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In this supplementary file, we provide more experimental details and empirical results to further
demonstrate the benefits of our proposed All-Inclusive Multi-Level segmentation task (AIMS).

• Experimental details on dataset split, sampling strategy and SAM’s [1] configuration.

• More ablation studies on sample strategy and dataset usage.

• More visualization results of our AIMS model with various inference modes.

• User study of AIMS and the concurrent work SAM [1]

The code and models to reproduce our experiments will be released.

1 Experimental Details

Dataset Split As outlined in the main paper, all models are trained using five datasets: COCO [2],
EntitySeg [3], PascalVOC Part (PPP)[4], PACO[5], and COCO-PSG [6]. Given that the original
training and validation splits of these datasets are tailored for single tasks, we collate the images
and reorganize them to suit our AIMS task. Initially, we select 1069 and 1000 validation images
from PPP [4] (which covers the part and entity levels) and COCO-PSG [6] (which covers the entity
and relation levels) respectively. Following this, we eliminate any duplicate images in the unified
training set that are present in the validation images, resulting in a refined training set comprised of
approximately 236.7K unique images.

Sampling Strategy In Table 2, we present the eight different sample types, labeled as Sample ID
1 through 8, for each iteration, assuming a batch size of 8. Additionally, images for each of these
sample types are uniformly selected from the datasets mentioned in the ’Dataset’ column.

SAM’s configuration To obtain more fine-grained part-level predictions, we follow the
hyper-parameters found on SAM’s GitHub page: points_per_side (2), pred_iou_thresh
(0.86), stability_score_thresh (0.92), crop_n_layers (1), crop_n_points_downscale_factor (2),
min_mask_region_area (100).

2 Ablation Studies

Sample Strategy Table 2 presents an ablation study on various sample strategies by examining
the impact of each sample type during each iteration. The first row serves as our baseline, adhering
to our base framework with a split decoder for varying-level predictions, and it excludes the usage
of a prompt mask encoder. The remaining rows illustrate the influence on performance when task
prompts are employed during each training iteration.
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Sample ID Mask Prompt Decoder Dataset
1

Full Image
Entity COCO, EntitySeg, PPP, COCO-PSG

2 Part PPP
3 Relation COCO-PSG
4

Partial Image
Entity COCO, EntitySeg, PPP, COCO-PSG, PACO

5 Part PPP, PACO
6 Relation COCO-PSG
7 One Entity Part PPP, PACO
8 Two Entities Relation COCO-PSG

Table 1: The illustration of eight sample types on each training iteration.

Sample ID PPP (Inference) COCO-PSG (Inference)
1 2 3 4 5 6 7 8 APP APE AREP APR APE ARRE

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 24.5 53.4 69.7 38.9 40.4 50.9
✓ ✓ ✓ ◦ ◦ ◦ ◦ ◦ 25.0 53.5 69.8 39.2 40.8 51.3
◦ ◦ ◦ ✓ ✓ ✓ ◦ ◦ 22.5 51.4 67.3 37.1 37.6 48.9
✓ ✓ ✓ ✓ ✓ ✓ ◦ ◦ 25.7 54.4 70.9 39.6 41.2 51.8
✓ ✓ ✓ ✓ ✓ ✓ ✓ ◦ 26.4 55.9 72.1 39.6 41.3 51.8
✓ ✓ ✓ ✓ ✓ ✓ ◦ ✓ 25.7 54.3 71.0 40.4 42.0 53.0
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 26.5 56.1 72.3 40.5 42.1 53.1

Table 2: The ablation studies on eight distinct sample types used in each training iteration. The ✓ and
◦ symbols are employed to indicate whether a specific sample type is utilized. For a fair comparison,
we adjust the learning rate linearly in relation to the batch size. The default learning rate is 1e-8 for a
batch size of 8.

Dataset PPP (Inference) COCO-PSG (Inference)
COCO COCO-PSG PPP PACO EntitySeg APP APE AREP APR APE ARRE

✓ ◦ ◦ ◦ ◦ - 44.4 - - 41.2 -
◦ ✓ ◦ ◦ ◦ - 44.5 - 39.6 41.7 51.8
◦ ◦ ✓ ◦ ◦ 24.3 48.6 65.8 - 25.7 -
✓ ✓ ✓ ◦ ◦ 25.7 54.4 70.9 39.6 41.2 51.8
✓ ✓ ✓ ✓ ◦ 26.4 55.9 72.1 39.6 41.2 51.8
✓ ✓ ✓ ◦ ✓ 25.7 54.3 71.0 40.4 42.0 53.0
✓ ✓ ✓ ✓ ✓ 26.5 56.1 72.3 40.5 42.1 53.1

Table 3: The ablation study of performance influence with dataset usage. Similar to Table 2, we
adjust the learning rate linearly considering the lack of some task prompts due to the non-provided
dataset.

For instance, the second row reveals that the exclusive usage of a full image task prompt brings a
marginal performance improvement over the baseline. Since full-image mask prompts are always
the same, injecting them into the original image features is identical to not using any mask prompts.
Conversely, the third row shows that employing solely partial-image mask prompts can considerably
deteriorate performance, which is inconsistent with the inference process that involves full-image
mask prompts.

In the fourth row, we observe that using both full and partial mask prompts can further enhance
performance by providing more accurate signals to the network. Additionally, the introduction
of mask prompts at the entity-to-part and relation-to-entity levels consistently yields performance
improvements, as depicted in subsequent rows.

Dataset Usage Table 3 displays an ablation study focusing on the utilization of various datasets.
The first three rows present the model performance when trained on a single dataset. This results
in degraded performance on cross-dataset evaluation due to inconsistencies in annotations across
different datasets. As shown in the fourth row, combining the three datasets for training enhances the
overall validation performance. This improvement is due to the consistency maintained between the
training and validation splits. Incorporating PACO and Entityseg datasets at part and entity levels
further improve the performance for the respective levels.

3 Visualization

The flexibility of our AIMS task. Figure 1 illustrates how our proposed AIMS task provides the
flexibility for segmenting anything. This is to address the subjective annotation issues in existing
datasets. For instance, in the image (a), the throw pillows and the sofa are predicted as a single entity,
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Figure 1: The illustration of the flexibility of AIMS task to tackle the subjective annotation issues in
existing datasets.

Entity-level Results Part-level Results

full image prompt

one entity prompt

Figure 2: The example of prediction inconsistency between two prompt types on unseen classes.

which aligns with the ground truth annotation. Nonetheless, in certain scenarios, a user might wish
to edit the throw pillows independently. With our AIMS method, utilizing a full image prompt for
part-level prediction does not yield these separated masks. However, by selecting this entity mask as
an entity prompt for part-level prediction, we can successfully differentiate the three throw pillows.

Additionally, in image (b), a user may want to segment the windows into several components.
However, original ground truth annotations typically consider the two windows as a single entity.
To meet this requirement, we initially utilize a full image prompt and an entity encoder to identify
the mask of the whole windows. Following this, we apply this two-entity mask prompt and relation
Decoder to split them into two independent window masks. Ultimately, we can select one window
for further segmentation into two parts: the window edge and curtains.

Prediction consistency. We investigate the prediction consistency across two inference modes: full
and partial image prompts. Figure 2 displays an example where our AIMS model fails to segment
anything at the part level with a full image prompt, but it is able to break down an entity-level mask
prompt into a more detailed level, similar to the sofa and throw pillows in the image. Given that the
pillows have never been labeled in our utilized dataset, we surmise that our AIMS model might yield
inconsistent prediction results for unseen classes when different prompts are used. Using entity-level
mask prompts could help our model to drill down to the next level.

However, the scenario changes when we turn our attention to the known classes. Figure 3 illustrates
that three cars yield similar part-level prediction results, regardless of whether a full image or a single
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Figure 3: The example of prediction consistency between two prompt types on seen classes.

entity prompt is used. This indicates that our AIMS model can maintain prediction consistency for
known classes.

The three-level predictions Figure 4 displays the three-level prediction outcomes of our AIMS
model. Despite the potential subjectivity in defining the three levels, our AIMS model shows strong
promises in fulfilling various user needs and intentions in image editing. For instance, the red
region in the image is not detected at the entity-level prediction results, as it is merged into the tray.
However, by injecting an entity-level mask prompt for the tray region into the part encoder, we see
that the separate red region can be obtained, as shown in the second column of the ’part-level results’.
Additionally, the relation-level masks of any two entities that share some semantic relationship can
be predicted, and all relation-level prediction results can be represented in a scene graph.

More visualization results. In the Fig. 7, we show more visualization results at entity and part
level in the wild (Open-Image [7] dataset), manifesting the generalization ability of our proposed
AIMS model at the entity and part level. Considering the entity level is the principal part of image
editing, we also show some cases on Laion400M [8] to show the effectiveness of our AIMS model.

4 User Study

We conducted a user study in which there were 480 individuals who were identified as Adobe
Photoshop users who regularly used the software for image manipulation/editing. In this user study,
we randomly selected 40 images in the wild and provided the users with a visualization of the three-
level prediction results of our AIMS model, as shown in Figure 4. For each image, we asked each user
about his/her degree of satisfaction with treating semantically meaningful and -coherent segments
for three levels, with respect to their relevance to and suitability for image manipulation/editing
applications. The satisfactory scores are aggregated from all users for the individual images. We find
that the average score of each image is large than 7.8 on the condition that the maximum score is 10.
Most of the selected images’ scores are larger than 6.0, This confirms that the users are highly satisfied
with our model’s prediction results in the context of image manipulation/editing. To better present the
user study’s findings, we summarize the data of Table 4. The image IDs with the minimum, median,
and maximum user scores are 20, 19, and 35. We show these images and their corresponding entity
annotations in Fig. 6.
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Entity-level Results

Part-level Results
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Figure 4: The illustration of how the AIMS model can be used to obtain multi-intention segmentation
results, including a scene graph for physical-touch relations.

Image-ID 20 (7.83)

Image-ID 34 (8.27)

Image-ID 19 (8.00)

Image-ID 15 (8.05)

Image-ID 22 (7.96)

Image-ID 32 (8.23)

Figure 5: The selected images used in our user study. For brevity, we only show the entity- and
part-level predictions the user most care.
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Figure 6: The statistical visualizations of the data from our user and survey studies. (a) The histogram
here represents the distribution of the users based on their given scores in the three-level predictions.
(b) Each horizontal bar here indicates the proportions of votes given by the survey participants to
SAM [1] (green) and ours (orange) on each of the 40 images.

Figure 7: More visualization results on Open-Image Dataset [7] in the ‘wild’.

In Fig. 6, we provide statistical information about our user study. The sub-figure (a) is a summary of
Table 4, indicating that over 90% of users rated our prediction results higher than 6.0. Sub-figure (b)
contrasts user preferences between our results and those from the SAM model. Despite being trained
with fewer data, our model garners an appreciation comparable to that of SAM, as can be observed in
the sub-figure (b).
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Image ID P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 AVG
1 0.00 0.00 1.88 3.13 8.13 11.25 11.25 16.88 9.38 38.13 8.06
2 0.63 0.00 3.13 3.75 5.63 15.00 13.75 13.13 10.00 35.00 7.84
3 1.25 0.63 1.88 1.88 10.63 10.63 15.00 12.50 8.13 37.50 7.86
4 0.63 0.63 0.63 3.13 7.50 14.38 13.13 14.38 8.75 36.88 7.95
5 0.00 0.63 2.50 1.25 7.50 11.88 13.13 18.13 7.50 37.50 8.02
6 0.63 0.63 1.25 1.25 6.88 15.00 14.38 20.00 7.50 32.50 7.88
7 0.00 0.00 0.63 3.13 6.25 13.75 12.50 20.63 10.63 32.50 8.01
8 0.00 0.00 1.25 1.88 8.13 11.88 15.63 13.75 9.38 38.13 8.08
9 0.00 0.63 1.25 3.75 8.13 10.63 15.63 18.13 8.13 33.75 7.90

10 0.00 0.63 3.13 2.50 5.00 16.88 15.00 14.38 6.88 35.63 7.85
11 0.00 0.00 0.00 1.25 5.63 17.50 10.00 19.38 13.75 32.50 8.12
12 0.63 0.63 0.63 2.50 5.00 10.63 16.88 22.50 11.87 31.88 8.00
13 0.00 0.00 0.00 2.50 5.00 14.38 15.00 15.63 12.50 35.00 8.14
14 0.00 0.63 1.25 3.75 6.25 13.75 13.75 19.38 12.50 28.75 7.85
15 0.00 0.00 0.63 1.88 8.13 13.75 11.25 20.63 9.38 34.38 8.05
16 0.63 0.63 1.25 2.50 7.50 11.88 13.75 18.13 11.25 32.50 7.91
17 0.00 0.00 0.63 1.88 4.38 13.75 18.13 16.25 11.88 33.13 8.09
18 0.00 0.00 0.00 3.13 5.63 16.88 15.00 13.75 11.25 34.38 8.02
19 0.00 0.63 0.63 1.88 6.25 15.00 16.88 14.38 8.75 35.63 8.00
20 0.00 0.00 0.63 3.13 6.25 10.63 12.50 20.63 10.63 32.50 7.83
21 0.00 1.88 0.63 0.63 5.00 11.88 15.63 22.50 8.13 33.75 8.05
22 0.00 0.63 1.25 3.13 8.75 10.63 13.75 16.25 11.88 33.75 7.96
23 0.00 0.63 0.63 1.88 5.63 13.75 13.75 18.75 9.38 35.63 8.08
24 0.00 0.63 0.63 1.88 4.38 11.88 15.63 20.00 11.88 33.13 8.11
25 0.00 1.88 0.63 1.88 7.50 11.88 11.88 19.38 11.25 33.75 8.00
26 0.00 1.25 0.63 2.50 5.00 11.25 16.88 18.75 9.38 34.38 8.03
27 0.00 0.00 1.25 1.25 7.50 12.50 13.13 20.63 9.38 34.38 8.06
28 0.00 0.00 0.63 4.38 3.75 12.50 13.13 20.00 13.13 32.50 8.08
29 0.00 0.00 0.63 3.13 5.00 8.13 16.88 18.75 13.75 33.75 8.18
30 0.00 1.25 1.25 5.00 5.63 11.25 11.25 18.13 11.88 34.38 7.96
31 0.00 0.63 1.88 0.63 5.00 12.50 12.50 20.00 12.50 34.38 8.13
32 0.00 0.63 1.88 0.00 4.38 11.25 15.00 18.75 9.38 38.75 8.23
33 0.00 0.63 0.63 2.50 5.00 13.13 9.38 23.75 9.38 35.63 8.13
34 0.00 1.25 0.63 2.50 5.00 11.88 6.88 18.75 15.63 37.50 8.25
35 0.00 0.63 0.63 1.25 4.38 10.00 12.50 21.88 13.13 35.63 8.27
36 0.00 0.63 0.63 3.13 5.00 10.63 13.13 18.13 14.38 34.38 8.14
37 0.00 0.00 0.63 2.50 3.75 10.00 18.13 18.75 16.25 30.00 8.14
38 0.63 0.00 0.63 2.50 10.00 10.63 13.13 23.13 10.00 29.38 7.84
39 0.00 1.25 1.88 1.88 4.38 10.63 18.13 17.50 13.75 30.63 8.04
40 0.00 0.00 0.63 2.50 6.88 11.88 11.25 16.88 13.75 36.25 8.08

Table 4: Data from the user study on the three-level prediction results of our AIMS model. Px

indicates the percentage of users who give “x” as the score to represent their degrees of satisfaction.
“x” ranges from 1 to 10, and 10 represents the highest degree of satisfaction. “AVG” indicates the the
score averaged across all users for each image.
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Figure 8: More visualization results on Laion400M [8] in the ‘wild’.
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