Lipschitz679

parameters, i.e., ∥∇i
xf(xa, y)−∇i

xf(xb, y)∥ ≤ αi∥xi
a − xi

b∥, ∀i ∈ [h] and xa, xb ∈ X, y ∈ Y. Let680

κα := maxi αi

mini αi
.681

Super-scripts are used to index into a vector (i denotes the group index and j denotes an element in682

group i). For any c ∈ R, the function ν : R→ [L,U] clips its values, i.e., ν(c) := max(L,min(c,U))683

where L < U . Let ∥.∥, ∥.∥1 and ∥.∥∞ denote the ℓ2, ℓ1, and ℓ∞ norms. We assume that the true684

gradients are bounded, i.e., ∥∇xf(x, y)∥∞ ≤ G.685

First, we begin with relevant supporting lemmas. The following lemma characterizes the convexity686

of an additive modification of g.687

Lemma D.1 ([28, 23, 36]). Let g(x) := maxy f(x, y) with f being α-smooth in x where α ∈ Rh
+ is688

the vector of groupwise Lipschitz parameters. Then, g(x) +
∑h

i=1
αi

2 ∥x
i∥2 is convex in x.689

The following property of the Moreau envelope relates it to the original function.690

Lemma D.2 ([38]). Let g be defined as in Lemma D.1. Let x̂ = argminx̃ g(x̃)+
∑h

i=1
1

2µi ∥x̃i−xi∥2.691

Then, ∥gµ(x)∥ ≤ ϵ implies ∥x̂− x∥ ≤ ∥µ∥∞ϵ and minh ∥h∥ ≤ ϵ with h ∈ ∂g where ∂g denotes the692

subdifferential of g.693

We now present the formal version of Theorem 3.1 in Theorem D.3. Note that Lemma D.2 facilitates694

giving the convergence guarantees in terms of the gradient of the Moreau envelope. Recall that695

t ∈ [T] denotes the epochs corresponding to the outer maximization. Without loss of generality, we696

18

set the delay parameter for injection of the adversarial perturbation in Algorithm 1 as ts = 0. Here,697

we assume that the PGA provides an ϵ-approximate maximizer.698

Theorem D.3 (Groupwise outer minimization with an ϵ-approximate inner maximization oracle).699

Let us define relevant constants as D :=
(
g1/2α(x0)− E(minx g(x))

)
being the optimality gap due700

to initialization, κα := maxi αi

mini αi
being the condition number, ∥∇xf(x, y)∥∞ ≤ G being gradient701

bound, Z := maxi,j,t
(x̂i,j

t −xi,j
t)

(∇i,j
t)

σi being the variance term, L,U being clipping constants such that702

L ≤ U . For the outer optimization, setting the learning rate as η = 1
U
√
T

and scaling batch size as703

b = 16TL2Z2

U2 , we have704

E
[
∥∇g1/2α(x)∥2

]
≤ 4ϵ∥α∥∞ +

2καDG√
T

(4)

where x is the estimator obtained from running T steps of Algorithm 1 and picking xt uniformly at705

random for t ∈ [T].706

Proof. In this proof, for brevity, we define the vector ∇t := ∇xf(x, y), i.e., the gradient of the707

objective with respect to x, evaluated at the outer step t. Since evaluating gradients using mini-batches708

produces noisy gradients, we use ∇̂ to denote the noisy version of a true gradient∇, i.e., ∇̂ = ∇+∆709

for a noise vector ∆. For any outer step t, we have f(xt, ŷ) ≥ g(xt)− ϵ where ŷ is an ϵ-approximate710

maximizer. For any x̃ ∈ X, using the smoothness property (Lipschitz gradient) of f , we have711

g(x̃) ≥ f(x̃, yt)

≥ f(xt, yt) +

h∑
i=1

⟨∇i
t, x̃

i − xi
t⟩ −

h∑
i=1

αi

2
∥x̃i − xi

t∥2

≥ g(xt)− ϵ+

h∑
i=1

⟨∇i
t, x̃

i − xi
t⟩ −

h∑
i=1

αi

2
∥x̃i − xi

t∥2 (5)

Let ϕµ(x, z) := g(z) +
∑h

i=1
1

2µi ∥xi − zi∥2. Recall that the µ-Moreau envelope for g is defined as712

gµ(x) := minz ϕµ(x, z) and its gradient is the groupwise proximal operator given by ∇x[gµ(x)] =713 [
1
µ1

(
x1 − argminz1 ϕµ(x, z)

)
, . . . , 1

µh

(
xh − argminzh ϕµ(x, z)

)]
.714

Now, let x̂t = argminx ϕ1/2α(xt, x) = argminx

(
g(x) +

∑h
i=1 αi∥xi

t − xi∥2
)

. Then, plugging715

in the update rule for x at step t+1 in terms of quantities at step t, using the shorthand νit := ν(∥xi
t∥)716

19

and conditioning on the filtration up to time t, we have717

g1/2α(xt+1) ≤ g(x̂t) +

h∑
i=1

αi∥xi
t+1 − x̂i

t∥2

≤ g(x̂t) +

h∑
i=1

αi

∥∥∥∥∥xi
t − ηtν

i
t

∇̂i
t

∥∇̂i
t∥
− x̂i

t

∥∥∥∥∥
2

≤ g(x̂t) +

h∑
i=1

αi

∥∥xi
t − x̂i

t

∥∥2 + h∑
i=1

2αiηt

〈
νit
∇̂i

t

∥∇̂i
t∥
, x̂i

t − xi
t

〉
+

h∑
i=1

αiη
2
t (ν

i
t)

2

≤ g1/2α(xt) +

h∑
i=1

2αiηt

〈
νit
∇̂i

t

∥∇̂i
t∥
, x̂i

t − xi
t

〉
+

h∑
i=1

αiη
2
t (ν

i
t)

2

≤ g1/2α(xt) + 2ηt

h∑
i=1

αiν
i
t

di∑
j=1

(
∇̂i,j

t

∥∇̂i
t∥
− ∇

i,j
t

∥∇i
t∥

+
∇i,j

t

∥∇i
t∥

)
× (x̂i,j

t − xi,j
t) +

h∑
i=1

αiη
2
t (ν

i
t)

2

≤ g1/2α(xt) + 2ηt

h∑
i=1

αiν
i
t

di∑
j=1

(
∇i,j

t

∥∇i
t∥

)
× (x̂i,j

t − xi,j
t)

+ 2ηt

h∑
i=1

αiν
i
t

di∑
j=1

(
∇̂i,j

t

∥∇̂i
t∥
− ∇

i,j
t

∥∇i
t∥

)
× (x̂i,j

t − xi,j
t) +

h∑
i=1

αiη
2
t (ν

i
t)

2

≤ g1/2α(xt) + 2ηt

h∑
i=1

αiν
i
t

∥∇i
t∥
〈
∇i

t, x̂
i
t − xi

t

〉
+ 2ηt

h∑
i=1

αiν
i
t

di∑
j=1

(
∇i,j

t +∆i,j
t

∥∇i
t +∆i

t∥
− ∇

i,j
t

∥∇i
t∥

)
× (x̂i,j

t − xi,j
t) +

h∑
i=1

αiη
2
t (ν

i
t)

2

20

718

≤ g1/2α(xt) + 2ηtU
h∑

i=1

αi

∥∇i
t∥
〈
∇i

t, x̂
i
t − xi

t

〉
+ 2ηt

h∑
i=1

αiν
i
t

di∑
j=1

(
∥∇i

t∥(∇
i,j
t)(∇i,j

t +∆i,j
t)− ∥∇i

t +∆i
t∥(∇

i,j
t)2

∥∇i
t +∆i

t∥∥∇i
t∥

)
× (x̂i,j

t − xi,j
t)

(∇i,j
t)

+

h∑
i=1

αiη
2
t (ν

i
t)

2

E1

≤ g1/2α(xt) + 2ηtU max
i

αi

∥∇i
t∥

(
g(x̂t)− g(xt) + ϵ+

h∑
i=1

αi

2
∥x̂i − xi

t∥2
)

+ 2ηt

h∑
i=1

αiν
i
t max

j

(x̂i,j
t − xi,j

t)

(∇i,j
t)

(
⟨∇i

t,∇i
t +∆i

t⟩ − ∥∇i
t +∆i

t∥∥∇i
t∥

∥∇i
t +∆i

t∥

)
+

h∑
i=1

αiη
2
t (ν

i
t)

2

≤ g1/2α(xt) + 2ηtU max
i

αi

∥∇i
t∥

(
g(x̂t)− g(xt) + ϵ+

h∑
i=1

αi

2
∥x̂i − xi

t∥2
)

− 2ηt

h∑
i=1

αiν
i
t max

j

(x̂i,j
t − xi,j

t)

(∇i,j
t)

(
∥∇i

t +∆i
t∥∥∇i

t∥ − ∥∇i
t +∆i

t∥2 + ⟨∆i
t,∇i

t +∆i
t⟩

∥∇i
t +∆i

t∥

)

+

h∑
i=1

αiη
2
t (ν

i
t)

2 (6)

≤ g1/2α(xt) + 2ηtU max
i

αi

∥∇i
t∥

(
g(x̂t)− g(xt) + ϵ+

h∑
i=1

αi

2
∥x̂i − xi

t∥2
)

− 2ηt

h∑
i=1

αiν
i
t max

j

(x̂i,j
t − xi,j

t)

(∇i,j
t)

(
∥∇i

t∥ − ∥∇i
t +∆i

t∥ −
|⟨∆i

t,∇i
t +∆i

t⟩|
∥∇i

t +∆i
t∥

)
+

h∑
i=1

αiη
2
t (ν

i
t)

2

E2

≤ g1/2α(xt) + 2ηtU max
i

αi

∥∇i
t∥

(
g(x̂t)− g(xt) + ϵ+

h∑
i=1

αi

2
∥x̂i − xi

t∥2
)

− 2ηt

h∑
i=1

αiν
i
t max

j

(x̂i,j
t − xi,j

t)

(∇i,j
t)

(
∥∇i

t∥ − ∥∇i
t +∆i

t∥ − ∥∆i
t∥
)
+

h∑
i=1

αiη
2
t (ν

i
t)

2

E3

≤ g1/2α(xt) + 2ηtU max
i

αi

∥∇i
t∥

(
g(x̂t)− g(xt) + ϵ+

h∑
i=1

αi

2
∥x̂i − xi

t∥2
)

− 4ηt

h∑
i=1

αiν
i
t max

j

(x̂i,j
t − xi,j

t)

(∇i,j
t)

∥∆i
t∥+

h∑
i=1

αiη
2
t (ν

i
t)

2

g1/2α(xT)
E4

≤ g1/2α(x0) + 2U
T−1∑
t=0

ηt max
i

αi

∥∇i
t∥

(
g(x̂t)− g(xt) + ϵ+

h∑
i=1

αi

2
∥x̂i − xi

t∥2
)

− 4

T−1∑
t=0

ηt

h∑
i=1

αiν
i
t max

j

(x̂i,j
t − xi,j

t)

(∇i,j
t)

∥∆i
t∥+

T−1∑
t=0

h∑
i=1

αiη
2
t (ν

i
t)

2

where we have used Hölder’s inequality along with bound (5) in E1, Cauchy-Schwarz inequality in719

E2, triangle inequality in E3, telescoping sum in E4. Rearranging and using ηt = η in E5 along with720

21

Hölder’s inequality,721

1

2ηU
(
g1/2α(xT)− g1/2α(x0)

)
≤

T−1∑
t=0

max
i

αi

∥∇i
t∥

(
g(x̂t)− g(xt) + ϵ+

h∑
i=1

αi

2
∥x̂i − xi

t∥2
)

− 2

U

T−1∑
t=0

h∑
i=1

αiν
i
t max

j

(x̂i,j
t − xi,j

t)

(∇i,j
t)

∥∆i
t∥+

η

2U

T−1∑
t=0

h∑
i=1

αi(ν
i
t)

2

1

2ηU
(
g1/2α(xT)− g1/2α(x0)

) E5

≤ max
i,t

αi

∥∇i
t∥

T−1∑
t=0

(
g(x̂t)− g(xt) + ϵ+

h∑
i=1

αi

2
∥x̂i − xi

t∥2
)

− 2

U

T−1∑
t=0

h∑
i=1

αiν
i
t max

j

(x̂i,j
t − xi,j

t)

(∇i,j
t)

∥∆i
t∥+

η

2U

T−1∑
t=0

h∑
i=1

αi(ν
i
t)

2

Dividing by T and rearranging,722

1

T

T−1∑
t=0

(
g(xt)− g(x̂t)−

h∑
i=1

αi

2
∥x̂i − xi

t∥2
)
≤ ϵ− 1

2ηUζT
(
g1/2α(xT)− g1/2α(x0)

)
− 2

UζT

T−1∑
t=0

h∑
i=1

αiν
i
t max

j

(x̂i,j
t − xi,j

t)

(∇i,j
t)

∥∆i
t∥

+
η

2UζT

h∑
i=1

αi

T−1∑
t=0

(νit)
2

where we define ζ := maxi,t
αi

∥∇i
t∥

. Defining D :=
(
g1/2α(x0)− E(minx g(x))

)
and taking expec-723

tation with respect to ξ on both sides, we have724

1

T

T−1∑
t=0

E

(
g(xt)− g(x̂t)−

h∑
i=1

αi

2
∥x̂i − xi

t∥2
)
≤ ϵ+

D
2ηUζT

− 2L
UζT

T−1∑
t=0

h∑
i=1

αi max
j

(x̂i,j
t − xi,j

t)

(∇i,j
t)

E∥∆i
t∥+

ηU∥α∥1
2ζ

E6

≤ ϵ+
D

2ηUζT

− 2L
UζT

T−1∑
t=0

h∑
i=1

αi max
j

(x̂i,j
t − xi,j

t)

(∇i,j
t)

σi√
b
+

ηU∥α∥1
2ζ

E7

≤ ϵ+
D

2ηUζT

− 2L∥α∥1
Uζ
√
b

max
i,j,t

(x̂i,j
t − xi,j

t)

(∇i,j
t)

σi +
ηU∥α∥1

2ζ

E8= ϵ+
D

2ηUζT
− 2L∥α∥1Z
Uζ
√
b

+
ηU∥α∥1

2ζ
(7)

where we have used the assumption on the variance of stochastic gradients in E6, Hölder’s inequality725

in E7 and we define Z := maxi,j,t
(x̂i,j

t −xi,j
t)

(∇i,j
t)

σi in E8; b denotes batch size. Now, we lower bound726

22

the left hand side using the convexity of the additive modification of g.727

g(xt)− g(x̂t)−
h∑

i=1

αi

2
∥x̂i − xi

t∥2

≥ g(xt) + 0− g(x̂t)−
h∑

i=1

αi∥x̂i − xi
t∥2 +

h∑
i=1

αi

2
∥x̂i − xi

t∥2

≥

((
g(xt) +

h∑
i=1

αi∥xi
t − xi

t∥2
)
−min

x

(
g(xt) +

h∑
i=1

αi∥xi − xi
t∥2
))

+

h∑
i=1

αi

2
∥x̂i − xi

t∥2

≥
h∑

i=1

αi

2
∥x̂i − xi

t∥2 +
h∑

i=1

αi

2
∥x̂i − xi

t∥2=
h∑

i=1

4α2
i

4αi
∥x̂i − xi

t∥2

E9

≥ 1

4maxi αi
∥∇g1/2α(xt)∥2 (8)

where we have used the expression for the gradient of the Moreau envelope in E9. Combining the728

inequalities from Equation (8) and Equation (7), we have729

1

T

T−1∑
t=0

E
(

1

4maxi αi
∥∇g1/2α(xt)∥2

)
≤ ϵ+

D
2ηUζT

+

(
ηU
2ζ
− 2LZ
Uζ
√
b

)
∥α∥1

Setting the learning rate as η = 1
U
√
T

and batch size as b = 16TL2Z2

U2 ,730

1

T

T−1∑
t=0

E
[
∥∇g1/2α(xt)∥2

]
≤ 4ϵmax

i
αi +

2Dmaxi αi

ζ
√
T

Now, to simplify ζ, using the inequality that maxk(ak · bk) ≥ minka aka ·minkb
bkb

for two finite731

sequences {a, b} with positive values, along with the bounded gradients assumption, we have732

1

T

T−1∑
t=0

E
[
∥∇g1/2α(xt)∥2

]
≤ 4ϵmax

i
αi +

2DGmaxi αi√
T mini αi

= 4ϵ∥α∥∞ +
2καDG√

T

where κα := maxi αi

mini αi
.733

In analyzing inexact version, as in Theorem D.3, we assumed the availability of an adversarial oracle.734

Next, we open up the adversarial oracle to characterize the oracle-free complexity. In order to do this,735

we will assume additional properties about the function f as well as our deterministic perturbation736

space, Yt ⊆ Y, ∀t ∈ [T]. Note that, for any given t, yτ ∈ Yt, ∀τ ∈ T . We recall the following737

guarantee for generalized non-convex projected gradient ascent.738

Lemma D.4 ([21]). For every t, Let f(xt, ·) satisfy restricted strong convexity with parameter C and739

restricted strong smoothness with parameter S over a non-convex constraint set with S/C < 2, ie,740
C
2 ∥z−y∥2 ≤ f(xt, y)−f(xt, z)−⟨∇zf(xt, z), y− z⟩ ≤ S

2 ∥z−y∥2 for y, z ∈ Yt. For any given t,741

let the PGA-T algorithm yτ ← Πϵ[yτ−1 + ρ∇yf(xt, y)] be executed with step size ρ = 1/S. Then742

after at most T = O
(

C
2C−S log 1

ϵ

)
steps, f(xt, yT) ≥ maxy f(xt, y)− ϵ.743

Using Theorem D.3 and Lemma D.4 (together with the additional restricted strong convex-744

ity/smoothness assumptions), we have the following theorem on the full oracle-free rates for Algo-745

rithm 1.746

Theorem D.5 (Groupwise outer minimization with inner maximization using projected gradient747

ascent). Setting the inner iteration count as T = O
(

C
2C−S log 8∥α∥∞

ϵ

)
and the outer iteration count748

as T = 16καD2G2

ϵ2 , for a combined total of O(1
ϵ2 log

1
ϵ) adaptive adversarial iterations, Algorithm 1749

achieves E
[
∥∇g1/2α(x)∥2

]
≤ ϵ.750

23

	Additional Analysis Results
	The Usefulness of Adversarial Noises at Different Epochs

	Hyperparameters
	Hyperparameter Tuning Cost for Large-Batch Adaptation with ScaLA
	Convergence Analysis

