
A Details on Formal Claims

Our claim in Proposition 1 is also based on the setting of Veitch et al. [54]. Under the assumption that
𝑒 is discrete, Lemma 3.1 of [54] ensures that there exists a random variable (𝑥, 𝑟)⟂𝑒 such that 𝑓𝑢(𝑥, 𝑟)
is CI if and only if it is (𝑥, 𝑟)⟂𝑒 -measurable. Then we will assume that 𝑥, 𝑟 can be decomposed into
parts 𝑥, 𝑟𝑦∧𝑒, 𝑥, 𝑟⟂𝑦 , 𝑥, 𝑟

⟂
𝑒 . Note that we do not assume that we know how to decompose our features

in this manner, nor we assume anything about the semantic meaning of these components. We only
assume that this decomposition exists, and then the main assumption made in [54] is that the graph in
Fig. 1a conforms to the structures in Figure 7 for each user type.

(𝑥, 𝑟)𝑦∧𝑒

(𝑥, 𝑟)⟂𝑒

(𝑥, 𝑟)⟂𝑦

𝑦𝑒

(a)

(𝑥, 𝑟)𝑦∧𝑒

(𝑥, 𝑟)⟂𝑒

(𝑥, 𝑟)⟂𝑦

𝑦𝑒

(b)

Figure 7: Detailed graphs describing our assumptions on causal and anti-causal users (a) causal model
for data generating process of causal user, and (b) anti-causal user. Dashed lines indicate possible
confounding.

We are now ready to state Proposition 1 in a more precise manner
Proposition 3. Let 𝑓 be a CI model and assume 𝑦 and 𝑒 are confounded (i.e. they are connected by
an unobserved common cause 𝑐 or by a directed path). Further assume that 𝐷𝑒(𝑥, 𝑟, 𝑦 ∣ 𝑢) is entailed
by the causal models in Fig. 7 for 𝑢 = 𝑢→𝑦 and 𝑢 = 𝑢←𝑦. Then the following holds:

1. 𝑓𝑢→𝑦
must satisfy 𝐷𝑒(𝑓𝑢→𝑦

(𝑥, 𝑟)) = 𝐷𝑒′ (𝑓𝑢→𝑦
(𝑥, 𝑟)) ∀𝑒, 𝑒′ ∈  .

2. 𝑓𝑢←𝑦
must satisfy 𝐷𝑒(𝑓𝑢←𝑦

(𝑥, 𝑟) ∣ 𝑦) = 𝐷𝑒′ (𝑓𝑢←𝑦
(𝑥, 𝑟) ∣ 𝑦) ∀𝑒, 𝑒′ ∈  , 𝑦 ∈ {0, 1}.

On the other hand, 𝑓𝑢←𝑦
and 𝑓𝑢→𝑦

do not necessarily satisfy conditions 1 and 2, respectively.

Proof. Under the assumptions laid out about the causal model, the conditional independence relations
can be read off the graph directly, as in Theorem 3.2 of [54]. This proves that the independence
properties stated in the proposition must hold. To see that 𝑓𝑢←𝑦

, 𝑓𝑢→𝑦
do not necessarily satisfy

properties 1 and 2 respectively, we will prove the existence of such cases. Consider a causal model
where 𝑒 and 𝑦 are confounded, and assume that the model is faithful [35] (i.e. all conditional
independence statements that are not entailed by the graph do not hold). Hence for the causal user
we generally have 𝐷𝑒((𝑥, 𝑟)⟂𝑒 ∣ 𝑦, 𝑢 = 𝑢→𝑦) ≠ 𝐷𝑒′ ((𝑥, 𝑟)⟂𝑒 ∣ 𝑦, 𝑢 = 𝑢→𝑦) (at the very least there are
values of (𝑥, 𝑟)⟂𝑒 , 𝑦 for which this holds), and hence there exists some (𝑥, 𝑟)⟂𝑒 -measurable function
𝑓𝑢→𝑦

(𝑥, 𝑟) that satisfies 𝐷𝑒(̂𝑓 (𝑥, 𝑟) ∣ 𝑦, 𝑢 = 𝑢→𝑦) ≠ 𝐷𝑒′ (̂𝑓 (𝑥, 𝑟) ∣ 𝑦, 𝑢 = 𝑢→𝑦). The same argument
can be applied for the anti-causal user 𝑢←𝑦 to prove the existence of an (𝑥, 𝑟)⟂𝑒 -measurable function
𝑓𝑢←𝑦

(𝑥, 𝑟) that satisfies 𝐷𝑒(̂𝑓 (𝑥, 𝑟) ∣ 𝑢 = 𝑢←𝑦) ≠ 𝐷𝑒′ (̂𝑓 (𝑥, 𝑟) ∣ 𝑢 = 𝑢←𝑦). The model 𝑓 (𝑥, 𝑟) is CI
since the constructed functions are (𝑥, 𝑟)⟂𝑒 -measurable, but models 𝑓𝑢←𝑦

, 𝑓𝑢→𝑦
do not satisfy conditions

1 and 2 respectively, which concludes our claim.

Next we prove Proposition 2 by constructing a confounded model for an anti-causal user, similar
to the one in the synthetic experiment of Section 5.3. Towards this proposition, we point out that

16

𝑒

𝑟𝑥𝑠𝑝𝑐 𝑥𝑎𝑐

𝑦

(a)

𝑒

𝑟𝑥𝑠𝑝𝑐 𝑥𝑎𝑐

𝑦

(b)

Figure 8: Graphs describing the data-generating processes for anti-causal believer and skeptic users
in the proof of Proposition 2.

an optimal CI predictor is defined as a CI predictor with the best possible worst case performance.
Where the worst case is taken over all distributions that are causally-compatible [54] with the source
distribution 𝐷train.
Definition 2. 𝐷train and 𝐷OOD are causally compatible if they are entailed by the same causal
graph, 𝐷train(𝑦) = 𝐷OOD(𝑦), and there is a confounder 𝑐 and/or selection conditions 𝑠, 𝑠̃ such that
𝐷train = ∫ 𝐷train(𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦 ∣ 𝑐, 𝑠 = 1)𝑑𝑃 (𝑐) and 𝐷OOD = ∫ 𝐷train(𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦 ∣ 𝑐, 𝑠̃ = 1)𝑑𝑄̃(𝑐)
for some 𝑃 (𝑐), 𝑄̃(𝑐).

Let us focus now on distributions where 𝑓 (𝑥𝑠𝑝, 𝑟, 𝑥𝑎𝑐) is counterfactually invariant if and only if it
is (𝑟, 𝑥𝑎𝑐)-measurable (the expression (𝑟, 𝑥𝑎𝑐) should be read as a bivariate random variable). Note
again that from Lemma 3.1 of [54] such a variable exists. The following claim will help us reason
about the optimal CI model for users of the skeptic sub-class.
Lemma 1. If 𝐷train is entailed by the graph in Fig. 8a and 𝐷OOD is causally compatible with it, then
𝐷train(𝑦 ∣ 𝑟, 𝑥𝑎𝑐) = 𝐷OOD(𝑦 ∣ 𝑟, 𝑥𝑎𝑐).

Proof. For binary classification, it is enough to show that 𝐷train(𝑦=1∣𝑟,𝑥𝑎𝑐)
𝐷train(𝑦=0∣𝑟,𝑥𝑎𝑐)

= 𝐷OOD(𝑦=1∣𝑟,𝑥𝑎𝑐)
𝐷OOD(𝑦=0∣𝑟,𝑥𝑎𝑐)

. Let us
write this for the training distribution:

𝐷train(𝑦 = 1 ∣ 𝑟, 𝑥𝑎𝑐)
𝐷train(𝑦 = 0 ∣ 𝑟, 𝑥𝑎𝑐)

=
𝐷train(𝑟, 𝑥𝑎𝑐 ∣ 𝑦 = 1)𝐷train(𝑦 = 1)
𝐷train(𝑟, 𝑥𝑎𝑐 ∣ 𝑦 = 0)𝐷train(𝑦 = 0)

=
𝐷train(𝑟, 𝑥𝑎𝑐 ∣ 𝑦 = 1)𝐷OOD(𝑦 = 1)
𝐷train(𝑟, 𝑥𝑎𝑐 ∣ 𝑦 = 0)𝐷OOD(𝑦 = 0)

.

The second equality stems from the causal-compatibility of 𝐷OOD. It is left to show that 𝐷train(𝑦 ∣
𝑟, 𝑥𝑎𝑐) = 𝐷OOD(𝑦 ∣ 𝑟, 𝑥𝑎𝑐). From causal-compatibility the distributions are entailed by the same
graph in Fig. 8a, which imposes the conditional independence 𝑐⊥𝑟, 𝑥𝑎𝑐 ∣ 𝑦. Hence we conclude the
proof by:

𝐷train(𝑥𝑎𝑐 , 𝑟 ∣ 𝑦) = ∫ 𝐷train(𝑥𝑎𝑐 , 𝑟 ∣ 𝑦, 𝑐)𝑑𝑃 (𝑐) = ∫ 𝐷train(𝑥𝑎𝑐 , 𝑟 ∣ 𝑦, 𝑐)𝑑𝑄̃(𝑐) = 𝐷OOD(𝑥𝑎𝑐 , 𝑟 ∣ 𝑦).

From this result we gather that if we only consider the features 𝑥𝑎𝑐 , 𝑟, there is a unique Bayes-optimal
classifier over all target distributions that are causally compatible with 𝐷train. Since a classifier is CI
if and only if it is (𝑥𝑎𝑐 , 𝑟)-measurable, we see that for the skeptic sub-class of users the optimal CI
model is 𝑓 (𝑥𝑠𝑝, 𝑟, 𝑥𝑎𝑐) = 𝐷train(𝑦 ∣ 𝑟, 𝑥𝑎𝑐). The rest of the proof will simply show that this model may
not be CI for a user of sub-type believer that has the same choice patterns over observed data pooled
from two training environments.

Proof of Proposition 2. Consider a data generating process as depicted in Figure 8a. All variables
𝑥𝑠𝑝, 𝑟, 𝑥𝑎𝑐 , 𝑦, 𝑐 are binary, we consider 2 training environments train = {0, 1}. We write down the

17

distribution in a factorized form:
𝐷𝑢𝑥←𝑟

(𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦) =
∑

𝑐∈{0,1},𝑒∈{0,1}
𝑝(𝑐)𝑝(𝑦 ∣ 𝑐)𝑝(𝑥𝑎𝑐 ∣ 𝑦)𝑝(𝑒 ∣ 𝑐)𝑝𝑢𝑥←𝑟

(𝑟 ∣ 𝑦)𝑝𝑒𝑢𝑥←𝑟
(𝑥𝑠𝑝 ∣ 𝑟, 𝑦)

= 𝑝(𝑥𝑎𝑐 ∣ 𝑦)𝑝𝑢𝑥←𝑟
(𝑟 ∣ 𝑦)

(

∑

𝑒∈{0,1}
𝑝̃(𝑒, 𝑦)𝑝𝑒𝑢𝑥←𝑟

(𝑥𝑠𝑝 ∣ 𝑟, 𝑦)

)

.

Here we defined 𝑝̃(𝑒, 𝑦) =
∑

𝑐∈0,1 𝑝(𝑦, 𝑐)𝑝(𝑒 ∣ 𝑐). The subscripts 𝑢𝑥←𝑟 emphasize that in the distribution
we will construct for the believer user, 𝐷𝑢𝑥→𝑟

, all factors that are not subscripted will be equal to those
in 𝐷𝑢𝑥←𝑟

. That is, consider a distribution that factorizes over the graph in Figure 8b as follows:

𝐷𝑢𝑥→𝑟
(𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦) = 𝑝(𝑥𝑎𝑐 ∣ 𝑦)𝑝𝑢𝑥→𝑟

(𝑟 ∣ 𝑦, 𝑥𝑠𝑝)

(

∑

𝑒∈{0,1}
𝑝̃(𝑒, 𝑦)𝑝𝑒𝑢𝑥→𝑟

(𝑥𝑠𝑝 ∣ 𝑦)

)

. (5)

We will show that there exists some setting of 𝑝𝑢𝑥→𝑟
(𝑟 ∣ 𝑦, 𝑥𝑎𝑐), 𝑝𝑒𝑢𝑥→𝑟

(𝑥𝑠𝑝 ∣ 𝑦) such that:

𝐷𝑢𝑥←𝑟
(𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦) = 𝐷𝑢𝑥→𝑟

(𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦).

But it will also satisfy 𝐷0
𝑢𝑥→𝑟

(𝑦 ∣ 𝑟, 𝑥𝑎𝑐) ≠ 𝐷1
𝑢𝑥→𝑟

(𝑦 ∣ 𝑟, 𝑥𝑎𝑐). Then the proof will be concluded, as
𝑓 (𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟) = 𝐷𝑢𝑥←𝑟

(𝑦 ∣ 𝑟, 𝑥𝑎𝑐) = 𝐷𝑢𝑥→𝑟
(𝑦 ∣ 𝑟, 𝑥𝑎𝑐) cannot be CI w.r.t 𝐷𝑢𝑥→𝑟

. This holds since
𝐷𝑒

𝑢𝑥→𝑟
(𝑦 ∣ 𝑟, 𝑥𝑎𝑐) ≠ 𝐷𝑢𝑥→𝑟

(𝑦 ∣ 𝑟, 𝑥𝑎𝑐) for 𝑒 ∈ {0, 1}, hence there must be some instance for which
𝑓 (𝑥𝑎𝑐(0), 𝑥𝑠𝑝(0), 𝑟(0)) ≠ 𝑓 (𝑥𝑎𝑐(1), 𝑥𝑠𝑝(1), 𝑟(1)).
Towards this, consider 𝐷𝑢𝑥←𝑟

(𝑟 ∣ 𝑦, 𝑥𝑠𝑝) which is obtained by the respective marginalization and
conditioning of 𝐷𝑢𝑥←𝑟

(𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦), and also consider
∑

𝑒∈0,1 𝑝̃(𝑒, 𝑦)𝐷𝑒
𝑢𝑥←𝑟

(𝑥𝑠𝑝 ∣ 𝑦). Let us set:

𝑝𝑢𝑥→𝑟
(𝑟 ∣ 𝑦, 𝑥𝑠𝑝) ∶= 𝐷𝑢𝑥←𝑟

(𝑟 ∣ 𝑦, 𝑥𝑠𝑝).
It is clear that if we set 𝑝𝑒𝑢𝑥→𝑟

(𝑥𝑠𝑝 ∣ 𝑦) such that the following holds:
∑

𝑒∈{0,1}
𝑝̃(𝑒, 𝑦)𝑝𝑒𝑢𝑥→𝑟

(𝑥𝑠𝑝 ∣ 𝑦) =
∑

𝑒∈{0,1}
𝑝̃(𝑒, 𝑦)𝐷𝑒

𝑢𝑥←𝑟
(𝑥𝑠𝑝 ∣ 𝑦), (6)

then the equality 𝐷𝑢𝑥←𝑟
(𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦) = 𝐷𝑢𝑥→𝑟

(𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦) also holds. That is because the factoriza-
tion in (5) is a factorization of the joint distribution over 𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦 where all factors are equal to
the ones obtained from 𝐷𝑢𝑥←𝑟

(𝑥𝑠𝑝, 𝑥𝑎𝑐 , 𝑟, 𝑦). 6

Finally, we claim that many solutions satisfy (6). For each value of 𝑦, 𝑥𝑠𝑝 Eq. (6) is a linear equation
with two variables (𝑝0𝑢𝑥→𝑟

(𝑥𝑠𝑝 ∣ 𝑦) and 𝑝1𝑢𝑥→𝑟
(𝑥𝑠𝑝 ∣ 𝑦)), and they should be constrained to take values

in the range [0, 1]. One solution to the equation is to set 𝑝𝑒𝑢𝑥→𝑟
(𝑥𝑠𝑝 ∣ 𝑦) ∶= 𝐷𝑒

𝑢𝑥←𝑟
(𝑥𝑠𝑝 ∣ 𝑦), and unless

𝐷𝑒
𝑢𝑥←𝑟

(𝑥𝑠𝑝 ∣ 𝑦) ∈ {0, 1} for each value of 𝑥𝑠𝑝, 𝑦, and 𝐷0
𝑢𝑥←𝑟

(𝑥𝑠𝑝 ∣ 𝑦) = 𝐷1
𝑢𝑥←𝑟

(𝑥𝑠𝑝 ∣ 𝑦) (i.e. the spurious
feature completely determines 𝑦) the set of solutions to the equations forms an interval in ℝ2, and has
Lebesgue measure that is non-zero.
Thus let us consider the set of parameterized (by the factors in (5)) distributions 𝐷̃𝑢𝑥→𝑟

(𝑒, 𝑥𝑠𝑝, 𝑟, 𝑥𝑎𝑐 , 𝑦)
that satisfy

∑

𝑒 𝐷̃𝑢𝑥→𝑟
(𝑒 = 𝑒, 𝑥𝑠𝑝, 𝑟, 𝑥𝑎𝑐 , 𝑦) = 𝐷𝑢𝑥←𝑟

(𝑥𝑠𝑝, 𝑟, 𝑥𝑎𝑐 , 𝑦) for the fixed distribution
𝐷𝑢𝑥←𝑟

(𝑥𝑠𝑝, 𝑟, 𝑥𝑎𝑐 , 𝑦). This set has a non-zero Lebesgue measure over the linearly independent parame-
ters needed to parameterize 𝐷𝑢𝑥→𝑟

. Since the set of parameters that yield unfaithful distributions w.r.t
a graph has Lebesgue measure zero [49], there must be at least one distribution 𝐷̃𝑢𝑥→𝑟

(𝑒, 𝑥𝑠𝑝, 𝑟, 𝑥𝑎𝑐 , 𝑦)
in the set where the independence 𝑟, 𝑥𝑎𝑐⊥𝑒 ∣ 𝑦 does not hold. For such a distribution we will have
𝐷𝑒

𝑢𝑥→𝑟
(𝑦 ∣ 𝑟, 𝑥𝑎𝑐) ≠ 𝐷𝑢𝑥→𝑟

(𝑦 ∣ 𝑟, 𝑥𝑎𝑐), which is what was required to conclude the proof.

B Experimental Details

Code and data for all experiments can be found in the following anonymous link:
https://drive.google.com/drive/folders/1bO57v4PUuUh76F_q0a_xAVx6CKdeDJ5l

6Note that it is easy to observe that the two sides of (6) are the marginal distribution over 𝑥𝑠𝑝, 𝑦 of the two
distributions 𝐷𝑢𝑥→𝑟

and 𝐷𝑢𝑥←𝑟
respectively.

18

https://drive.google.com/drive/folders/1bO57v4PUuUh76F_q0a_xAVx6CKdeDJ5l

Table 2: Original RateBeer dataset statistics.
Number of reviews 2, 924, 127
Number of users 40, 213
Number of beers 110, 419
Users with > 50 reviews 4, 798
Median #words per review 54
Timespan 4/2000-11/2011

Table 3: Our RecBeer data features.
Variable type Not. Description

Item 𝑥

avg past appearance
avg past aroma
avg past palate
avg past taste
of active years
alcohol percentage
beer type

User 𝑢
avg past satisfaction
of past choices
of active years

Recommendation 𝑟 text review
of past reviews

Time 𝑒 year

Choice 𝑦 try beer/not

B.1 RecBeer (causal users)

Original Dataset description. The original RateBeer dataset includes textual reviews and numerical
ratings of roughly 3000 unique beers, collected over the span of over 11 years. Each review data-point
also includes additional features describing the beer (e.g., brand, style), the author of the review
(e.g., location), and the review itself (e.g., date). Figure 9 shows an example of a data point. Table 2
provides summary statistics.

Data Generation Process. The original RateBeer dataset includes reviews and rating that were
authored and submitted by users of the platform. For our purposes, focusing learning and prediction
on users as contributors of content has two limitations: (i) we cannot know what platform-selected
information (𝑟) was presented to them and how it influenced their decisions, and (ii) we cannot reason
counterfactually about their potential choices had they been exposed to different information.
To overcome both issues, we adapt the original dataset to simulate choice behavior of users as
consumers of content, as they use the platform to make informed decisions about beer consumption.
We emulate the following process: a user 𝑢 logs on to the platforms, and is recommended a certain
beer. The beer is described by intrinsic features 𝑥, and one platform-selected textual review 𝑟, chosen
from a pool of already-existing reviews for that beer (these being the reviews for that beer that have
already by submitted by other contributing users). The user then decides weather to try (i.e., consume)
the beer (𝑦 = 1) or not (𝑦 = 0). Our goal is to predict for new users 𝑢 their choices 𝑦 for recommended
beers given descriptions 𝑥, 𝑟.
To create features for beers 𝑥 and (consuming) users 𝑢, we aggregate information from all correspond-
ing reviews: for beers—all reviews of that beer, and for users—all reviews authored by that user.
This includes features such as average past taste score for beers and average past overall satisfaction
for users. Table 3 summarizes our feature space. Since we model users as causal, the graph edge
𝑟→𝑦 implies that changes to 𝑟 causally affect 𝑦. To simulate this behavior, we create for each user an
‘intervention space’ which includes a collection of possible interventions 𝑟 and their corresponding
counterfactual outcomes 𝑦. For our experiment, we simply take all pairs of reviews and ratings (𝑟, 𝑠)
for a given beer to be the set of possible interventions and outcomes. Textual reviews are featurized
using a pre-trained BERT model [13], and numerical ratings 𝑠 ∈ [0, 5] are transformed into binary
choices 𝑦 = {0, 1} by setting 𝑦 = 1 if the user’s rating for that beer was above the median rating
(for that beer), and 𝑦 = 0 otherwise. Since learning requires observational data, for each user-beer
pair (𝑢, 𝑥) we sample (in a way we describe shortly) one review-choice pair (𝑟, 𝑦) out of 100 unique
reviews for that beer; an example is presented in Figure 10. This provides a sampled tuple (𝑢, 𝑥, 𝑟, 𝑦)
expressing the behavior of a causal user whose choices are affected by the review presented to her.
Together, 𝑢, 𝑥, and 𝑟 (as an embedding) include 866 features.

19

Figure 9: RateBeer example: A textual review and numerical rating for a beer (with metadata).

Figure 10: RecBeer interventions: An example of a simulated intervention for causal users, for
which changing the review shown to the user (bottom) to another (top) may influence his behavior
(here, from not choosing to choosing).

Figure 11: RecBeer environments: Each year serves as a different environment, whose affect is
expressed through differing correlations between beer types and user choices. The plot shows the
temporal correlation structure used for the experiment in §5.1, and underlie the results presented in
Fig. 3. Periods with substantial changes are highlighted in tan.

20

Figure 12: Fashion items in the RecFashion dataset with recommended colors. On the left side are
green recommendations and on the right side are red recommendations.

Finally, to model the effects of changing environments, we consider an environment variable 𝑒 that
encodes the year, expressing the idea that different years may express different ‘trends’ in which beer
types7 are more (and less) fashionable. To implement this, we sample review-choice pairs for users
within each year in a way that introduces a pre-determined amount of correlation between choices and
beer types. The chosen per-year correlation levels is plotted in Figure 11. Notice the drastic change in
fashions in 2007 and 2011.

Training and testing. We train and evaluate one model per year. For each year 𝑒 ∈
{2006,… , 2012}, training is performed on data from years {2002,… , 𝑒 − 1} and tested on 𝑒. In this
way, fashions regarding beer type accumulate over time.

Models. We learn a linear model that takes as input the concatenation of 𝑢, 𝑥, 𝑟. The learning
objective includes a binary cross entropy loss, and marginal MMD as regularization [22] (since we
model users as causal; see §4). We trained all models for 700 epochs with 𝑙𝑟 = 0.01 and batches of
size 1024, and set 𝜆 = 100. Results are averaged over five runs with different random seeds.

B.2 RecFashion (anti-causal users)

Original Dataset Statistics. The Fashion Product Images dataset includes a large collection of
fashion items, described by an image and additional attributes such as: season, gender, base color,
usage, year, and product display name. Items are organized by category, sub-category, and type; we
focus on the apparel category. Table 4 provides summary statistics.

Table 4: Original Fashion Product Images dataset statistics.
number of items 44, 447
main categories 7
sub-categories 45
types 142

Data Generation Process. The original dataset does not include user choices (or any other form
of user behavior). To simulate user choices, we imagine a setting were the platform recommends
to each user an item by presenting an image of the item (𝑥) in a certain color (𝑟). We set 𝑥 to be
the item’s grayscale image, and set 𝑟 to be a colorization of that image into one of two colors: red
or green. Users then choose whether to buy the item or not, 𝑦 ∈ {0, 1}. We then model users as
choosing primarily on the basis of the ‘gender’ attribute of items, 𝑥𝑔 ∈ {0, 1}, and set 𝑦 = 𝑥𝑔 w.p.
0.75 and 𝑦 = 1 − 𝑥𝑔 otherwise.
Since users in this experiments are anti-causal, they act under the belief that changes in 𝑦 affect 𝑟
(here we do not make use of the edge 𝑦→𝑥). Note that 𝑒 also affects 𝑟. We implement this joint
influence of 𝑒, 𝑦 on 𝑟 by assigning colors to images in a way that obtains a certain level of correlation
between the color 𝑟 ∈ {red, green} and choices 𝑦. Technically, we associate with each environment

7We create four beer ‘types’ by aggregating beers of similar style. For example, the styles Doppelbock,
Dortmunder, Dunkel, Dunkelweizen, and Dunkler were all attributed to the same type.

21

𝑒 a parameter 𝑝𝑒 ∈ [0, 1]. Then, using a color variable 𝑐 = 0 for red and 𝑐 = 1 for green we assign
for each item its color as 𝑐 = 𝑦 w.p. 𝑝𝑒, and 𝑐 = 1 − 𝑦 otherwise. Thus, different environments
entail different conditional distributions 𝑃 (𝑟 = red|𝑦 = 1) = 𝑃 (𝑟 = green|𝑦 = 0) = 𝑝, which
reflect an anti-causal structure. Finally, given the sampled 𝑐, we colorize the image 𝑥 as follows: if
𝑐 = 1, we set 𝑥𝑅 ← 0.5 + 0.2𝑥𝑅, 𝑥𝐺 ← 0.7𝑥𝐺, 𝑥𝐵 ← 0.7𝑥𝐵; if 𝑐 = 0, we set 𝑥𝐺 ← 0.5 + 0.2𝑥𝐺,
𝑥𝑅 ← 0.7𝑥𝑅, 𝑥𝐵 ← 0.7𝑥𝐵 (𝑅,𝐺,𝐵 are the color channels). Note that this means users do not observe
𝑥, 𝑟 independently, but rather a colored image that is a product of both 𝑥 and 𝑟.

Training and testing. We run eight experiments that differ in the average degree of correlation
in the training sets, for average correlation values of 𝑝 ∈ {0.1, 0.2,… , 0.8}. Each experimental
condition (𝑝) includes training data from six environments 𝑒, with correlations 𝑝𝑒𝑛𝑣 ∈ {𝑝−0.025, 𝑝+
0.025, 𝑝 − 0.05, 𝑝 + 0.05, 𝑝 − 0.1, 𝑝 + 0.1} (their average is 𝑝).

Models. For the model We used a feed forward neural network with three hidden layers and a
hidden dimension of size 256, ReLU activation function and 𝑁𝐿𝐿 as our base loss function. For
computational efficiency, input images were resized to 14 × 14. The learning objective includes a
binary cross entropy loss, and a conditional DeepCORAL regularizer [52] (since we model users as
anti-causal; see §4). We set 𝜆 = 5000 in the first 125 epochs and 𝜆 = 1 in the rest, and trained the
model for 1,900 epochs with 𝑙𝑟 = 0.001 and batches of size 1024.

C Loss Functions.

We train all of our models with either the CORAL or MMD loss. Empirically, we found that CORAL
we more stable in the RecFashion experiments and. In the RecBeer experiments, models trained with
the MMD loss consistently outperformed those who were not. When conditioning on the label 𝑦, we
compute 𝑙𝑑𝑖𝑠𝑡 (either 𝑙𝐶𝑂𝑅𝐴𝐿 or 𝑙𝑀𝑀𝐷) separately for cases where 𝑦 = 1 and 𝑦 = 0. We describe
here both loss functions.

CORAL Loss. The CORAL loss is the distance between the second-order statistics of two feature
representations, corresponding to different 𝑧:

𝑙𝐶𝑂𝑅𝐴𝐿(𝑓 (𝑥, 𝑟), 𝑧) =
1
𝑑2

||𝐶𝑧 − 𝐶𝑧′ ||
2
𝐹

where || ⋅ ||2𝐹 denotes the squared matrix Frobenius norm. The covariance matrices of the source and
target data are given by:

𝐶𝑧 =
1

𝑛𝑧 − 1
(𝜙(𝑥(𝑧), 𝑟)⊤𝜙(𝑋(𝑧), 𝑟)

− 1
𝑛𝑧

(1⊤𝜙(𝑥(𝑧), 𝑟))⊤(1⊤𝜙(𝑥(𝑧), 𝑟)))

where 1 is a column vector with all elements equal to 1, and 𝜙(⋅) is the feature representation.

MMD. Maximum mean discrepancy (MMD) measures distances between mean embeddings of
features. That is, when we have distributions 𝑃 and 𝑄 over a set  . The MMD is defined by a feature
map 𝜙 ∶  → , where  is what’s called a reproducing kernel Hilbert space. In general, the MMD
is

MMD(𝑃 ,𝑄) = ||𝔼𝑋[𝜙(𝑋)] − 𝔼𝑌 [𝜙(𝑌)]||

For use of the MMD loss for causal representation learning, see Veitch et al. [54].

22

	Details on Formal Claims
	Experimental Details
	RecBeer (causal users)
	RecFashion (anti-causal users)

	Loss Functions.

