
Published as a conference paper at ICLR 2025

SECOND-ORDER MIN-MAX OPTIMIZATION
WITH LAZY HESSIANS

Lesi Chen ∗

IIIS, Tsinghua University & Shanghai Qizhi Institute
chenlc23@mails.tsinghua.edu.cn

Chengchang Liu ∗

The Chinese University of Hong Kong
7liuchengchang@gmail.com

Jingzhao Zhang †

IIIS, Tsinghua University & Shanghai Qizhi Institute & Shanghai AI Lab
jingzhaoz@mail.tsinghua.edu.cn

ABSTRACT

This paper studies second-order methods for convex-concave minimax optimiza-
tion. Monteiro & Svaiter (2012) proposed a method to solve the problem with
an optimal iteration complexity of O(ϵ−3/2) to find an ϵ-saddle point. However,
it is unclear whether the computational complexity, O((N + d2)dϵ−2/3), can be
improved. In the above, we follow Doikov et al. (2023) and assume the com-
plexity of obtaining a first-order oracle as N and the complexity of obtaining a
second-order oracle as dN . In this paper, we show that the computation cost
can be reduced by reusing Hessian across iterations. Our methods take the over-
all computational complexity of Õ((N + d2)(d + d2/3ϵ−2/3)), which improves
those of the previous methods by a factor of d1/3. Furthermore, we generalize
our method to strongly-convex-strongly-concave minimax problems and establish
the complexity of Õ((N + d2)(d+ d2/3κ2/3)) when the condition number of the
problem is κ, enjoying a similar speedup upon the state-of-the-art method. Nu-
merical experiments on both real and synthetic datasets also verify the efficiency
of our method.

1 INTRODUCTION

We consider the following minimax optimization problem:

min
x∈Rdx

max
y∈Rdy

f(x,y), (1)

where we suppose f(x,y) is (strongly-)convex in x and (strongly-)concave in y. This setting
covers many useful applications, including functionally constrained optimization (Xu, 2020), game
theory (Von Neumann & Morgenstern, 1947), robust optimization (Ben-Tal et al., 2009), fairness-
aware machine learning (Zhang et al., 2018), reinforcement learning (Du et al., 2017; Wang, 2017;
Paternain et al., 2022; Wai et al., 2018), decentralized optimization (Kovalev et al., 2021; 2020),
AUC maximization (Ying et al., 2016; Hanley & McNeil, 1982; Yuan et al., 2021).

First-order methods are widely studied for this problem. Classical algorithms include ExtraGradient
(EG) (Korpelevich, 1976; Nemirovski, 2004), Optimistic Gradient Descent Ascent (OGDA) (Popov,
1980; Mokhtari et al., 2020a;b), Hybrid Proximal Extragradient (HPE) (Monteiro & Svaiter, 2010),
and Dual Extrapolation (DE) (Nesterov & Scrimali, 2006; Nesterov, 2007). When the gradient of
f(· , ·) is L-Lipschitz continuous, these methods achieve the rate of O(ϵ−1) under the convex-
concave (C-C) setting and the rate of O((L/µ) log(ϵ−1)) when f(· , ·) is µ-strongly convex in x
and µ-strongly-concave in y (SC-SC) for µ > 0. They are all optimal in C-C and SC-SC settings
due to the lower bounds reported by (Nemirovskij & Yudin, 1983; Zhang et al., 2022a).

∗
Equal contributions.

†
The corresponding author.

1

Published as a conference paper at ICLR 2025

Second-order methods usually lead to faster rates than first-order methods when the Hessian of
f(· , ·) is ρ-Lipschitz continuous. A line of works (Nesterov & Scrimali, 2006; Huang et al., 2022)
extended the celebrated Cubic Regularized Newton (CRN) (Nesterov & Polyak, 2006) method
to minimax problems with local superlinear convergence rates and global convergence guarantee.
However, the established global convergence rates of O(ϵ−1) by Nesterov & Scrimali (2006) and
O((Lρ/µ2) log(ϵ−1)) by Huang et al. (2022) under C-C and SC-SC conditions are no better than
the optimal first-order methods. Another line of work generalizes the optimal first-order methods
to higher-order methods. Monteiro & Svaiter (2012) proposed the Newton Proximal Extragradient
(NPE) method with a global convergence rate of O(ϵ−2/3 log log(ϵ−1)) under the C-C conditions.
This result nearly matches the lower bounds (Adil et al., 2022; Lin & Jordan, 2024), except an addi-
tional O(log log(ϵ−1)) factor which is caused by the implicit binary search at each iteration. Bullins
& Lai (2022); Adil et al. (2022); Huang & Zhang (2022); Lin et al. (2022) provided a simple proof
of NPE motivated by the EG analysis and showed that replacing the quadratic regularized Newton
step with the cubic regularized Newton (CRN) step in NPE achieves the optimal second-order oracle
complexity of O(ϵ−2/3). Recently, Alves & Svaiter (2023) proposed a search-free NPE method to
achieve the optimal second-order oracle complexity with pure quadratic regularized Newton step
based on ideas from homotopy. Over the past decade, researchers also proposed various second-
order methods, in addition to the NPE framework, that achieve the same convergence rate, such as
the second-order extensions of OGDA (Jiang & Mokhtari, 2022; Jiang et al., 2024) (which we refer
to as OGDA-2) and DE (Lin & Jordan, 2024) (they name the method Persesus). The results for
C-C problems can also be extended to SC-SC problems, where Jiang & Mokhtari (2022) proved
the OGDA-2 can converge at the rate of O((ρ/µ)2/3 + log log(ϵ−1)), and Huang & Zhang (2022)
proposed the ARE-restart with the rate of O((ρ/µ)2/3 log log(ϵ−1)).

Although the aforementioned second-order methods Adil et al. (2022); Lin & Jordan (2024); Lin
et al. (2022); Jiang & Mokhtari (2022); Monteiro & Svaiter (2012) enjoy an improved convergence
rate over the first-order methods and have achieved optimal iteration complexities, they require
querying one new Hessian at each iteration and solving a matrix inversion problem at each Newton
step, which leads to a O(d3) computational cost per iteration. This becomes the main bottleneck that
limits the applicability of second-order methods. Liu & Luo (2022a) proposed quasi-Newton meth-
ods for saddle point problems that access one Hessian-vector product instead of the exact Hessian
for each iteration. The iteration complexity is O(d2) for quasi-Newton methods. However, their
methods do not have a global convergence guarantee under general (S)C)-(S)C conditions. Jiang
et al. (2023) proposed an online-learning guided Quasi-Newton Proximal Extragradient (QNPE) al-
gorithm, but their method relies on more complicated subroutines than classical Newton methods.
Although the oracle complexity of QNPE is strictly better than the optimal first-order method EG,
their method is worse in terms of total computational complexity.

In this paper, we propose a computation-efficient second-order method, which we call LEN (Lazy
Extra Newton method). In contrast to all existing second-order methods or quasi-Newton methods
for minimax optimization problems that always access new second-order information for the coming
iteration, LEN reuses the second-order information from past iterations. Specifically, LEN solves
a cubic regularized sub-problem using the Hessian from the snapshot point that is updated every
m iteration, then conducts an extra-gradient step by the gradient from the current iteration. We
provide a rigorous theoretical analysis of LEN to show it maintains fast global convergence rates
and improves the (near)-optimal second-order methods (Monteiro & Svaiter, 2012) in terms of the
overall computational complexity. We summarize our contributions as follows (also see Table 1).

• When the object function f(· , ·) is convex in x and concave in y, we propose LEN and
prove that it finds an ϵ-saddle point in O(m2/3ϵ−2/3) iterations. Under Assumption 3.4,
where the complexity of calculating F (z) is N and the complexity of calculating ∇F (z)
is dN , the optimal choice is m = Θ(d). In this case, LEN only requires a computational
complexity of Õ((N+d2)(d+d2/3ϵ−2/3)), which is strictly better than O((N+d2)dϵ−2/3)
for the existing optimal second-order methods by a factor of d1/3.

• When the object function f(· , ·) is µ-strongly-convex in x and µ-strongly-concave in y,
we apply the restart strategy on LEN and propose LEN-restart. We prove the algorithm can
find an ϵ-root with Õ((N + d2)(d + d2/3(ρ/µ)2/3)) computational complexity, where ρ
means the Hessian of f(·, ·) is ρ Lipschitz-continuous. Our result is strictly better than the
Õ((N + d2)d(ρ/µ)2/3) in prior works.

2

Published as a conference paper at ICLR 2025

Table 1: We compare the required computational complexity to achieve an ϵ-saddle point of the
proposed LEN with the optimal choice m = Θ(d) and other existing algorithms on both convex-
concave (C-C) and strongly-convex-strongly-concave (SC-SC) problems. Here, d = dx + dy is the
dimension of the problem. We assume the gradient is L-Lipschitz continuous for EG and the Hessian
is ρ-Lipschitz continuous for others. We count each gradient oracle call with N computational
complexity, and each Hessian oracle with dN computational complexity.

Setup Method Computational Cost

EG (Korpelevich, 1976) O((N + d)ϵ−1)

NPE (Monteiro & Svaiter, 2012) Õ((N + d2)dϵ−2/3)

C-C search-free NPE (Alves & Svaiter, 2023) O((N + d2)dϵ−2/3)

OGDA-2 (Jiang & Mokhtari, 2022) O((N + d2)dϵ−2/3)

LEN (Theorem 4.3) Õ((N + d2)(d+ d2/3ϵ−2/3))

EG (Korpelevich, 1976) Õ((N + d)(L/µ))

OGDA-2 (Jiang & Mokhtari, 2022) O((N + d2)d(ρ/µ)2/3)

SC-SC ARE-restart (Huang & Zhang, 2022) Õ((N + d2)d(ρ/µ))2/3)

Perseus-restart (Lin & Jordan, 2024) Õ((N + d2)d(ρ/µ)2/3)

LEN-restart (Corollary 4.1) Õ((N + d2)(d+ d2/3(ρ/µ)2/3))

Notations. Throughout this paper, log is base 2 and log+(·) := 1 + log(·). We use ∥ · ∥ to
denote the spectral norm and the Euclidean norm of matrices and vectors, respectively. We denote
π(t) = t− (t mod m) where m ∈ N+.

2 RELATED WORKS AND TECHNICAL CHALLENGES

Lazy Hessian in minimization problems. The idea of reusing Hessian was initially presented
by Shamanskii (1967) and later incorporated into the Levenberg-Marquardt method, the Damped
Newton method, and the proximal Newton method (Fan, 2013; Lampariello & Sciandrone, 2001;
Wang et al., 2006; Adler et al., 2020). However, the explicit advantage of lazy Hessian update over
ordinary Newton (-type) update was not discovered until the recent work of (Doikov et al., 2023;
Chayti et al., 2023). They applied the following lazy Hessian update on cubic regularized Newton
(CRN) methods (Nesterov & Polyak, 2006):

zt+1 = argmin
z∈Rd

{
⟨F (zt), z − zt⟩+

1

2
⟨∇F (zπ(t))(z − zt), z − zt⟩+

M

6
∥z − zt∥3

}
, (2)

where M ≥ 0 and F : Rd → Rd is the gradient field of a convex function. They establish the con-
vergence rates of O(

√
mϵ−3/2) for nonconvex optimization (Doikov et al., 2023), and O(

√
mϵ−1/2)

for convex optimization (Chayti et al., 2023) respectively. Such rates lead to the total computational
cost of Õ((N + d2)(d+

√
dϵ−3/2)) and Õ((N + d2)(d+

√
dϵ−1/2)) by setting m = Θ(d), which

strictly improve the result by classical CRN methods by a factor of
√
d in both setups.

We have also observed that the idea of the “lazy Hessian” is widely used in practical second-order
methods. KFAC (Martens & Grosse, 2015; Grosse & Martens, 2016) approximates the Fisher infor-
mation matrix and uses an exponential moving average (EMA) to update the estimate of the Fisher
information matrix, which can be viewed as a soft version of lazy update. Sophia (Liu et al., 2024)
estimates a diagonal Hessian matrix as a pre-conditioner, which is updated in a lazy manner to re-
duce the complexity. C2EDEN (Liu et al., 2023) atomizes the communication of local Hessian in
several consecutive iterations, which also benefits from the idea of lazy updates.

Challenge of using lazy Hessian updates in minimax problems. In comparison to previous work
on lazy Hessian, our LEN and LEN-restart methods demonstrate the advantage of using lazy Hessian

3

Published as a conference paper at ICLR 2025

for a broader class of optimization problems, the minimax problems. Our analysis differs from the
ones in Doikov et al. (2023); Chayti et al. (2023). Their methods only take a lazy CRN update (2)
at each iteration, which makes it easy to bound the error of lazy Hessian updates using Assumption
3.1 and the triangle inequality in the following way:

∥∇F (zt)−∇F (zπ(t))∥ ≤ ρ∥zπ(t) − zt∥ ≤ ρ

t−1∑
i=π(t)

∥zi − zi+1∥.

Our method, on the other hand, not only takes a lazy (regularized) Newton update but also requires
an extra gradient step (Line 4 in Algorithm 1). Thus, the progress of one Newton update {∥zi+1/2−
zi∥}ti=π(t) cannot directly bound the error term ∥zt−zπ(t)∥ introduced by the lazy Hessian update.
Moreover, for minimax problems the matrix ∇F (zπ(t)) is no longer symmetric, which leads to
different analysis and implementation of sub-problem solving (Section 4.3). We refer the readers to
Section 4 for more detailed discussions.

3 PRELIMINARIES

In this section, we introduce the notation and basic assumptions used in our work. We start with
several standard definitions for Problem (1).

Definition 3.1. We call a function f(x,y) : Rdx × Rdy → R has ρ-Lipschitz Hessians if we have

∥∇2f(x,y)−∇2f(x′,y′)∥ ≤ ρ

∥∥∥∥[x− x′

y − y′

]∥∥∥∥ , ∀(x,y), (x′,y′) ∈ Rdx × Rdy .

Definition 3.2. A differentiable function f(·, ·) is µ-strongly-convex-µ-strongly-concave for some
µ > 0 if

f(x′,y) ≥ f(x,y) + (x′ − x)⊤∇xf(x,y) +
µ

2
∥x− x′∥2, ∀x′,x ∈ Rdx ,y ∈ Rdy ;

f(x,y′) ≤ f(x,y) + (y′ − y)⊤∇yf(x,y)−
µ

2
∥y − y′∥2, ∀y′,y ∈ Rdy ,x ∈ Rdx .

We say f is convex-concave if µ = 0.

We are interested in finding a saddle point of Problem (1), formally defined as follows.

Definition 3.3. We call a point (x∗,y∗) ∈ Rdx ×Rdy a saddle point of a function f(·, ·) if we have

f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗), ∀x ∈ Rdx , y ∈ Rdy .

Next, we introduce all the assumptions made in this work. In this paper, we focus on Problem (1)
that satisfies the following assumptions.

Assumption 3.1. We assume the function f(·, ·) is twice continuously differentiable, has ρ-Lipschitz
continuous Hessians, and has at least one saddle point (x∗,y∗).

We will study convex-concave problems and strongly-convex-strongly-concave problems.

Assumption 3.2 (C-C setting). We assume the function f(·, ·) is convex in x and concave in y.

Assumption 3.3 (SC-SC setting). We assume the function f(·, ·) is µ-strongly-convex-µ-strongly-
concave. We denote the condition number as κ := ρ/µ.

We let d := dx+dy and denote the aggregated variable z := (x,y) ∈ Rd. We also denote the GDA
field of f and its Jacobian as

F (z) :=

[
∇xf(x,y)
−∇yf(x,y)

]
, ∇F (z) :=

[
∇2

xxf(x,y) ∇2
xyf(x,y)

−∇2
yxf(x,y) −∇2

yyf(x,y)

]
. (3)

The GDA field of f(·, ·) has the following properties.

Lemma 3.1 (Lemma 2.7 Lin et al. (2022)). Under Assumptions 3.1 and 3.2, we have

4

Published as a conference paper at ICLR 2025

1. F is monotone, i.e. ⟨F (z)− F (z′), z − z′⟩ ≥ 0, ∀z, z′ ∈ Rd.

2. ∇F is ρ-Lipschitz continuous, i.e. ∥∇F (z)−∇F (z′)∥ ≤ ρ∥z − z′∥, ∀z, z′ ∈ Rd.

3. F (z∗) = 0 if and only if z∗ = (x∗,y∗) is a saddle point of function f(·, ·).

Furthermore, if Assumption 3.3 holds, we have F (·) is µ-strongly-monotone, i.e.

⟨F (z)− F (z′), z − z′⟩ ≥ µ∥z − z′∥2, ∀z, z′ ∈ Rd.

For the C-C case, the commonly used optimality criterion is the following restricted gap.
Definition 3.4 (Nesterov (2007)). Let Bβ(w) be the ball centered at w with radius β. Let (x∗,y∗)
be a saddle point of function f . For a given point (x̂, ŷ), we let β sufficiently large such that it holds

max {∥x̂− x∗∥, ∥ŷ − y∗∥} ≤ β,

we define the restricted gap function as

Gap(x̂, ŷ;β) := max
y∈Bβ(y∗)

f(x̂,y)− min
x∈Bβ(x∗)

f(x, ŷ),

We call (x̂, ŷ) an ϵ-saddle point if Gap(x̂, ŷ;β) ≤ ϵ and β = Ω(max{∥x0 − x∗∥, ∥y0 − y∗∥}).

For the SC-SC case, we use the following stronger notion.
Definition 3.5. Suppose that Assumption 3.3 holds. Let z∗ = (x∗,y∗) be the unique saddle point
of function f . We call ẑ = (x̂, ŷ) an ϵ-root if ∥ẑ − z∗∥ ≤ ϵ.

Most previous works only consider the complexity metric as the number of oracle calls, where an
oracle takes a point z ∈ Rd as the input and returns a tuple (F (z),∇F (z)) as the output. The
existing algorithms (Monteiro & Svaiter, 2012; Bullins & Lai, 2022; Adil et al., 2022; Lin et al.,
2022) have achieved optimal complexity regarding the number of oracle calls. In this work, we
focus on the computational complexity of the oracle. More specifically, we distinguish between
the different computational complexities of calculating the Hessian matrix ∇F (z) and the gradient
F (z). Formally, we make the following assumption as Doikov et al. (2023).
Assumption 3.4. We count the computational complexity of computing F (·) as N and the compu-
tational complexity of ∇F (·) as Nd.
Remark 3.1. Assumption 3.4 supposes the cost of computing ∇F (·) is d times that of computing
F (·). It holds in many practical scenarios as one Hessian oracle can be computed via d Hessian-
vector products on standard basis vectors e1, · · · , ed, and one Hessian-vector product oracle is
typically as expensive as one gradient oracle (Wright, 2006):

1. When the computational graph of f is obtainable, both F (z) and ∇F (z)v can be com-
puted using automatic differentiation with the same cost for any z,v ∈ Rd.

2. When f is a black box function, we can estimate the Hessian-vector ∇F (z)v via the finite-
difference uδ(z;v) = 1

δ (F (z + δv) − F (z − δv)) and we have limδ→0 uδ(z;v) =
∇F (z)v under mild conditions on F (·).

4 ALGORITHMS AND CONVERGENCE ANALYSIS

In this section, we present novel second-order methods for solving minimax optimization prob-
lems (1). We present LEN and its convergence analysis for convex-concave minimax problems in
Section 4.1. We generalize LEN for strongly-convex-strongly-concave minimax problems by pre-
senting LEN-restart in Section 4.2. We discuss the details of solving minimax cubic-regularized
sub-problem, present detailed implementation of LEN, and give the total computational complexity
of proposed methods in Section 4.3.

4.1 THE LEN ALGORITHM FOR CONVEX-CONCAVE PROBLEMS

We propose LEN for convex-concave problems in Algorithm 1. Our method builds on the optimal
Newton Proximal Extragradient (NPE) method (Monteiro & Svaiter, 2012; Bullins & Lai, 2022;

5

Published as a conference paper at ICLR 2025

Algorithm 1 LEN(z0, T,m,M)

1: for t = 0, · · · , T − 1 do
2: Compute lazy cubic step, i.e. find zt+1/2 that satisfies

F (zt) = (∇F (zπ(t)) +M∥zt − zt+1/2∥Id)(zt − zt+1/2).

3: Compute γt = M∥zt − zt+1/2∥.
4: Compute extra-gradient step zt+1 = zt − γ−1

t F (zt+1/2).
5: end for
6: return z̄T = 1∑T−1

t=0 γ−1
t

∑T−1
t=0 γ−1

t zt+1/2.

Adil et al., 2022; Lin et al., 2022). The only change is that we reuse the Hessian from previous
iterates, as colored in blue. Each iteration of LEN contains the following two steps:

F (zt) +∇F (zπ(t))(zt+1/2 − zt) +M∥zt+1/2 − zt∥(zt+1/2 − zt) = 0, (Implicit Step)

zt+1 = zt −
F (zt+1/2)

M∥zt+1/2 − zt∥
. (Explicit Step)

(4)
The first step (implicit step) solves a cubic regularized sub-problem based on the ∇F (zπ(t)) com-
puted at the latest snapshot point and F (zt) at the current iteration point. This step is often viewed
as an oracle (Bullins & Lai, 2022; Adil et al., 2022; Lin et al., 2022) as there exists efficient solvers,
which will also be discussed in Section 4.3. The second one (explicit step) conducts an extra gradient
step based on F (zt+1/2).

Reusing the Hessian in the implicit step makes each iteration much cheaper, but would cause ad-
ditional errors compared to previous methods (Monteiro & Svaiter, 2012; Huang & Zhang, 2022;
Adil et al., 2022; Lin et al., 2022). The error resulting from the lazy Hessian updates is formally
characterized by the following theorem.
Lemma 4.1. Suppose that Assumption 3.1 and 3.2 hold. For any z ∈ Rd, Algorithm 1 ensures

γ−1
t ⟨F (zt+1/2), zt+1/2 − z⟩ ≤ 1

2
∥zt − z∥2 − 1

2
∥zt+1 − z∥2 − 1

2
∥zt+1/2 − zt+1∥2

− 1

2
∥zt − zt+1/2∥2 +

ρ2

2M2
∥zt − zt+1/2∥2 +

2ρ2

M2
∥zπ(t) − zt∥2︸ ︷︷ ︸

(∗)

.

Above, (*) is the error from lazy Hessian updates. Note that (*) vanishes when the current Hessian
is used. For lazy Hessian updates, the error would accumulate in the epoch.

The key step in our analysis shows that we can use the negative terms in the right-hand side of the
inequality in Lemma 4.1 to bound the accumulated error by choosing M sufficiently large, with the
help of the following technical lemma.
Lemma 4.2. For any sequence of positive numbers {rt}t≥0, it holds for any m ≥ 2 that∑m−1

t=1

(∑t−1
i=0 ri

)2
≤ m2

2

∑m−1
t=0 r2t .

When m = 1, the algorithm reduces to the NPE algorithm (Monteiro & Svaiter, 2012; Bullins &
Lai, 2022; Adil et al., 2022; Lin et al., 2022) without using lazy Hessian updates. When m ≥ 2, we
use Lemma 4.2 to upper bound the error that arises from lazy Hessian updates. Finally, we prove
the following guarantee for our proposed algorithm.
Theorem 4.1 (C-C setting). Suppose that Assumption 3.1 and 3.2 hold. Let z∗ = (x∗,y∗) be a
saddle point and β = ∥z0 − z∗∥. Set M ≥ 3ρm. The sequence of iterates generated by Algorithm
1 is bounded zt ∈ Bβ(z

∗), zt+1/2 ∈ B3β(z
∗), ∀t = 0, · · · , T − 1, and satisfies the following

ergodic convergence:

Gap(x̄T , ȳT ; 3β) ≤
32M∥z0 − z∗∥3

T 3/2
.

Let M = 3ρm. Algorithm 1 finds an ϵ-saddle point within O(m2/3ϵ−2/3) iterations.

6

Published as a conference paper at ICLR 2025

Algorithm 2 LEN-restart(z0, T,m,M, S)

1: z(0) = z0
2: for s = 0, · · · , S − 1
3: z(s+1) = LEN(z(s), T,m,M)

end for

Discussion on the computational complexity of the oracles. Theorem 4.1 indicates that LEN
requires O(m2/3ϵ−2/3) calls to F (·) and O(m2/3ϵ−2/3/m+ 1) calls to ∇F (·) to find the ϵ-saddle
point. Under Assumption 3.4, the computational cost to call the oracles F (·) and ∇F (·) is

Oracle Computational Cost = O
(
N ·m2/3ϵ−2/3 + (Nd) ·

(
ϵ−2/3m−1/3 + 1

))
. (5)

Taking m = Θ(d) minimizes (5) to O(Nd + Nd2/3ϵ−2/3). Compared to state-of-the-art second-
order methods (Monteiro & Svaiter, 2012; Bullins & Lai, 2022; Adil et al., 2022; Lin et al., 2022),
whose computational cost in terms of the oracles is O(Ndϵ−2/3) since they require to query ∇F (·)
at each iteration, our methods significantly improve their results by a factor of d1/3.

It is worth noticing that the computational cost of an algorithm includes both the computational cost
of calling the oracles, which we have discussed above, and the computational cost of performing
the updates (i.e. solving auxiliary problems) after accessing the required oracles. We will give an
efficient implementation of LEN and analyze the total computational cost later in Section 4.3.

4.2 THE LEN-RESTART ALGORITHM FOR STRONGLY-CONVEX-STRONGLY-CONCAVE
PROBLEMS

We generalize LEN to solve the strongly-convex-strongly-concave minimax optimization by incor-
porating the restart strategy introduced by Huang & Zhang (2022); Lin & Jordan (2024). We propose
the LEN-restart in Algorithm 2, which works in epochs. Each epoch of LEN-restart invokes LEN
(Algorithm 1), which gets z(s) as inputs and outputs z(s+1).

The following theorem shows that the sequence {z(s)} enjoys a superlinear convergence in epochs.
Furthermore, the required number of iterations in each epoch to achieve such a superlinear rate is
only a constant.
Theorem 4.2 (SC-SC setting). Suppose that Assumptions 3.1 and 3.3 hold. Let z∗ = (x∗,y∗) be

the unique saddle point. Set M = 3ρm as Theorem 4.1 and T =
(

2M∥z0−z∗∥
µ

)2/3
. Then the

sequence of iterates generated by Algorithm 2 converge to z∗ superlinearly as ∥z(s) − z∗∥2 ≤(
1
2

)(3/2)s ∥z0 − z∗∥2. In other words, Algorithm 2 finds a point z(s) such that ∥z(s) − z∗∥ ≤ ϵ
within S = log3/2 log2(1/ϵ) epochs. The total number of inner loop iterations is given by

TS = O
(
m2/3κ2/3 log log(1/ϵ)

)
.

Under Assumption 3.4, Algorithm 2 with m = Θ(d) takes the computational complexity of O((Nd+
Nd2/3κ2/3) log log(1/ϵ)) to call the oracles F (·) and ∇F (·).

4.3 IMPLEMENTATION DETAILS AND COMPUTATIONAL COMPLEXITY ANALYSIS

We provide details of implementing the cubic regularized Newton oracle (Implicit Step, (4)). In-
spired by Monteiro & Svaiter (2012); Bullins & Lai (2022); Adil et al. (2022); Lin et al. (2022), we
transform the sub-problem into a root-finding problem for a univariate function.
Lemma 4.3 (Section 4.3 Lin et al. (2022)). Suppose Assumption 3.1 and 3.2 hold for function
f : Rdx × Rdy → R and let F be its GDA field. Define γt = M∥zt+1/2 − zt∥. The cubic
regularized Newton oracle (Implicit Step, (4)) can be rewritten as:

zt+1/2 = zt − (∇F (zπ(t)) + γtId)
−1F (zt),

which can be implemented by finding the root of the following univariate function:
ϕ(γ) := M ∥(∇F (zπ(t)) + γId)

−1F (zt)∥ − γ. (6)

Furthermore, the function ϕ(γ) is strictly decreasing when λ > 0.

7

Published as a conference paper at ICLR 2025

Algorithm 3 Implementation of LEN (z0, T,m,M)

1: for t = 0, · · · , T − 1 do
2: if t mod m = 0 do
3: Compute the Schur decomposition such that ∇F (zt) = QUQ−1.
4: end if
5: Let ϕ(·) defined as 6 and compute γt as its root by a binary search.
6: Compute lazy cubic step zt+1/2 = Q(U + γtId)

−1Q−1F (zt).

7: Compute extra-gradient step zt+1 = zt − γ−1
t F (zt+1/2).

8: end for
9: return z̄T = 1∑T−1

t=0 γ−1
t

∑T−1
t=0 γ−1

t zt+1/2.

From the above lemma, to implement the cubic regularized Newton oracle, it suffices to find the
root of a strictly decreasing function ϕ(γ), which can be solved within Õ(1) iteration. The main
operation is to solve the following linear system:

(∇F (zπ(t)) + γId)h = F (zt). (7)

Naively solving this linear system at every iteration still results in an expensive computational com-
plexity of O(d3) per iteration.

We present a computationally efficient way to implement LEN by leveraging the Schur factorization
at the snapshot point ∇F (zπ(t)) = QUQ−1, where Q ∈ Cd is a unitary matrix and U ∈ Cd is an
upper-triangular matrix. Then solving the linear system (7) is equivalent to

h = Q(U + γId)
−1Q−1F (zt). (8)

The final implementable algorithm is presented in Algorithm 3.

Now, we are ready to analyze the total computational complexity of LEN, which can be divided into
the following two parts:

Computational Cost = Oracle Computational Cost + Update Computational Cost,

where the first part has been discussed in Section 4.1. Regarding the update computational cost, the
Schur decomposition with an computational complexity O(d3) is required once every m iterations.
After Schur’s decomposition has been given at the snapshot point, the dominant part of the update
computational complexity is solving the upper-triangular linear system (8) with the back substitution
algorithm within the computational complexity O(d2). Thus, we have

Update Computational Cost = Õ
(
d2 ·m2/3ϵ−2/3 + d3 ·

(
ϵ−2/3m−1/3 + 1

))
, (9)

and the total computational cost of LEN is

Computational Cost
(5),(9)
= Õ

(
(d2 +N) ·m2/3ϵ−2/3 + (d3 +Nd) ·

(
ϵ−2/3m−1/3 + 1

))
. (10)

By taking m = Θ(d), we obtain the best computational complexity in (10) of LEN, which is for-
mally stated in the following theorem.

Theorem 4.3 (C-C setting). Under the same setting of Theorem 4.1, Algorithm 3 with m = Θ(d)

finds an ϵ -saddle point with computational complexity Õ((N + d2)(d+ d2/3ϵ−2/3).

We also present the total computational complexity of LEN-restart for SC-SC setting.

Corollary 4.1 (SC-SC setting). Under the same setting as in Theorem 4.2, Algorithm 2 implemented
in the same way as Algorithm 3 with m = Θ(d) finds an ϵ-root with computational complexity
Õ((N + d2)(d+ d2/3κ2/3).

In both cases, our proposed algorithms improve the total computational cost of the optimal second-
order methods (Monteiro & Svaiter, 2012; Bullins & Lai, 2022; Adil et al., 2022; Lin et al., 2022)
by a factor of d1/3.

8

Published as a conference paper at ICLR 2025

0.0 2.5 5.0 7.5 10.0
time (s)

10−10

10−7

10−4

10−1

gr
ad

. n
or

m
EG
NPE
LEN-2
LEN-10
LEN-100

0 20 40
time (s)

10−5

10−3

10−1

101

gr
ad

. n
or

m

EG
NPE
LEN-2
LEN-10
LEN-100

0 20 40 60 80
time (s)

10−5

10−3

10−1

101

gr
ad

. n
or

m

EG
NPE
LEN-2
LEN-10
LEN-100

(a) n = 10 (b) n = 100 (c) n = 200

Figure 1: We demonstrate running time v.s. gradient norm ∥F (z)∥ for Problem (11) with different
sizes: n ∈ {10, 100, 200}.

Remark 4.1. In the main text, we assume the use of the classical algorithm for matrix inver-
sion/decomposition, which has a computational complexity of O(d3). The fast matrix multiplication
proposed by researchers in the field of theoretical computer science only requires a complexity of
dω , where the best known ω is currently around 2.371552 (Williams et al., 2024). This also implies
faster standard linear algebra operators including Schur decomposition and matrix inversion (Dem-
mel et al., 2007). However, the large hidden constant factors in these fast matrix multiplication al-
gorithms mean that the matrix dimensions necessary for these algorithms to be superior to classical
algorithms are much larger than what current computers can effectively handle. Consequently, these
algorithms are not always used in practice. We present the computational complexity of using fast
matrix operations in Appendix G.

In Appendix H, we extend our algorithms to allow inexact auxiliary CRN sub-problem solving and
analyze the total complexity. Specifically, we design an efficient sub-procedure (Algorithm 5) to
solve the CRN sub-problem to desired accuracy in only O(log log(1/ϵ)) number of linear system
solving. It tightens the O(log(1/ϵ)) iteration complexity in (Bullins & Lai, 2022; Adil et al., 2022).
Additionally, (Bullins & Lai, 2022; Adil et al., 2022) assume σmin(∇F (z)) ≥ µ for some positive
constant µ, which makes the problem similar to strongly-convex(-strongly-concave) problems, while
our analysis does not require such an assumption.

5 NUMERICAL EXPERIMENTS

We conduct our algorithms on a regularized bilinear min-max problem and fairness-aware machine
learning tasks. We include EG (Korpelevich, 1976) and NPE (Monteiro & Svaiter, 2012; Bullins
& Lai, 2022; Adil et al., 2022; Lin et al., 2022) (which is our algorithm with m = 1) as baselines,
since they are the optimal first- and second-order methods for convex-concave minimax problems,
respectively. We run the programs on an AMD EPYC 7H12 64-Core Processor. 1

5.1 REGULARIZED BILINEAR MIN-MAX PROBLEM

We first conduct numerical experiments on the cubic regularized bilinear min-max problem consid-
ered in the literature (Lin et al., 2022; Jiang et al., 2024):

min
x∈Rn

max
y∈Rn

f(x,y) =
ρ

6
∥x∥3 + y⊤(Ax− b). (11)

The function f(x,y) is convex-concave and has ρ-Lipschitz continuous Hessians. The unique
saddle point z∗ = (x∗,y∗) of f(x,y) can be explicitly calculated as x∗ = A−1b and y∗ =
−ρ∥x∗∥2(A⊤)−1x∗/2, so we can compute the distance to z∗ to measure the performance of the
algorithms. Following Lin et al. (2022), we generate each element in b as independent Rademacher

variables in {−1,+1}, set ρ = 1/(20n) and the matrix A =

1 −1

. . .
. . .
1 −1

1

 .

1The source codes are available at https://github.com/TrueNobility303/LEN.

9

https://github.com/TrueNobility303/LEN

Published as a conference paper at ICLR 2025

0 1 2 3 4 5
time (s)

10−12

10−9

10−6

10−3

100

gr
ad

. n
or

m
EG
NPE
LEN

0 200 400
time (s)

10−12

10−9

10−6

10−3

100

gr
ad

. n
or

m

EG
NPE
LEN

0 2000 4000
time (s)

10−13

10−10

10−7

10−4

10−1

gr
ad

. n
or

m

EG
NPE
LEN

(a) heart (b) adult (c) law school

Figure 2: We demonstrate running time v.s. gradient norm ∥F (z)∥ for fairness-aware machine
learning task (Problem (12)) on datasets “heart”, “adult”, and “law school”.

We compare our methods with the baselines on different sizes of the problem: n ∈ {10, 100, 200}.
For EG, we tune the stepsize in {1, 0.1, 0.01, 0.001}. For LEN, we vary m in {1, 2, 10, 100}. The
results of the running time against ∥F (z)∥ are presented in Figure 1.

5.2 FAIRNESS-AWARE MACHINE LEARNING

We then examine our algorithm for the task of fairness-aware machine learning. Let {ai, bi, ci}ni=1

be the training set, where ai ∈ Rdx denotes the features of the i-th sample, bi ∈ {−1,+1} is the
corresponding label, and ci ∈ {−1,+1} is an additional feature that is required to be protected and
debiased. For example, ci can denote gender. Zhang et al. (2018) proposed to solve the following
minimax problem to mitigate unwanted bias of ci by adversarial learning:

min
x∈Rdx

max
y∈R

1

n

n∑
i=1

ℓ(bia
⊤
i x)− βℓ(ciya

⊤
i x) + λ∥x∥2 − γy2, (12)

where ℓ is the logit function such that ℓ(t) = log(1+exp(−t)). We set λ = γ = 10−4 and β = 0.5.
We conduct the experiments on datasets “heart” (n = 270, dx = 13) (Chang & Lin, 2011), “adult”
(n = 32, 561, dx = 123) (Chang & Lin, 2011) and “law school” (n = 20, 798, dx = 380) (Le Quy
et al., 2022; Liu et al., 2022). For all the datasets, we choose “gender” as the protected feature. For
EG, we tune the stepsize in {0.1, 0.01, 0.001}. For second-order methods (NPE and LEN), as we do
not know the value of ρ in advance, we view it as a hyperparameter and tune it in {1, 10, 100}. We
set m = 10 for LEN and we find that this simple choice performs well in all the datasets we test.
We show the results of the running time against the gradient norm ∥F (z)∥ in Figure 2.

6 CONCLUSION AND FUTURE WORKS

In this paper, we propose LEN and LEN-restart for C-C and SC-SC minimax problems, respectively.
Using lazy Hessian updates, our methods improve the computational complexity of the current best-
known second-order methods by a factor of d1/3. Numerical experiments on both real and synthetic
datasets also verify the efficiency of our method.

For future work, it will be interesting to extend our idea to adaptive second-order methods (Wang
et al., 2024a; Doikov et al., 2024; Carmon et al., 2022; Antonakopoulos et al., 2022; Liu & Luo,
2022b) and stochastic problems with sub-sampled Newton methods (Lin et al., 2022; Chayti et al.,
2023; Zhou et al., 2019; Tripuraneni et al., 2018; Wang et al., 2019). Besides, our methods only
focus on the convex-concave case, it is also possible to reduce the Hessian oracle for nonconvex-
(strongly)-concave problems (Luo et al., 2022; Lin et al., 2020; Yang et al., 2023; Zhang et al.,
2022b; Wang et al., 2024b) or study structured nonconvex-nonconcave problems (Zheng et al.,
2024; Diakonikolas et al., 2021; Yang et al., 2020; Lee & Kim, 2021; Chen & Luo, 2024).

ACKNOWLEDGMENTS

Lesi Chen and Jingzhao Zhang are supported by the Shanghai Qi Zhi Institute Innovation Program.
Chengchang Liu is supported by the National Natural Science Foundation of China (624B2125).

10

Published as a conference paper at ICLR 2025

REFERENCES

Deeksha Adil, Brian Bullins, Arun Jambulapati, and Sushant Sachdeva. Optimal methods for higher-
order smooth monotone variational inequalities. arXiv preprint arXiv:2205.06167, 2022.

Ilan Adler, Zhiyue T. Hu, and Tianyi Lin. New proximal newton-type methods for convex optimiza-
tion. In CDC, 2020.

M. Marques Alves and Benar F. Svaiter. A search-free O(1/k3/2) homotopy inexact
proximal-newton extragradient algorithm for monotone variational inequalities. arXiv preprint
arXiv:2308.05887, 2023.

Kimon Antonakopoulos, Ali Kavis, and Volkan Cevher. Extra-newton: A first approach to noise-
adaptive accelerated second-order methods. In NeurIPS, 2022.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization, volume 28.
Princeton university press, 2009.

Brian Bullins and Kevin A. Lai. Higher-order methods for convex-concave min-max optimization
and monotone variational inequalities. SIAM Journal on Optimization, 32(3):2208–2229, 2022.

Yair Carmon, Danielle Hausler, Arun Jambulapati, Yujia Jin, and Aaron Sidford. Optimal and
adaptive monteiro-svaiter acceleration. In NeurIPS, 2022.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

El Mahdi Chayti, Nikita Doikov, and Martin Jaggi. Unified convergence theory of stochastic and
variance-reduced cubic newton methods. arXiv preprint arXiv:2302.11962, 2023.

Lesi Chen and Luo Luo. Near-optimal algorithms for making the gradient small in stochastic mini-
max optimization. JMLR, 2024.

James Demmel, Ioana Dumitriu, and Olga Holtz. Fast linear algebra is stable. Numerische Mathe-
matik, 108(1):59–91, 2007.

Jelena Diakonikolas, Constantinos Daskalakis, and Michael I. Jordan. Efficient methods for struc-
tured nonconvex-nonconcave min-max optimization. In AISTATS, 2021.

Nikita Doikov, El Mahdi Chayti, and Martin Jaggi. Second-order optimization with lazy hessians.
In ICML, 2023.

Nikita Doikov, Konstantin Mishchenko, and Yurii Nesterov. Super-universal regularized newton
method. SIAM Journal on Optimization, 34(1):27–56, 2024.

Simon S Du, Jianshu Chen, Lihong Li, Lin Xiao, and Dengyong Zhou. Stochastic variance reduction
methods for policy evaluation. In ICML, 2017.

Jinyan Fan. A shamanskii-like levenberg-marquardt method for nonlinear equations. Computational
Optimization and Applications, 56(1):63–80, 2013.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers. In ICML, 2016.

James A Hanley and Barbara J McNeil. The meaning and use of the area under a receiver operating
characteristic (roc) curve. Radiology, 143(1):29–36, 1982.

Kevin Huang and Shuzhong Zhang. An approximation-based regularized extra-gradient method for
monotone variational inequalities. arXiv preprint arXiv:2210.04440, 2022.

Kevin Huang, Junyu Zhang, and Shuzhong Zhang. Cubic regularized newton method for the saddle
point models: A global and local convergence analysis. Journal of Scientific Computing, 91(2):
60, 2022.

Ruichen Jiang and Aryan Mokhtari. Generalized optimistic methods for convex-concave saddle
point problems. arXiv preprint arXiv:2202.09674, 2022.

11

Published as a conference paper at ICLR 2025

Ruichen Jiang, Qiujiang Jin, and Aryan Mokhtari. Online learning guided curvature approximation:
A quasi-newton method with global non-asymptotic superlinear convergence. In COLT, 2023.

Ruichen Jiang, Ali Kavis, Qiujiang Jin, Sujay Sanghavi, and Aryan Mokhtari. Adaptive and optimal
second-order optimistic methods for minimax optimization. In NeurIPS, 2024.

Galina M Korpelevich. The extragradient method for finding saddle points and other problems.
Matecon, 12:747–756, 1976.

Dmitry Kovalev, Adil Salim, and Peter Richtárik. Optimal and practical algorithms for smooth and
strongly convex decentralized optimization. In NeurIPS, 2020.

Dmitry Kovalev, Elnur Gasanov, Alexander Gasnikov, and Peter Richtarik. Lower bounds and op-
timal algorithms for smooth and strongly convex decentralized optimization over time-varying
networks. In NeurIPS, 2021.

Francesco Lampariello and Marco Sciandrone. Global convergence technique for the newton
method with periodic hessian evaluation. Journal of optimization theory and applications, 111:
341–358, 2001.

Tai Le Quy, Arjun Roy, Vasileios Iosifidis, Wenbin Zhang, and Eirini Ntoutsi. A survey on datasets
for fairness-aware machine learning. Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 12(3):e1452, 2022.

Sucheol Lee and Donghwan Kim. Fast extra gradient methods for smooth structured nonconvex-
nonconcave minimax problems. In NeurIPS, 2021.

Tianyi Lin and Michael I Jordan. Perseus: A simple high-order regularization method for variational
inequalities. Mathematical Programming, pp. 1–42, 2024.

Tianyi Lin, Chi Jin, and Michael I Jordan. Near-optimal algorithms for minimax optimization. In
COLT, 2020.

Tianyi Lin, Panayotis Mertikopoulos, and Michael I. Jordan. Explicit second-order min-max opti-
mization methods with optimal convergence guarantee. arXiv preprint arXiv:2210.12860, 2022.

Chengchang Liu and Luo Luo. Quasi-newton methods for saddle point problems. In NeurIPS,
2022a.

Chengchang Liu and Luo Luo. Regularized newton methods for monotone variational inequalities
with Holders continuous jacobians. arXiv preprint arXiv:2212.07824, 2022b.

Chengchang Liu, Shuxian Bi, Luo Luo, and John CS Lui. Partial-quasi-newton methods: efficient
algorithms for minimax optimization problems with unbalanced dimensionality. In SIGKDD,
2022.

Chengchang Liu, Lesi Chen, Luo Luo, and John CS Lui. Communication efficient distributed new-
ton method with fast convergence rates. In SIGKDD, 2023.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. In ICLR, 2024.

Luo Luo, Yujun Li, and Cheng Chen. Finding second-order stationary points in nonconvex-strongly-
concave minimax optimization. In NeurIPS, 2022.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In ICML, 2015.

Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of extra-gradient and
optimistic gradient methods for saddle point problems: Proximal point approach. In AISTATS,
2020a.

Aryan Mokhtari, Asuman E. Ozdaglar, and Sarath Pattathil. Convergence rate of O(1/k) for op-
timistic gradient and extragradient methods in smooth convex-concave saddle point problems.
SIAM Journal on Optimization, 30(4):3230–3251, 2020b.

12

Published as a conference paper at ICLR 2025

Renato DC Monteiro and Benar F Svaiter. Iteration-complexity of a newton proximal extragra-
dient method for monotone variational inequalities and inclusion problems. SIAM Journal on
Optimization, 22(3):914–935, 2012.

Renato DC Monteiro and Benar Fux Svaiter. On the complexity of the hybrid proximal extragradient
method for the iterates and the ergodic mean. SIAM Journal on Optimization, 20(6):2755–2787,
2010.

Arkadi Nemirovski. Prox-method with rate of convergence O(1/t) for variational inequalities
with lipschitz continuous monotone operators and smooth convex-concave saddle point problems.
SIAM Journal on Optimization, 15(1):229–251, 2004.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

Yurii Nesterov. Dual extrapolation and its applications to solving variational inequalities and related
problems. Mathematical Programming, 109(2-3):319–344, 2007.

Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its global perfor-
mance. Mathematical Programming, 108(1):177–205, 2006.

Yurii Nesterov and Laura Scrimali. Solving strongly monotone variational and quasi-variational
inequalities. 2006.

Santiago Paternain, Miguel Calvo-Fullana, Luiz FO Chamon, and Alejandro Ribeiro. Safe policies
for reinforcement learning via primal-dual methods. IEEE Transactions on Automatic Control,
68(3):1321–1336, 2022.

Leonid Denisovich Popov. A modification of the arrow-hurwicz method for search of saddle points.
Mathematical notes of the Academy of Sciences of the USSR, 28:845–848, 1980.

R. Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on
control and optimization, 14(5):877–898, 1976.

VE Shamanskii. A modification of newton’s method. Ukrainian Mathematical Journal, 19(1):
118–122, 1967.

Nilesh Tripuraneni, Mitchell Stern, Chi Jin, Jeffrey Regier, and Michael I Jordan. Stochastic cubic
regularization for fast nonconvex optimization. In NeurIPS, 2018.

John Von Neumann and Oskar Morgenstern. Theory of games and economic behavior, 2nd rev.
1947.

Hoi-To Wai, Zhuoran Yang, Zhaoran Wang, and Mingyi Hong. Multi-agent reinforcement learning
via double averaging primal-dual optimization. In NeurIPS, 2018.

Chang-yu Wang, Yuan-yuan Chen, and Shou-qiang Du. Further insight into the shamanskii modifi-
cation of newton method. Applied mathematics and computation, 180(1):46–52, 2006.

Junlin Wang, Junnan Yang, and Zi Xu. A fully parameter-free second-order algorithm for convex-
concave minimax problems with optimal iteration complexity. arXiv preprint arXiv:2407.03571,
2024a.

Mengdi Wang. Primal-dual π-learning: Sample complexity and sublinear run time for ergodic
markov decision problems. arXiv preprint arXiv:1710.06100, 2017.

Nuozhou Wang, Junyu Zhang, and Shuzhong Zhang. Efficient first order method for saddle point
problems with higher order smoothness. SIAM Journal on Optimization, 34(4):3342–3370,
2024b.

Zhe Wang, Yi Zhou, Yingbin Liang, and Guanghui Lan. Stochastic variance-reduced cubic regular-
ization for nonconvex optimization. In AISTATS, 2019.

Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for matrix
multiplication: from alpha to omega. In SODA, 2024.

13

Published as a conference paper at ICLR 2025

Stephen J. Wright. Numerical optimization, 2006.

Yangyang Xu. Primal-dual stochastic gradient method for convex programs with many functional
constraints. SIAM Journal on Optimization, 30(2):1664–1692, 2020.

Haikuo Yang, Luo Luo, Chris Junchi Li, Michael Jordan, and Maryam Fazel. Accelerating inexact
hypergradient descent for bilevel optimization. In OPT 2023: Optimization for Machine Learn-
ing, 2023.

Junchi Yang, Negar Kiyavash, and Niao He. Global convergence and variance reduction for a class
of nonconvex-nonconcave minimax problems. In NeurIPS, 2020.

Yiming Ying, Longyin Wen, and Siwei Lyu. Stochastic online auc maximization. In NIPS, 2016.

Zhuoning Yuan, Yan Yan, Milan Sonka, and Tianbao Yang. Large-scale robust deep auc maxi-
mization: A new surrogate loss and empirical studies on medical image classification. In ICCV,
2021.

Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. Mitigating unwanted biases with adver-
sarial learning. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pp.
335–340, 2018.

Junyu Zhang, Mingyi Hong, and Shuzhong Zhang. On lower iteration complexity bounds for the
convex concave saddle point problems. Mathematical Programming, 194(1-2):901–935, 2022a.

Xuan Zhang, Necdet Serhat Aybat, and Mert Gurbuzbalaban. SAPD+: An accelerated stochastic
method for nonconvex-concave minimax problems. In NeurIPS, 2022b.

Taoli Zheng, Linglingzhi Zhu, Anthony Man-Cho So, José Blanchet, and Jiajin Li. Universal gradi-
ent descent ascent method for nonconvex-nonconcave minimax optimization. In NeurIPS, 2024.

Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic variance-reduced cubic regularization meth-
ods. JMLR, 20(134):1–47, 2019.

14

Published as a conference paper at ICLR 2025

A SOME USEFUL LEMMAS

Lemma A.1. Recall the definition of restricted gap function in Definition 3.4. For any point (x̂, ŷ)
We have that

Gap(x̂, ŷ;β) ≤ max
z∈B√

2β(z∗)

{f(x̂,y)− f(x, ŷ)} , z = (x,y).

Proof. By Definition 3.4, we have that

Gap(x̂, ŷ;β) = max
x∈Bβ(x∗),y∈Bβ(y∗)

{f(x̂,y)− f(x, ŷ)} ≤ max
z∈B√

2β(z
∗)
{f(x̂,y)− f(x, ŷ)} .

Lemma A.2 (Proposition 2.8 Lin et al. (2022)). Let

x̄t =
1∑t

i=0 ηi

t∑
i=0

ηixi, ȳt =
1∑t

i=0 ηi

t∑
i=0

ηiyi.

Then under Assumption 3.2, for any z = (x,y), it holds that

f(x̄t,y)− f(x, ȳt) ≤
1∑t

i=0 ηi

t∑
i=0

ηi⟨F (zi), zi − z⟩.

B PROOF OF LEMMA 4.2

Proof. We prove the result by induction.

Apparently, it is true for m = 2, which is the induction base.

Assume that it holds for m ≥ 2. Then

m∑
t=1

(
t−1∑
i=0

ri

)2

=

m−1∑
t=1

(
t−1∑
i=0

ri

)2

+

(
m−1∑
i=0

ri

)2

≤ m2

2

m−1∑
t=0

r2t +m

m−1∑
t=0

r2t

≤
(
m2 + 2m

2

)m−1∑
t=0

r2t

≤ (m+ 1)2

2

m−1∑
t=0

r2t .

C PROOF OF LEMMA 4.1

Proof. Instead of directly providing a proof for Algorithm 1, we give the proof for the more general
inexact algorithm (Algorithm 4), which recovers Algorithm 1 if α = 1.

For convenience, we denote ηt = 1/γt.

15

Published as a conference paper at ICLR 2025

For ant z ∈ Rd, we have
ηt⟨F (zt+1/2), zt+1/2 − z⟩

= ⟨zt − zt+1, zt+1/2 − z⟩
= ⟨zt − zt+1, zt+1 − z⟩+ ⟨zt − zt+1, zt+1/2 − zt+1⟩
= ⟨zt − zt+1, zt+1 − z⟩+ ⟨zt − zt+1/2, zt+1/2 − zt+1⟩+ ⟨zt+1/2 − zt+1, zt+1/2 − zt+1⟩

=
1

2
∥zt − z∥2 − 1

2
∥zt+1 − z∥2 −

XXXXXXX
1

2
∥zt − zt+1∥2

+
XXXXXXX
1

2
∥zt − zt+1∥2 −

1

2
∥zt+1/2 − zt+1∥2 −

1

2
∥zt − zt+1/2∥2 + ∥zt+1/2 − zt+1∥2.

(13)
Note that by the updates of the algorithm, we have that

γt(zt − zt+1/2) = F (zt) +∇F (zπ(t))(zt+1/2 − zt),

γt(zt − zt+1) = F (zt+1/2).

It implies that
zt+1/2 − zt+1

= ηt(F (zt+1/2)− F (zt)−∇F (zπ(t))(zt+1/2 − zt)))

= ηt(F (zt+1/2)− F (zt)−∇F (zt)(zt+1/2 − zt)) + ηt(∇F (zπ(t)))−∇F (zt))(zt+1/2 − zt)
(14)

Note that ∇F is ρ-Lipschitz continuous. Taking norm on both sides of (14), we have that

∥zt+1/2 − zt+1∥ ≤ ρηt
2

∥zt+1/2 − zt∥2 + ρηt∥zπ(t) − zt∥∥zt+1/2 − zt∥

≤ ρ

2M
∥zt+1/2 − zt∥+

ρ

M
∥zπ(t) − zt∥,

where we use the condition M∥zt − zt+1/2∥ ≤ γt in the last step.

By Young’s inequality, this further means

∥zt+1/2 − zt+1∥2 ≤ ρ2

2M2
∥zt+1/2 − zt∥2 +

2ρ2

M2
∥zπ(t) − zt∥2.

Plug the above inequality into the last term in (13).
ηt⟨F (zt+1/2), zt+1/2 − z⟩

≤ 1

2
∥zt − z∥2 − 1

2
∥zt+1 − z∥2 − 1

2
∥zt+1/2 − zt+1∥2

− 1

2
∥zt − zt+1/2∥2 +

ρ2

2M2
∥zt − zt+1/2∥2 +

2ρ2

M2
∥zπ(t) − zt∥2.

D PROOF OF THEOREM 4.1

Proof. When m = 1, the algorithm reduces to the NPE algorithm (Monteiro & Svaiter, 2012;
Bullins & Lai, 2022; Adil et al., 2022; Lin et al., 2022). When m ≥ 2, we use Lemma 4.2 to bound
the error that arises from lazy Hessian updates.

Instead of directly providing a proof for Algorithm 1, we give the proof for the more general inexact
algorithm (Algorithm 4), which recovers Algorithm 1 if α = 1.

Define rt = ∥zt+1 − zt∥. By triangle inequality and Young’s inequality, we have
ηt⟨F (zt+1/2), zt+1/2 − z⟩

≤ 1

2
∥zt − z∥2 − 1

2
∥zt+1 − z∥2 −

(
1

4
− ρ2

2M2

)
∥zt − zt+1/2∥2

−

1

8
r2t −

2ρ2

M2

 t−1∑
i=π(t)

ri

2
 .

16

Published as a conference paper at ICLR 2025

For any 1 ≤ s ≤ m. Telescoping over t = π(k), · · · , π(k) + s− 1, we have

π(k)+s−1∑
t=π(k)

ηt⟨F (zt+1/2), zt+1/2 − z⟩

≤ 1

2
∥zπ(k) − z∥2 − 1

2
∥zπ(k)+s − z∥2 −

(
1

4
− ρ2

2M2

) π(k)+s−1∑
t=π(k)

∥zt − zt+1/2∥2

−

1

8

π(k)+s−1∑
t=π(k)

r2t −
2ρ2

M2

π(k)+s−1∑
t=π(k)+1

 t−1∑
i=π(k)

ri

2
 .

Applying Lemma 4.2, we further have

π(k)+s−1∑
t=π(k)

ηt⟨F (zt+1/2), zt+1/2 − z⟩

≤ 1

2
∥zπ(k) − z∥2 − 1

2
∥zπ(k)+s − z∥2 −

(
1

4
− ρ2

2M2

) π(k)+s−1∑
t=π(k)

∥zt − zt+1/2∥2

−
(
1

8
− ρ2s2

M2

) π(k)+s−1∑
t=π(k)

r2t .

Note that s ≤ m. Let M ≥ 3ρm. Then

π(k)+s−1∑
t=π(k)

ηt⟨F (zt+1/2), zt+1/2 − z⟩

≤ 1

2
∥zπ(k) − z∥2 − 1

2
∥zπ(k)+s − z∥2 − 1

8

π(k)+s−1∑
t=π(k)

∥zt − zt+1/2∥2.

Let s = m and further telescope over k = 0,m, 2m, · · · . Then

T∑
t=0

ηt⟨F (zt+1/2), zt+1/2 − z⟩ ≤ 1

2
∥z0 − z∥2 − 1

2
∥zT − z∥2 − 1

8

T∑
t=0

∥zt − zt+1/2∥2. (15)

This inequality is the key to the convergence. It implies the following results. First, letting z = z∗

and using the fact that ⟨F (zt+1/2), zt+1/2−z∗⟩ ≥ 0 according to monotonicity of F , we can prove
the iterate is bounded

∥zt − z∗∥ ≤ ∥z0 − z∗∥, and ∥zt − zt+1/2∥ ≤ 2∥z0 − z∗∥, t = 0, · · · , T − 1. (16)

Then using triangle inequality, we obtain

∥zt+1/2 − z∗∥ ≤ 3∥z0 − z∗∥, ∀t = 0, · · · , T − 1.

Second, beginning with Lemma A.1 we have that

Gap(x̄T , ȳT ; 3β) ≤ max
z∈B3

√
2β(z

∗)
{f(x̄T ,y)− f(x, ȳT)}

(a)

≤ max
z∈B3

√
2β(z

∗)

{
1∑T

t=0 ηt

T∑
t=0

ηt⟨F (zt+1/2), zt+1/2 − z⟩

}
(b)

≤
maxz∈B3

√
2β(z

∗){∥z0 − z∥2}

2
∑T−1

t=0 ηt

(c)

≤ 16∥z0 − z∗∥2∑T−1
t=0 ηt

,

(17)

17

Published as a conference paper at ICLR 2025

where (a) uses Lemma A.2, (b) uses (15) and (c) uses the fact that z ∈ B3
√
2β(z

∗). Third, we can

also use (15) to lower bound
∑T−1

t=0 ηt. (15) with z = z∗ implies

T∑
t=0

γ2
t ≤ 4α2M2∥z0 − z∗∥2,

where we use the condition γt ≤ αM∥zt − zt+1/2∥ in the last step. Then by Holder’s inequality,

T =

T−1∑
t=0

(ηt)
2/3 (

γ2
t

)1/3 ≤

(
T−1∑
t=0

ηt

)2/3(T−1∑
t=0

γ2
t

)1/3

.

Therefore,
T−1∑
t=0

ηt ≥
T 3/2

2αM∥z0 − z∗∥
. (18)

We plug in (18) to (17) and obtain that

Gap(x̄T , ȳT ; 3β) ≤
32αM∥z0 − z∗∥3

T 3/2
.

The desired theorem is the case α = 1.

E PROOF OF THEOREM 4.2

Proof. Using the strongly monotonicity of operator F in (15), we obtain that

T∑
t=0

µηt∥zt+1/2 − z∗∥2 ≤ 1

2
∥z0 − z∗∥2 − 1

2
∥zT − z∗∥2.

Using Jensen’s inequality, for each epoch, we have

∥z̄T − z∗∥2 ≤ ∥z0 − z∗∥2

2µ
∑T−1

t=0 ηt
≤ M∥z0 − z∗∥3

µT 3/2
:= c∥z0 − z∗∥2.

Next, we consider the iterate {z(s)}S−1
s=0 . For the first epoch, the setting of T ensures c ≤ 1/2:

∥z(1) − z∗∥2 ≤ 1

2
∥z0 − z∗∥2.

Then for the second one, it is improved by

∥z(2) − z∗∥2 ≤ ∥z(1) − z∗∥3

2∥z0 − z∗∥
≤
(
1

2

)1+3/2

∥z0 − z∗∥2.

Keep repeating this process. We can get

∥z(s) − z∗∥2 ≤
(
1

2

)qs

∥z0 − z∗∥2,

where qs satisfies the recursion

qs =

1, s = 1;

3

2
qs−1 + 1, s ≥ 2.

This implies

∥z(s) − z∗∥2 ≤
(
1

2

)(3
2

)s−1

+1

∥z0 − z∗∥2.

18

Published as a conference paper at ICLR 2025

Algorithm 4 Inexact LEN(z0, T,m,M,α)

1: for t = 0, · · · , T − 1 do
2: Use Algorithm 5 to find (zt+1/2, γt) that satisfies

zt+1/2 = zt − (∇F (zπ(t)) + γtId)
−1F (zt)

and M∥zt − zt+1/2∥ ≤ γt ≤ αM∥zt − zt+1/2∥ for given α ≥ 1.
3: Compute extra-gradient step zt+1 = zt − γ−1

t F (zt+1/2).
4: end for
5: return z̄T = 1∑T−1

t=0 γ−1
t

∑T−1
t=0 γ−1

t zt+1/2.

Set m = Θ(d), LEN-restart takes O(d2/3κ2/3 log log(1/ϵ)) oracle to F (·) and O((1 +
d−1/3κ2/3) log log(1/ϵ)) oracle to ∇F (·). Under Assumption 3.4, the computational complexities
of the oracles is

O
(
N · d2/3κ2/3 log log(1/ϵ) +Nd · (1 + d−1/3κ2/3) log log(1/ϵ)

)
= O

(
(Nd+Nd2/3κ2/3) log log(1/ϵ)

)
.

F PROOF OF COROLLARY 4.1

Proof. The computational complexity of inner loop can be directly obtained by replacing ϵ−1 by κ
in Theorem 4.3 such that

Inner Computational Complexity = Õ
(
(N + d2) · (d+ d2/3κ2/3)

)
.

The iterations of outer loop is S = log log(1/ϵ), thus, the total computational complexity of LEN-
restart is

S · Inner Computational Complexity = Õ
(
(N + d2) · (d+ d2/3κ2/3)

)
.

G COMPUTATIONAL COMPLEXITY USING FAST MATRIX OPERATIONS

Theoretically, one may use fast matrix operations for Schur decomposition and matrix inver-
sion (Demmel et al., 2007), with a computational complexity of dω , where ω ≈ 2.371552 is the
matrix multiplication constant. In this case, the total computational complexity of Algorithm 3 is

Õ
((

Nd+ dω

m
+ d2 +N

)
m2/3ϵ−2/3

)
Setting the optimal m, we obtain the following complexity of Algorithm 3:

Õ(d
2
3 (ω+1)ϵ−2/3) (with m = dω−2), N ≲ dω−1

Õ(N2/3d4/3ϵ−2/3) (with m = N/d), dω−1 ≲ N ≲ d2

Õ(Nd2/3ϵ−2/3) (with m = d), d2 ≲ N.

Our result is always better than the O((Nd+ dω)ϵ−2/3) of existing optimal second-order methods.

H THE INEXACT ALGORITHM

Algorithm 1 requires a cubic regularized Newton (CRN) oracle (Implicit Step, (4)). We provide
implementation details for the CRN oracle in Section 4.3. One missing detail is that we can not

19

Published as a conference paper at ICLR 2025

obtain the exact solution to the CRN oracle in practice. To make our result more rigorous, we
analyze the inexact LEN (Algorithm 1), which allows inexact sub-problem solving with a parameter
α ≥ 1. Note that this algorithm reduces to the exact version (Algorithm 1) when α = 1.

Below, we present the following theorem as the inexact version of Theorem 4.1.
Theorem H.1. Suppose that Assumption 3.1 and 3.2 hold. Let z∗ = (x∗,y∗) be a saddle point and
β = ∥z0 − z∗∥. Set M ≥ 3ρm. The sequence of iterates generated by Algorithm 4 is bounded zt ∈
Bβ(z

∗), zt+1/2 ∈ B3β(z
∗), ∀t = 0, · · · , T − 1, and satisfies the following ergodic convergence:

Gap(x̄T , ȳT ; 3β) ≤
16αM∥z0 − z∗∥3

T 3/2
.

Let M = 3ρm and α = 2. Algorithm 1 finds an ϵ-saddle point within O(m2/3ϵ−2/3) iterations.

Proof. See Section D.

The only remaining thing is to show how to compute γt in the auxiliary problem (Line 2 in Algorithm
4). Below, we present an efficient sub-procedure to achieve the desired goal using the standard
Newton step. We define the monotone operator At : Rd → Rd by

At(z) = F (zt) +∇F (zπ(t))(z − zt). (19)
Then we can write down the (regularized) Newton step as

zt+1/2(η; zt) := zt − (∇F (zπ(t)) + η−1Id)
−1F (zt)

= (Id + ηAt)
−1(zt).

(20)

And the inexact condition (Line 2 in Algorithm 4) is
1

αM
≤ ϕt(η; zt) ≤

1

M
, (21)

where ϕt(η; zt) is defined as ϕt(η; zt) := η∥zt+1/2(η; zt)− zt∥.

Note that a stepsize η that satisfies (21) directly implies γt = 1/η satisfies the requirement of Line
2 in Algorithm 4. Therefore, the main goal of this section is to design a sub-procedure that can
determine the stepsize η that satisfies (21).

A similar sub-procedure without using lazy Hessian updates has been proposed in (Monteiro &
Svaiter, 2012). Below, we show that we can use a similar sub-procedure for our algorithm. We
recall some useful lemmas in (Monteiro & Svaiter, 2012), which holds for any monotone operators
A. Below, we state their results when A = At.
Lemma H.1 (Lemma 4.3 and Lemma 4.4 (Monteiro & Svaiter, 2012)). Recall the definition of ϕt

right after (21). For any z ∈ Rd, the following statements hold:

1. For any η > 0, we have ϕt(η; z) > 0.

2. For any 0 < η′ ≤ η, we have that

η

η′
ϕt(η

′; z) ≤ ϕt(η; z) ≤
(
η

η′

)2

ϕt(η
′; z).

As a corollary, ϕt(η; z) is a continuous and strictly increasing function, which converges
to 0 or +∞ as η tends to 0 or +∞, respectively.

3. For any 0 < β− < β+, the set of all scalars η > 0 satisfying β− ≤ ϕt(η; z) ≤ β+ is a
closed interval [η−, η+] such that η+/η− ≥

√
β+/β−.

Algorithm 5 presents our sub-procedure to output the tuple (zt+1/2, γt) satisfying (21). Similar
to (Monteiro & Svaiter, 2012), the procedure consists of two stages. The first one is a bracketing
stage, which either outputs an acceptable solution or an initial interval [c−t , c

+
t] that contains all the

η satisfying (21). The second one is a bisection stage, which uses binary search in the logarithmic
scale to find a stepsize η satisfying (21). Note that the log-scale binary search would finally lead to
a O(log log(1/ϵ)) iteration complexity, which improves the O(log(1/ϵ)) iteration complexity using
naive binary search in (Adil et al., 2022; Bullins & Lai, 2022).

Our first result of Algorithm 5 is the correctness of the bracketing stage, stated as follows.

20

Published as a conference paper at ICLR 2025

Algorithm 5 Bracketing/Bisection Procedure(At, zt,M, α, η0t)

1: (Bracketing Stage) Compute z0
t+1/2 = (Id + η0tAt)

−1(zt) with one Newton step.
(1a) if η0t ∥z0

t+1/2 − zt∥ ∈ (1
αM , 1

M), then let zt+1/2 = z0
t+1/2, ηt = η0t and go to Line 3.

(1b) if η0t ∥z0
t+1/2 − zt∥ < 1

αM , then set c−t = η0t and c+t = 1
M∥z0

t+1/2
−zt∥ ;

(1c) if ηt0∥z0
t+1/2 − zt∥ > 1

M , then set c−t = 1
αM∥z0

t+1/2
−zt∥ and c+t = η0t ;

2: (Bisection Stage)
(2a) set ηt =

√
c−t c

+
t and compute zt+1/2 = (Id + ηtAt)

−1(zt) with one Newton step;
(2b) if ηt∥zt+1/2 − zt∥ ∈ (1

αM , 1
M), then go to Line 3;

(2c) if ηt∥zt+1/2 − zt∥ > 1
M , then set c+t = ηt; else set c−t = ηt;

(2d) go to step (2a).
3: return (zt+1/2, γt) that meets the requirement of Line 2 in Algorithm 4, where γt = 1/ηt .

Lemma H.2. Let [η−t , η
+
t] be the interval that contains all the stepsizes satisfying (21). Compute

z0
t+1/2 = (Id + η0tAt)

−1(zt) with one Newton step as Algorithm 5. The following statements hold:

1. if η0t ∥z0
t+1/2 − zt∥ < 1

αM , then η0t < η−t and η+t ≤ 1
M∥z0

t+1/2
−zt∥ ;

2. if η0t ∥z0
t+1/2 − zt∥ > 1

M , then η+t < η0t and 1
αM∥z0

t+1/2
−zt∥ ≤ η−t .

Proof. We only prove the first claim since the proof of the second claim follows in a similar manner.

Recall the definition of ϕt right after (21). The condition η0t ∥z0
t+1/2 − zt∥ < 1

αM is equivalent to
ϕt(η

0
t ; zt) < ϕt(η

−
t ; zt). Firstly. the fact that ϕt(η

−
t ; zt) is a strictly increasing function according

to the second statement in Lemma H.1, we know that η0t < η−t .

Secondly, using the inequality in the second statement of Lemma H.1, we know that

η+t ∥z0
t+1/2 − zt∥ =

η+t
η0t

ϕt(η
0
t ; zt) ≤ ϕt(η

+
t ; zt) =

1

M
,

which implies η+t ≤ 1
M∥z0

t+1/2
−zt∥ by rearranging.

Therefore, the bracketing stage can always output an interval that contains the acceptable stepsizes
η satisfying (21). Given such a valid initial interval, the bisection stage always find an acceptable
stepsize, stated as follows.
Lemma H.3. Consider Algorithm 5. If the bracketing stage outputs an interval [c−t , c

+
t] containing

all the stepsizes η satisfying (21), which is then input to the bisection stage, then the number of
Newton step during the bisection stage is bounded by 1 + log(log(ht)/ logα)), where

ht = max

{
1

η0tM∥z0
t+1/2 − zt∥

, αMη0t ∥z0
t+1/2 − zt∥

}
(22)

is the maximal ratio of c+t /c
−
t .

Proof. After j steps of bisection iterations, we have that log c+t
c−t

= 1
2j log ht. In view of the third

statement in Lemma H.1, we know that c+t /c
−
t ≥

√
α. These two inequalities immediately imply

that the bisection stage would terminates in j ≤ 1 + log(log(ht)/ logα)) iterations.

Our goal from now on would be giving a uniform upper bound of ht all for t, which can imply the
total complexity of our algorithm. From the definition of ht in (22), we need to give both lower and
upper bounds of η0t ∥z0

t+1/2 − zt∥. We recall some technical lemmas in (Monteiro & Svaiter, 2012).

21

Published as a conference paper at ICLR 2025

Lemma H.4 (Proposition 4.5 Monteiro & Svaiter (2012)). Let A : Rd → Rd be a monotone
operator. For a point z∗ ∈ Rd such that A(z∗) = 0, for any η > 0 and z ∈ Rd it holds that

max
{
∥(Id + ηA)−1z − z∗∥, ∥(Id + ηA)−1z − z∥

}
≤ ∥z − z∗∥.

From now on, we will fix all the η0t in all the iterations such that η0t = η̄ and analyze Algorithm 4.
The following lemma shows a uniform upper bound of ∥z0

t+1/2 − zt∥.

Lemma H.5 (Upper bound of ∥z0
t+1/2 − zt∥). Suppose that Assumption 3.1 and 3.2 hold. Let

z∗ = (x∗,y∗) be a saddle point. Set M = 3ρm as in Theorem 4.1. For all the iterations of
Algorithm 4, it holds that

∥z0
t+1/2 − zt∥ ≤ ∥z0 − z∗∥+ 5η̄ρ

2
∥z0 − z∗∥2. (23)

Proof. Let rt := F (z∗) −At(z
∗) and define the operator Ãt as Ãt(z) = At(z) + rt. From the

definition of Ãt we know that all any η > 0 and z ∈ Rd we have that

(Id + ηÃt)
−1(z + ηrt) = (Id + ηAt)

−1(z) (24)

Now we upper bound ∥z0
t+1/2 − zt∥ as follows.

∥z0
t+1/2 − zt∥

= ∥(Id + η̄At)
−1(zt)− zt∥

= ∥(Id + η̄Ãt)
−1(zt + η̄rt)− zt∥

≤ ∥(Id + η̄Ãt)
−1(zt)− zt∥+ ∥(Id + η̄Ãt)

−1(zt)− (Id + η̄Ãt)
−1(zt + η̄rt)∥

≤ ∥zt − z∗∥+ η̄∥rt∥,

(25)

where in the last step we use Lemma H.4 to upper bound the first term and use the non-expansiveness
of resolvent (see i.e. (Rockafellar, 1976)) to upper bound the second term.

We continue to upper bound ∥rt∥. Recall the definition of At in (19), we know that

rt = F (z∗)− F (zt)−∇F (zπ(t))(z
∗ − zt)

= F (z∗)− F (zt)−∇F (zt)(z
∗ − zt) + (∇F (zt)−∇F (zπ(t))(z

∗ − zt)

Note that ∇F is ρ-Lipschitz continuous. Taking norm on both sides of the above identity, we have

∥rt∥ ≤ ρ

2
∥z∗ − zt∥2 + ρ∥zt − zπ(t)∥∥z∗ − zt∥

Recalling (16) that we have ∥zt−z∗∥ ≤ ∥z0−z∗∥ for all t, by the triangle inequality we also have
∥zt − zπ(t)∥ ≤ 2∥z0 − z∗∥. Therefore, we have that ∥rt∥ ≤ 5

2∥z0 − z∗∥2. Finally, we plug into
(25) to obtain the desired upper bound in (23).

Next, we give a uniform lower bound of ∥z0
t+1/2 − zt∥.

Lemma H.6 (Lower bound of ∥z0
t+1/2 − zt∥). Suppose that Assumption 3.1 and 3.2 hold. Let

z∗ = (x∗,y∗) be a saddle point and β = ∥z0 − z∗∥. Set M = 3ρm as in Theorem 4.1. If in all the
iterations of Algorithm 5 the point z0

t+1/2 is not an ϵ-solution, it holds that

η̄∥z0
t+1/2 − zt∥ ≥ ξt, (26)

where ξt = min
{
2β, η̄ϵ

8β(3η̄βρ+1)

}
.

Proof. We show a contradiction if (26) does not hold. Firstly, if z0
t+1/2 = (x0

t+1/2,y
0
t+1/2) is not

an ϵ-solution to the problem, then by Lemma A.1 and A.2 we know that ∥F (z0
t+1/2)∥ must be large:

ϵ ≤ Gap(x0
t+1/2,y

0
t+1/2; 3β) ≤ max

z∈B3
√

2β(z
∗)
⟨F (z0

t+1/2), z
0
t+1/2 − z⟩ ≤ 8β∥F (z0

t+1/2)∥,

22

Published as a conference paper at ICLR 2025

where the last step uses that ∥z0
t+1/2 − zt∥ ≤ 2β if (26) does not hold, ∥zt − z∗∥ ≤ β and the

triangle inequality. Therefore, we can conclude that

∥F (z0
t+1/2)∥ ≥ ϵ

8β
. (27)

Secondly, from the update of the algorithm, we have that

zt − z0
t+1/2 = η̄(F (zt) +∇F (zπ(t))(z

0
t+1/2 − zt))

Then we further know that

zt − z0
t+1/2 − F (z0

t+1/2)

= η̄(F (zt) +∇F (zπ(t))(z
0
t+1/2 − zt)− F (z0

t+1/2))

= η̄(F (zt) +∇F (zt)(z
0
t+1/2 − zt)− F (z0

t+1/2))

+ η̄(∇F (zt)−∇F (zπ(t)))(z
0
t+1/2 − zt).

Note that ∇F is ρ-Lipschitz continuous. Taking norm on both sides of the above identity, we have

∥zt − z0
t+1/2 − F (z0

t+1/2)∥

≤ η̄ρ

2
∥z0

t+1/2 − zt∥2 + η̄ρ∥zt − zπ(t)∥∥z0
t+1/2 − zt∥

≤ 3η̄βρ∥z0
t+1/2 − zt∥.

where the last step uses the triangle inequality, that ∥z0
t+1/2 − zt∥ ≤ 2β if (26) does not hold, and

that ∥zt − z∗∥ ≤ ∥z0 − z∗∥ by (16). Then we can know that

η̄∥F (z0
t+1/2)∥ ≤ ∥zt − z0

t+1/2 − η̄F (z0
t+1/2)∥+ ∥z0

t+1/2 − zt∥

≤ (3η̄βρ+ 1)∥z0
t+1/2 − zt∥.

Recalling (27), we know that this would contradict the hypothesis that (26) does not hold.

Lemma H.5 and Lemma H.6 tell us that the ht defined in (22) is uniformly bounded for all t. Finally,
we obtain the following theorem by combining Theorem H.1 and Theorem H.3.
Theorem H.2. Suppose that Assumption 3.1 and 3.2 hold. Let z∗ = (x∗,y∗) be a saddle point and
β = ∥z0 − z∗∥. Set M ≥ 3ρm. The sequence of iterates generated by Algorithm 4 is bounded zt ∈
Bβ(z

∗), zt+1/2 ∈ B3β(z
∗), ∀t = 0, · · · , T − 1, and satisfies the following ergodic convergence:

Gap(x̄T , ȳT ; 3β) ≤
16αM∥z0 − z∗∥3

T 3/2
.

Let M = 3ρm and α = 2. Algorithm 1 finds an ϵ-saddle point within O(m2/3ϵ−2/3) iterations.

If we call the sub-procedure (Algorithm 5) with fixed η0t = η̄, every call of this sub-procedure makes
at most O(log log(poly(m,β, ρ, η̄, 1/ϵ)) Newton steps.

The above theorem shows that the CRN sub-problem can be solved to guarantee the desired pre-
cision for target problem in O(log log(1/ϵ)) iterations, which tightens the O(log(1/ϵ)) iteration
complexity in (Bullins & Lai, 2022; Adil et al., 2022). Additionally, (Bullins & Lai, 2022; Adil
et al., 2022) requires additionally assume σmin(∇F (z)) ≥ µ for some positive constant µ, which
makes the problem similar to strongly-convex(-strongly-concave) problems, while our analysis does
not require such an assumption.

23

	Introduction
	Related Works and Technical Challenges
	Preliminaries
	Algorithms and convergence analysis
	The LEN algorithm for convex-concave problems
	The LEN-restart algorithm for strongly-convex-strongly-concave problems
	Implementation Details and computational complexity Analysis

	Numerical Experiments
	Regularized bilinear min-max problem
	Fairness-Aware Machine Learning

	Conclusion and future works
	Some Useful Lemmas
	Proof of Lemma 4.2
	Proof of Lemma 4.1
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Corollary 4.1
	Computational Complexity Using Fast Matrix Operations
	The Inexact Algorithm

