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A Additional Discussions

Potential negative societal impacts Although our work improves the performance of text-video
retrieval, but may reduce the difficulty of cross-modal retrieval of sensitive information on the network.
It may raise challenges to protecting information security.

Limitations of our work Iterative approaches are sensitive to initialization and parameters such as
the dimensions and the number of subspaces. In our work, although we use the L2 normalization
operation to limit the value range of the parameters, the EM algorithm [3] may still converge to bad
results. At the same time, the selection of the number of subspaces also has a relatively significant
impact on the model effect. In the future, it is still a promising research direction to explore more
stable subspace search algorithms.

B Datasets and Implementation Details

Datasets MSR-VTT [18] contains 10,000 YouTube videos, each with 20 text descriptions. We
follow the training protocol in [10, 5, 12] and evaluate on text-to-video and video-to-text search
tasks on the 1K-A testing split with 1,000 video or text candidates defined by [20]. ActivityNet
Captions [6] dataset consists densely annotated temporal segments of 20,000 YouTube videos.
Following [5, 13, 16], we concatenate descriptions of segments in a video to construct “video-
paragraph” for retrieval. We use the 10K training split to train or finetune the model and report the
performance on the 5K “vall” split. LSMDC [15] contains 118,081 video clips from 202 movies. We
follow the split of [5] with 1,000 videos for testing. MSRVTT-QA [17] is based on the MSR-VTT
dataset [ 18], and has 243,000 VideoQA pairs.

Implementation Details The EMCL module is trained with the neural network. During the training
stage, the EMCL module is trained with the neural network. Each time a new batch of features is fed
into the model, we use M to initialize the A. Then the components Y and )\ are updated by iteration.
Moreover, we update the initial value M using an average moving method. During the inference stage,
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Table 1: Generalization analysis of our EMCL on the ActivityNet [6] and LSMDC [15]. We equip
our EMCL with two strong contrastive learning baselines. T denotes our own re-implementation of
baselines; ¥ denotes the EMCL is trained jointly with the baselines from scratch; § denotes the EMCL
is incorporated into trained baselines as an out-of-the-box inference module with no extra training.
We conducted 5 runs with different seeds for all experiments, and the t-tests indicate that p < 0.01.
The (+Number) denotes the absolute improvements. ‘““1”” denotes higher is better. “}” denotes lower
is better.
(a) Retrieval performance on the ActivityNet [0] dataset.

Methods Text->Video Video->Text
R@1t R@51 R@101 R@11 R@51 R@101
MMT [5]F 22.3 55.8 71.0 23.2 56.6 71.6

+EMCL (Ours)8 | 23.3 (+1.0) 56.4 (+0.6) 71.2 (+0.2) | 24.6 (+1.4) 56.8 (+0.2) 72.5 (+0.9)
+ EMCL (Ours)! | 25.5 (+3.2) 57.3 (+1.5) 72.1 (+1.1) | 25.6 (+2.4) 57.7 (+1.1) 72.9 (+1.3)

(b) Retrieval performance on the LSMDC [15] dataset.

Methods Text->Video Video->Text
R@11 R@51 R@10T |R@1t R@57} R@101
MMT [5]7 13.1 29.6 40.4 12.1 292 40.1

+EMCL (Ours)$ | 13.9 (+0.8) 30.3 (+0.7) 42.4 (+2.0) | 12.5 (+0.4) 29.9 (+0.7) 40.8 (+0.7)
+EMCL (Ours)? | 14.6 (+1.5) 32.5 (+2.9) 42.1 (+1.7) | 14.0 (+1.9) 31.5 (+2.3) 40.7 (+0.6)

Table 2: Effect of the scale factor S on MSR-VTT [18] dataset with inverted softmax [2, 1].

Text->Video Video->Text
R@11T R@57 R@101T MdR|}|R@11 R@51 R@10T MdR|
B =0.0 424 70.8 80.6 2.0 432  70.0 81.1 2.0
B =1.0| 436 721 81.4 2.0 432 70.8 80.8 2.0
S =2.0| 451 699 79.7 2.0 459 71.0 789 2.0
B =3.0| 51.6 78.1 85.3 1.0 51.8 802 88.0 1.0
B =4.0| 415 713 81.4 2.0 442 721 82.8 2.0

given a set of queries (text/video) and a set of candidates (videos/texts), we use the trained M to
initialize the A. Then the components Y and A can be updated by iteration. When the EMCL module
is incorporated into trained baselines as an out-of-the-box inference module with no extra training, A
is randomly initialized. Then the components Y and A can be updated in an unsupervised way by
iteration. We utilize the CLIP (ViT-B/32) [14] as pre-trained Bi-Encoder. The temporal transformer
is composed of 4-layer blocks, each including 8 heads and 512 hidden channels, and is initialized
from the CLIP’s text encoder. Following CLIP4Clip [ 1], the frame length and caption length are
12 and 32 for MSR-VTT and LSMDC. For ActivityNet, a long video retrieval dataset, we set the
frame length and caption length to 64 and 64. We follow training schedules from CLIP4Clip [11].
Concretely, we use the Adam optimizer with a linear warmup. The initial learning rate is le-7 for
text encoder and video encoder and 1e-4 for other modules. We set the temperature 7 = 0.01, 0 = 1,
the momentum « = 0.9, the number of iterations is set to 9 and the parameter K is set to 32. The
network is optimized with the batch size of 128 in 5 epochs. All experiments are performed on V100
GPUs.

The experiment setup in “Comparisons to other baseline methods” We chose four baselines,
e.g., PCA, “Transformer”, “Fully Connected Layers” and “Sparse Autoencoders”. For all methods,
we concatenate video features C,, and text features C', generating the input data X = [C,,; Cy] €
R2B*D  Finally, we add reconstructed features f(X) and original features X to obtain final text-

video representations X = [C,; Cy] = f(X) + X € R2BXD_ All networks are optimized with
the batch size of 128 in 5 epochs. In “PCA”, we adopt PCA at the end of the video-text encoders.
We use PCA to reduce the dimensions of the original features from 512 to 32, then restore them to
512 dimensions. In “Transformer”, we pass the original features through a common Transformer
where the inner-layer has a dimensionality of 512. In “Fully Connected Layers”, we pass the original
features through a common feed-forward network where the inner-layer has a dimensionality of 256,
and the activation function is Relu. In “Sparse Autoencoders”, we adopt Sparse Autoencoders at
the end of the video-text encoders. The inner-layer has a dimensionality of 256, and the activation
function is Sigmoid. We reduce the average response of the encoding layer to p = 0.05.



Table 3: We adopt the EMCL to other contrastive learning tasks, such as Self-supervised Visual
reprentation (Self-supervised), Few-shot Image Classification (Sway 1shot) and Zero-shot Long Video
Classification (Zero-shot LVC).

Task Method Dataset Acc +EMCL
Self-supervised | SimCLR CIFAR10 93.36 93.52
Sway1shot MAML | minilmageNet | 47.5 47.7
Zero-shot LVC | Clip4clip ActivityNet 51.7 52.3
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Figure 1: Visualization of semantic similarity in semantic subspace based on MMT+EMCL. We take
Video 7102 in the MSR-VTT dataset as an example. At the top and bottom are video frames in Video
7102, with text describing the video in the middle. We connect the video frame and the word that are
closest in the semantic subspace with a line and place their similarity estimation besides the line.

The experiment setup in “Generalize to other tasks” Video captioning. The purpose of video
captioning is to describe the content of the video in fluent sentences. “Base model.,,,” uses CLIP [14]
to extract video features and is trained with cross-entropy loss in 50 epochs. Our framework is based
on DCD [19]. We refer the reader to DCD [19] for more detail.

Video question answering.  Visual question answering requires the model to predict an answer
using visual information [8, 7]. We use the target vocabulary for MSRVTT-QA dataset [17], and
train a fully connected layer on top of the final language features to classify the answer. “Base
modely,” uses CLIP [14], a transformer-based [4, 9] visual-language pre-training model, to extract
video-and-language features and is trained with cross-entropy loss. We use the Adam optimizer with
a linear warmup. The initial learning rate is le-7 for text encoder and video encoder and 1e-4 for
other modules. The network is optimized with the batch size of 32 in 5 epochs.

C Additional Experiments

Additional Generalization Analysis To further verify the generalization of our method, we test
it on other datasets such as ActivityNet [6] and LSMDC [15]. As a plug-and-play module, our
approach EMCL can be easily integrated into existing contrastive learning methods. Therefore, we
further equip our EMCL with the baseline model, i.e., MMT [5], and evaluate the performance of the
model on the ActivityNet and LSMDC datasets. Table 1 shows that our EMCL can be applied to
successfully boost the baseline either as a jointly training layer or an out-of-the-box inference module
with no extra training. For ActivityNet, our approach can boost the baseline with the improvement up
to 3.2% and 2.4% for text-to-video task and video-to-text task in terms of R@ 1 metric, respectively.
For LSMDC, our approach can boost the baseline with the improvement up to 1.5% and 1.9% for
text-to-video task and video-to-text task in terms of R@ 1 metric, respectively. The improvements
demonstrate the generalization ability of EMCL.

Effect of the scale factor 5 The parameter J is the scale factor. By adjusting /3, we can add
some flexibility in the reconstructed video-and-language representations. We evaluate the scale range
setting 5 € [0.0, 4.0] as shown in Table 2. We find that R@1 is improved from 45.1% to 51.6% when
B = 2.0 and saturated with 5 = 3.0. As a result, we adopt 5 = 3.0 to achieve the best performance.

Generalize to other contrastive learning tasks To further verify the generalization of our method,
we adopt the EMCL to other contrastive learning tasks, such as Self-supervised Visual representation
and Few-shot Classification. Table 3 shows that our EMCL can be applied to boost other contrastive
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Figure 2: Visualization of the text-to-video results. The left are the videos ranked by the base model,
and the right are the results from our EMCL-Net. Only the correct videos are highlighted in green.
We report the similarity between the texts and the videos on the left of the videos.

learning tasks successfully. For the Self-supervised Visual representation, our approach can boost
the baseline with an improvement up to 0.16%. For the few-shot classification, our approach with
EMCL outperforms the baseline by 0.2%. It shows that EMCL can further improve the performance
of contrastive learning, especially for the tasks with similar samples containing redundant dimensions
and unable to maintain a large number of negative samples.

The generalization of our method for long videos To further verify the generalization of our
method for long videos, we adopt the EMCL to the zero-shot long video classification on the
ActivityNet dataset. For the zero-shot long video classification, we use Prompt to transform the video
classification task into a video text matching task. The template is “human action of <label>". Table 3
shows that the EMCL can be beneficial to the zero-shot long video classification. The reason may be
that for the long video dataset, most of the rich information in the video is redundant information
irrelevant to the task. Therefore, by eliminating the redundancy between modalities, we can reduce
the interference of noise information and improve the performance of the model.

D Additional Qualitative Analysis

Visualization of semantic similarity in semantic subspace In EMCL, we project video and text
features into semantic subspaces. We hope that videos and texts with similar semantics can share a
common semantic center. In Figure 1, we associate all video frames with words in the text. As shown
in Figure 1, all video frames assigned to “skateboard" contain content related to “skateboard". An
interesting observation is that in addition to the semantic information, quantitative information such
as “person" and “others" are also distinguished in semantic subspace. For example, all video frames
assigned to “person” contain only one person, while video frames assigned to “others" contain more
than one person. All the semantic similarities in Figure | are low because limited training data are
not sufficient to understand low-frequency words. This experiment shows that the EMCL can help
the model learn adequate semantic information in video-text retrieval.

Visualization of the text-to-video retrieval We show two examples of the videos retrieved by
the base model and our EMCL-Net. As shown in Figure 2, our EMCL-Net successfully retrieves
the ground-truth video while the model without the EMCL module returns several videos that are
unrelated to the query sentence. Our EMCL-Net retrieves the correct videos with higher confidence



than the method without the EMCL module. These results demonstrate that our EMCL module can
effectively improve the retrieval performance of the model.
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