
A Inferred Options Policy Gradient552

In our work, we use IOPG [44], a recently introduced policy gradient method for learning options553

that treats options as latent variables during gradient calculation. This method allows for updating all554

options based on their responsibilities for a given action which results in better data efficiency. The555

IOPG gradient can be calculated from sampled trajectories:556

∇J = Eτ

[
T∑
t=0

∇ log π(at|st)At
]

︷ ︸︸ ︷∑
ωi

p(ωit|s[0:t],a[0:t−1])π
ωi(at|st)

, (7)

where π(at|st) can be decomposed according to Equation 7. The probability p(ωit|s[0:t],a[0:t−1])557

represents probability that option ωi was active at timestep t given past actions and states and can be558

computed recursively:559

p(ωjt+1|s[0:t+1],a[0:t]) =∑
ωi p(ω

i
t|s[0:t],a[0:t−1])π

ωi(at|st)π̃Ω(ωjt+1|ωit, st+1)∑
ωk p(ω

k
t |s[0:t],a[0:t−1])πω

k(at|st)
,

(8)

with option transition probability π̃Ω(ωjt+1|ωit, st+1) given by:560

π̃Ω(ωjt+1|ωit, st+1) =

ξω
i

(st+1)π
Ω(ωj |st+1) + 1ωj=ωi

[
1− ξωi(st+1)

]
.

(9)

B Experiment details and hyperparameters561

B.1 Adjustments to Taxi environment562

We made a small adjustment to the original Taxi domain proposed by Dietterich [8]. Instead of563

starting with any state with random probability, the agent was always initialized in one of the corners.564

Our motivation for this modification was the fact that high-level policy parameters were not shared565

across states in tabular policy. Consequently, a problem could arise if the agent would be initialized566

in completely different part of the state space after the inner update (due to sampling). In this case,567

high-level policy would be adapted only in the part that was visited before the update and would568

likely not lead to improvement in unexplored part of the state space. Therefore, the post-adaptation569

performance would strongly depend on sampled initial states.570

B.2 Hyperparameters and implementation details571

Hyperparameter values for FAMP and MLSH which were used in our experiments are outlined in572

Tables 2 and 3. We used layers without biases for FAMP in the Taxi experiment and learned the573

inner learning rate αin for all weights and biases separately in the Ant Maze experiment. Sigmoid574

non-linearity was used after a final layer for terminations whereas policy over options used softmax.575

In the Ant Maze experiment, sub-policies outputted mean of a multivariate normal distribution. This576

distribution used learned diagonal covariance matrix that was shared among all states. Furthermore,577

we used the Adam optimizer for the update of outer parameters during the training in both experiments.578

During the adaptation, the SGD optimizer with learning rate αin was used.579

When choosing hyperparameter values for our method, we used the values from MAML [14] as a580

starting point and experimented with different values of αout and αin . The value of αin is particularly581

important for the algorithm because the value which is too low will not allow for a sufficiently fast582

change of the high-level policy. Such behavior was observed in the Taxi experiment, where we583

increased this learning rate to a final value 10. To account for a more complex neural network in584

our second experiment, we chose a lower initial value and meta-learned this parameter. In both585

15

Table 2: FAMP hyperparameters
Hyperparameter Taxi Ant Maze
Meta-training epochs 2000 2500-2650
Trajs per update k 10 20
Env samples N 64 48
GAE λ 0.98 0.98
Loaded DiCE λ 0 0
Return discount 0.95 0.99
Baseline Linear Linear
LR inner αin 10 10−3

Learn αin No Yes
LR outer αout 10−2 10−3

Options opts 4 (default) 3
High-level policy NN (72, opts) (29, 64, 64, 3)
Sub-policy NN (72, 6) (29, 64, 64, 8)
Terminations NN (72, 1) (29, 64, 64, 1)
Non-linearities N/A Tanh

Table 3: MLSH hyperparameters
Hyperparameter Taxi Ant Maze
Meta-training epochs 50 60
Trajs per update 2 2
Warmup duration 20 20
Joint update duration 30 40
GAE λ 0.98 0.98
Return discount γ 0.95 0.99
PPO clip ε 0.2 0.2
PPO optim epochs 10 10
PPO batchsize 64 64
Baseline NN NN
LR sub-policies 3× 10−4 3× 10−4

LR policy over options 0.01 0.01
Options 4 3
High-level policyNN (72, 4) (29, 64, 64, 3)
Sub-policy NN (72, 6) (29, 64, 64, 8)
Non-linearities N/A Tanh
Option length 4 or 10 200

experiments, we used the value of 0 for the hyperparameter of Loaded DiCE to reduce the variance586

of the estimator as much as possible.587

In order to reproduce MLSH as closely as possible, we used the code and the hyperparameters from588

the original paper [17] for the Ant Maze experiment. This included running the algorithm on 120 Intel589

Haswell E5-2630-v3 cores, separated into 10 groups. Meta-training on a cluster took 13 hours for590

Taxi and 82 hours for Ant Maze experiment. Although we could not perform quantitative comparison591

with the original experiment because performance in these tasks was not reported, we observed that592

trained sub-policies were qualitatively similar to the ones shown in the videos provided by Frans et al.593

[17]. Since multiple sub-routines in the computation of FAMP gradient can be parallelized, we also594

utilized same computational cluster for meta-training. The gradients from different environments595

were computed on different cores independently before averaging. We used 48 cores for Ant Maze and596

64 cores for Taxi. The meta-training took 7 hours for Taxi and 196 hours for Ant Maze experiment.597

The single-task and multi-task baselines used the same architecture and hyperparameters as FAMP598

except for learning rates. The multi-task baseline was trained by averaging gradients from all 48599

training environments in every update. We used learning rate 0.01 for training and 1 during the600

adaptation. The single-task baseline was trained with the Adam optimizer. We set the learning rate to601

0.3, which was the highest value that allowed for stable training. For PPO [43] and RL2 [10] we used602

the implementation of SpinningUp [1] and Garage [18] respectively. In both implementations, we603

16

Table 4: PPO hyperparameters

Hyperparameter Ant Maze
Trajs per update 4
GAE λ 0.98
Return discount γ 0.99
PPO clip ε 0.2
PPO optim epochs 80
Baseline NN
LR baseline 10−3

LR policy 3× 10−4

Policy NN (29, 64, 64, 8)
Non-linearities ReLU

Table 5: RL2 hyperparameters

Hyperparameter Ant Maze
Meta-batch size 9
Episodes per task 4
GAE λ 0.98
Return discount γ 0.99
PPO clip ε 0.2
PPO optim epochs 10
PPO batchsize 32
Baseline Linear
Policy type GRU policy
Policy hidden dims 64

used default hyperparameter values from mujoco experiments except for the values outlined in Tables604

4 and 5.605

C Additional Plots606

C.1 Meta-training plots607

In Figure 5 we provide meta-training plots from both experiments. We ran all algorithms until they608

stopped improving. The plot of FAMP shows average post-adaptation performance from the final609

episode. Due to the update schedule of MLSH which staggers some cores (for more details see610

[17]), reported performance is averaged over cores which may be in different adaptation phases. It is611

therefore not directly comparable to FAMP. However, it still provides a good indication about the612

final performance. Similarly, meta-training plot of RL2 does not show the return achieved in the final613

episode but instead shows average return obtained over all 4 episodes. This is the objective optimized614

by RL2 algorithm.615

In Ant Maze experiment the variance of MLSH increases towards the end of meta-training. This616

can be explained by higher difference between achieved returns in some environments. As we can617

see from Figure 8, MLSH achieves much lower return in environments 1 and 2 when compared to618

other environments. Thus, depending on whether these environments are sampled less or more, the619

average performance over all environments can fluctuate. We can also notice that FAMP requires620

more environment interactions than other methods to achieve it’s peak performance. This is not621

surprising, since both MLSH and RL2 use PPO that uses same samples to make multiple gradient622

steps while FAMP relies on REINFORCE-like updates. Development of more efficient version of623

FAMP can thus be an interesting direction for future research.624

103 104 105 106

Episodes

−140

−120

−100

−80

−60

−40

−20

0

20

R
et

u
rn

FAHP (Ours)

Multi-task

MLSH 4 steps

MLSH 10 steps

103 104 105 106 107

Episodes

−1000

−500

0

500

1000

1500

R
et

u
rn

FAMP (Ours)

MLSH

RL2

Figure 5: Meta-training plots. Left: Taxi experiment. Right: Ant Maze experiment.

17

C.2 Taxi - Trained Options625

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Example trained sub-policies and terminations on taxi tasks. Each column shows a different
option. Two rows at the top show sub-policies and terminations in states without passenger and two
bottom rows show states with passenger. Sub-policy plots show actions with the highest probability
where we represent directional actions with arrows and pick-up/drop-off action with a square. A
termination plot of each option shows the probability of termination in each state.

C.3 Performance plots626

0 25 50 75 100 125 150 175 200
Episodes

−400

−200

0

200

400

600

800

1000

1200

R
et

u
rn

FAMP (Ours)

MLSH

PPO

RL2

Figure 7: Average performance of algorithms on ant maze environments tasks with resets. Plot shows
mean and standard deviation over 3 seeds

18

0 50 100 150 200
−1000

−750

−500

−250

0

250

500

750

1000

FAMP (Ours)

MLSH

PPO

RL2

0 50 100 150 200
−500

−250

0

250

500

750

1000

0 50 100 150 200
−500

−250

0

250

500

750

1000

1250

0 50 100 150 200
−500

−250

0

250

500

750

1000

1250

0 50 100 150 200
−500

−250

0

250

500

750

1000

1250

1500

0 50 100 150 200
−500
−250

0
250
500
750

1000
1250
1500
1750
2000
2250

0 50 100 150 200
−500
−250

0
250
500
750

1000
1250
1500
1750
2000
2250

0 50 100 150 200
−500

−250

0

250

500

750

1000

1250

1500

0 50 100 150 200
−500

−250

0

250

500

750

1000

1250

1500

Episodes

R
et

u
rn

Figure 8: Performance of algorithms in each test environment of the Ant Maze experiment. Environ-
ments are ordered from left to right and top to bottom (see Figure 3). Plots show mean and standard
deviation over 3 seeds. To make plots less erratic we show average performance over 20 episodes.

0 50 100 150 200

−2.0

−1.5

−1.0

−0.5

0.0

0.5

FAHP (Ours)

Single-task

Multi-task

MLSH 4 steps

MLSH 10 steps

0 50 100 150 200

−2.0

−1.5

−1.0

0 50 100 150 200

−2.0

−1.5

−1.0

−0.5

0 50 100 150 200

−2.0

−1.5

−1.0

−0.5

0 50 100 150 200

−2.0

−1.5

−1.0

−0.5

0.0

0 50 100 150 200

−2.0

−1.5

−1.0

−0.5

0 50 100 150 200

−2.0

−1.5

−1.0

−0.5

0 50 100 150 200

−2.0

−1.5

−1.0

−0.5

0.0

0 50 100 150 200

−2.0

−1.5

−1.0

0 50 100 150 200

−2.0

−1.5

−1.0

−0.5

0 50 100 150 200

−2.0

−1.5

−1.0

−0.5

0 50 100 150 200

−2.0

−1.5

−1.0

−0.5

0.0

Episodes

D
is

co
u

n
te

d
R

et
u

rn

Figure 9: Performance of algorithms in each test environment of the Taxi experiment. Plot shows
mean and standard deviation over 5 seeds.

19

