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ABSTRACT

It has been demonstrated that the training problem for a variety of (non) linear
two-layer neural networks (such as two-layer perceptrons, convolutional networks,
and self-attention) can be posed as equivalent convex optimization problems, with
an induced regularizer which encourages low rank. However, this regularizer
becomes prohibitively expensive to compute at moderate scales, impeding training
convex neural networks. To this end, we propose applying the Burer-Monteiro
factorization to convex neural networks, which for the first time enables a Burer-
Monteiro perspective on neural networks with non-linearities. This factorization
leads to an equivalent yet computationally tractable non-convex alternative with no
spurious local minima. We develop a novel relative optimality bound of stationary
points of the Burer-Monteiro factorization, providing verifiable conditions under
which any stationary point is a global optimum. For the first time, we show that
linear self-attention with sufficiently many heads has no spurious local minima.

1 INTRODUCTION

It has been demonstrated that the training problem for (non-linear) two-layer neural networks are
equivalent to convex programs (Pilanci & Ergen, 2020; Ergen & Pilanci, 2020; Sahiner et al., 2021b;
Ergen et al., 2021; Sahiner et al., 2021a). This has been observed for a variety of architectures, in-
cluding multi-layer perceptrons (MLPs) (Pilanci & Ergen, 2020; Sahiner et al., 2021b), convolutional
neural networks (CNNs) (Ergen & Pilanci, 2020; Sahiner et al., 2021c), and self-attention based
transformers (Sahiner et al., 2022). A major benefit of convex training of neural networks is that
global optimality is guaranteed, which brings transparency to training neural networks.

The convex formulation of neural networks induces biases by regularization of the network weights.
For linear activation, the convex model directly imposes nuclear-norm regularization which is well-
known to encourage low-rank solutions (Recht et al., 2010). For ReLU activation, however, the
convex model induces a type of nuclear norm which promotes sparse factorization while the left factor
is constrained to an affine space (Sahiner et al., 2021b). This constrained nuclear-norm is NP-hard
to compute. This impedes the utility of convex neural networks for ReLU activation. To address
this computational challenge, we seek a method which (i) inherits the per-iteration complexity of
non-convex training of neural network, and (ii) inherits the optimality guarantees and transparency of
convex training. To find a solution, we leverage the well-studied Burer-Monteiro (BM) factorization
(Burer & Monteiro, 2003).

BM has been applied as an efficient solution strategy for problems ranging from matrix factoriza-
tion (Zheng & Lafferty, 2016; Park et al., 2017; Ge et al., 2017; Gillis, 2017) to rank minimiza-
tion (Mardani et al., 2013; Recht et al., 2010; Wang et al., 2017) and matrix completion (Mardani
et al., 2015; Ge et al., 2017). BM has also been used for over-simplified neural networks such as
(Kawaguchi, 2016; Haeffele & Vidal, 2017; Du & Lee, 2018), where optimality conditions for local
minima are provided. However, no work has deployed BM factorization for practical non-linear
neural networks, and no guarantees are available about the optimality of stationary points.
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Thus, our focus in this work is to adapt BM for practical two-layer (non-linear) convex neural networks.
We consider three common architectures, namely MLPs, CNNs, and self-attention networks. For
these scenarios, we develop verifiable relative optimality bounds for all local minima and stationary
points, which are easy and interpretable. In light of these conditions, we identify useful insights
about the nature of neural networks contributing to optimality. In particular, we observe that for
self-attention networks all local minima coincide with the global optima if there are sufficiently
many heads. The optimality guarantees also provide useful algorithmic insights, allowing one to
verify whether the light-weight first-order methods such as SGD achieve the global optimum for the
non-convex training of neural networks. Our experiments with image classification task indicate that
this BM factorization enables layerwise training of convex CNNs, which allows for convex networks
for the first time to match the performance of multi-layer end-to-end trained non-convex CNNs.

1.1 CONTRIBUTIONS

All in all, our contributions are summarized as follows:

• We propose the BM factorization for efficiently solving convex neural networks with ReLU
activation for moderate and large scales. This is the first time BM theory has been applied to
the non-linear neural network setting to the best of our knowledge.

• We derive a novel bound on the relative optimality of the stationary points of the BM
factorization for neural networks.

• We identify simple and verifiable conditions which guarantee a stationary point of the
non-convex BM formulation achieves the global optimum of the convex neural network.

• We provide insights into the fundamental building blocks of neural networks that contribute
to optimality; e.g. that linear self-attention has no spurious local minima if it has sufficiently
many heads.

• Our experiments verify the proposed relative optimality bound of stationary points from
the BM factorization, and uncovers cases where SGD converges to saddle points, even in
two-layer neural networks.

1.2 RELATED WORK

Burer-Monteiro factorization. The Burer-Monteiro (BM) factorization was first introduced in
(Burer & Monteiro, 2003; 2005). There has been a long line of work studying the use of this
factorization for solving SDPs (Boumal et al., 2016; Cifuentes & Moitra, 2019; Waldspurger &
Waters, 2020; Erdogdu et al., 2021). In the rectangular matrix case, gradient descent converges to
a global optimum of the matrix factorization problem with high probability for certain classes of
matrices (Zheng & Lafferty, 2016). The BM factorization has been also studied in the rectangular
case in more generic settings (Bach et al., 2008; Haeffele et al., 2014; Haeffele & Vidal, 2017).

Nuclear norm and rank minimization. The ability of nuclear norm regularization to induce low
rank has been studied extensively in compressed sensing (Candès & Recht, 2009; Recht et al., 2010;
Candès & Tao, 2010). BM factorization has been applied to scale up nuclear-norm minimization
(Mardani et al., 2015; 2013). It has also been deployed for low-rank matrix factorization (Cabral
et al., 2013; Zhu et al., 2017; Park et al., 2017; Ge et al., 2017). The results show that all second-order
critical points of the BM factorization are global optima if certain qualification conditions are met.

SGD for non-convex neural networks. It has been shown that for over-parameterized two-layer
linear networks, all local minima are global minima (Kawaguchi, 2016). Accordingly, a line of work
has attempted to show that gradient descent or its modifications provably find local minima and
escape saddle points (Ge et al., 2015; Lee et al., 2016; Jin et al., 2017; Daneshmand et al., 2018).
However, these works assume Lipschitz gradients and Hessians of the non-convex objective, which is
not typically satisfied. Another line of work shows that gradient descent converges to global optima
for sufficiently highly over-parameterized neural networks, with either the parameter count being a
high-order polynomial of the sample count (Du et al., 2018; 2019; Arora et al., 2019), or the network
architecture being simple (Du & Lee, 2018). In practice, it has been empirically observed that SGD
can converge to local maxima, or get stuck in saddle points (Du et al., 2017; Ziyin et al., 2021). For
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unregularized matrix factorization, it has also recently been shown that randomly initialized gradient
descent provably converges to global minima (Ye & Du, 2021).

Convex neural networks. There is a long history of architecting convex optimization problems
that mimic the performance of neural networks Zhang et al. (2016; 2017). It has recently been found
that ReLU neural networks have equivalent convex programs for training, such as networks with
scalar outputs (Pilanci & Ergen, 2020), vector-outputs (Sahiner et al., 2021b), convolutional networks
(Ergen & Pilanci, 2020; Sahiner et al., 2021c), polynomial-activation networks (Bartan & Pilanci,
2021), batch-norm based networks (Ergen et al., 2021), Wasserstein GANs (Sahiner et al., 2021a),
and self-attention networks (Sahiner et al., 2022). Despite efforts in developing efficient solvers,
convex networks are only effectively trainable at small scales (Bai et al., 2022; Mishkin et al., 2022).
Our novelty is to adapt BM factorization as a fast and scalable solution for training convex networks,
with simple, verifiable conditions for global optimality.

2 PRELIMINARIES

We denote (·)+ := max{0, ·} as the ReLU non-linearity. We use superscripts, say A(ii,i2), to denote
blocks of matrices, and brackets, say A[i1, i2], to denote elements of matrices. We let 1 be the vector
of ones of appropriate size, ∥ · ∥H be the ℓ-p norm with p = H , ∥ · ∥F be the Frobenius norm, and BH

be the unit H-norm ball, {u : ∥u∥H ≤ 1}, . Unless otherwise stated, let F be a convex, differentiable
function. We use n to denote the number of samples, and c to denote the output dimension of each
network. All proofs are presented in Appendix A.

2.1 TWO-LAYER NEURAL NETWORKS AS CONVEX PROGRAMS

A line of work has demonstrated that two-layer neural networks are equivalent to convex optimization
problems. We consider a data matrix X ∈ Rn×d and consider two-layer σ-activation network with c
outputs, m neurons, weight-decay parameter β > 0 :

p∗MLP := min
W1∈Rd×m

W2∈Rc×m

F (σ(XW1)W
⊤
2 ) +

β

2

m∑
j=1

(
∥w1j∥22 + ∥w2j∥22

)
. (1)

When σ is a linear activation and m ≥ m∗ for some m∗ ≤ min{d, c}, this problem is equivalent to
((Rennie & Srebro, 2005), Section 2.2)

p∗LMLP = min
Z∈Rd×c

F (XZ) + β∥Z∥∗, (2)

whereas for a ReLU activation and m ≥ m∗ for some unknown, problem-dependent m∗ ≤ nc
((Sahiner et al., 2021b), Thm. 3.1),

p∗RMLP = min
Zj∈Rd×c

F (

P∑
j=1

DjXZj) + β

P∑
j=1

∥Zj∥∗,Kj
, Kj := (2Dj − In)X (3)

where {Dj}Pj=1 = {diag (1{Xu ≥ 0}) : u ∈ Rd} enumerates the possible activation patterns

generated from X, and the number of such patterns satisfies P ≤ 2r
(

e(n−1)
r

)r
, where r := rank(X)

(Stanley et al., 2004; Pilanci & Ergen, 2020). The expression (3) also involves a constrained nuclear
norm expression, which is defined as

∥Z∥∗,K := min
t≥0

t s.t.Z ∈ tC, C := conv{Z = uv⊤ : Ku ≥ 0, ∥u∥2 ≤ 1, ∥v∥2 ≤ 1}. (4)

This norm is a quasi-nuclear norm, which differs from the standard nuclear norm in that the factoriza-
tion upon which it relies imposes a constraint on its left factors. In convex ReLU neural networks, this
norm enforces the existence of {uk,vk} such that Z =

∑
k ukv

⊤
k and DjXZ =

∑
k(Xuk)+v

⊤
k ,

and penalizes
∑

k ∥ukv
⊤
k ∥∗. This norm is NP-hard to compute (Sahiner et al., 2021b). A variant of

these ReLU activations, called gated ReLU activations, achieves the piecewise linearity of ReLU
activations without enforcing the constraints (Fiat et al., 2019). Specifically, the ReLU gates are fixed
to some {hj}Pj=1 to form

σ(Xw1j) := diag (1{Xhj ≥ 0}) (Xw1j) = DjXw1j .
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With gated ReLU activation, the equivalent convex program is given by ((Sahiner et al., 2022))

p∗GMLP = min
Zj∈Rd×c

F (

P∑
j=1

DjXZj) + β

P∑
j=1

∥Zj∥∗, (5)

which thereby converts the constrained nuclear norm penalty to a standard nuclear norm penalty,
improving the complexity of the ReLU network. In addition to the multi-layer perceptron (MLP)
formulation, two-layer ReLU-activation convolutional neural networks (CNNs) with global average
pooling have been demonstrated to be equivalent to convex programs as well (Sahiner et al., 2021b;c;
Ergen & Pilanci, 2020). The non-convex formulation is given by

p∗RCNN := min
w1j∈Rh

w2j∈Rc

n∑
i=1

F
( m∑

j=1

w2j1
⊤(Xiw1j)+

)
+

β

2

m∑
j=1

∥w1j∥22 + ∥w2j∥22, (6)

where samples Xi ∈ RK×h are represented by patch matrices, which hold a convolutional patch of
size h in each of their K rows. It has been shown (Sahiner et al., 2021b) that as long as m ≥ m∗

where m∗ ≤ nc, this is equivalent to a convex program ((Sahiner et al., 2021b), Cor. 5.1)

p∗RCNN = min
Zj∈Rh×c

n∑
i=1

F ((

P∑
j=1

1⊤D
(i)
j XiZj)

⊤) + β

P∑
j=1

∥Zj∥∗,Kj

Kj := (2Dj − InK)X, X :=

[
X1

· · ·
Xn

]
(7)

where {Dj}Pj=1 =
{
diag (1{Xu ≥ 0}) : u ∈ Rh

}
and D

(i)
j ∈ RK×K . The only exponential

dependence of P is on h, which is typically fixed.

Lastly, we review existing convexity results for self-attention transformers (Sahiner et al.,
2022). We have the following non-convex objective for a single block of multi-head self-attention
with m heads, where Xi ∈ Rs×d with s tokens and d features

p∗SA := min
W1j∈Rd×d

W2j∈Rd×c

n∑
i=1

F

 m∑
j=1

σ
(
XiW1jX

⊤
i

)
XiW2j

+
β

2

m∑
j=1

∥W1j∥2F + ∥W2j∥2F , (8)

for which a variety of objectives F can be posed, including classification (e.g. F incorporates global
average pooling followed by softmax-cross-entropy with labels) or denoising (e.g. F is a squared
loss). For linear, gated ReLU, and ReLU activation, this is equivalent to a convex program (see
Appendices A.12, B.3). Here, we show that these architectures are amenable to the BM factorization.

2.2 THE BURER-MONTEIRO FACTORIZATION

First proposed by Burer & Monteiro (2003), the Burer-Monteiro (BM) factorization proposes to
solve SDPs over some square matrix Q in terms of rectangular factors R where Q is substituted
by RR⊤. It was first demonstrated that solving over R does not introduce spurious local minima
rank-constrained SDPs, given rank(R) ≥ rank(Q∗) for optimal solution to the original SDP Q∗

(Burer & Monteiro, 2005). We seek applications where we optimize over a non-square matrix Z, i.e.

p∗CVX := min
Z∈Rd×c

F (Z) (9)

for a convex, differentiable function F . One may approach this by factoring Z = UV⊤, where
U ∈ Rd×m, V ∈ Rc×m for some arbitrary choice m. Then, we have an equivalent non-convex

problem over R :=

[
U
V

]
, for f(R) = F (UV⊤):

p∗CVX = min
R

f(R). (10)

Noting that (9) is convex over RR⊤ =

[
UU⊤ UV⊤

VU⊤ VV⊤

]
, one may apply directly the result of

Boumal et al. (2020) to conclude that as long as m ≥ d + c, all local minima of (10) are global
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minima of (9) (see Appendix A.2). Further, work from Bach et al. (2008) and Haeffele et al. (2014)
demonstrates that all rank-deficient local minimizers of (10) achieve the global minimum p∗CVX

1.

A long line of work has analyzed the conditions where known non-convex optimization al-
gorithms will converge to second-order critical points (local minima) (Ge et al., 2015; Jin et al., 2017;
Daneshmand et al., 2018). Under the assumption of a bounded f and its Hessian, a second-order
critical point can be found by noisy gradient descent (Ge et al., 2015), or other second-order
algorithms (Sun et al., 2015). Even vanilla gradient descent with random initialization has been
demonstrated to almost surely converge to a local minimum for f with Lipschitz gradient (Lee et al.,
2016). However, if the gradient of f is not Lipschitz-continuous, there are no guarantees that gradient
descent will find a second-order critical point of (10): one may encounter a stationary point which is
a saddle. For example, in the linear regression setting, i.e.

f(R) = ∥XUV⊤ −Y∥2F , (11)

the gradient of f is Lipschitz continuous with respect to U when V is fixed and vice-versa, but not
Lipschitz continuous with respect to R (Mukkamala & Ochs, 2019). Thus, one may not directly
apply the results of Ge et al. (2015); Sun et al. (2015); Lee et al. (2016) in this case. Instead, we seek
to understand the conditions under which stationary points to (10) correspond to global optima of (9).
One such condition is given in Mardani et al. (2013; 2015).

Theorem 2.1 (From (Mardani et al., 2013)). Stationary points Û, V̂ of the optimization problem

p∗ := min
U,V

1

2
∥UV⊤ −Y∥2F +

β

2

(
∥U∥2F + ∥V∥2F

)
(12)

correspond to global optima Z∗ = ÛV̂⊤ of the equivalent convex optimization problem

p∗ = min
Z

1

2
∥Z−Y∥2F + β∥Z∥∗ (13)

provided that ∥Y − ÛV̂⊤∥2 ≤ β.

3 BURER-MONTEIRO FACTORIZATION FOR CONVEX NEURAL NETWORKS

3.1 MLPS

We first seek to compare the convex formulations of the MLP training problem (2), (3), and (5) to
their BM factorizations. We describe how to find the BM factorization for any convex MLP.

Lemma 3.1. For any matrix M ∈ Rn×dc , let f(U,V) := F (MUV⊤) be a differentiable function.
For any β > 0 and arbitrary vector norms ∥·∥R and ∥·∥C , we define the Burer-Monteiro factorization

p∗ := min
U∈Rdc×m

V∈Rdr×m

f(U,V) +
β

2

 m∑
j=1

∥uj∥2C + ∥vj∥2R

 . (14)

For the matrix norm ∥ · ∥D defined as

∥Z∥D := max
R

trace(R⊤Z) s.t. u⊤Rv ≤ 1 ∀u ∈ BC , ∀v ∈ BR, (15)

the problem (14) is equivalent to the convex optimization problem

p∗ = min
Z∈Rdc×dr

F (MZ) + β∥Z∥D. (16)

Remark 3.2. In the case of a linear MLP, M = X, dc = d, dr = c, and ∥ · ∥D = ∥ · ∥∗, so using the
definition of ∥ · ∥D, in the corresponding BM factorization, R = 2 and C = 2 (Bach et al., 2008).
For a gated ReLU network, the regularizer is still the nuclear norm, and thus the same R = C = 2
regularization appears in the BM factorization. In the case of the ReLU MLP, the nuclear norm is

1Under mild conditions, see Appendix A.3.
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replaced by ∥ ·∥D =
∑P

j=1 ∥ ·j ∥∗,Kj
, which in the BM factorization amounts to having the constraint

KjUj ≥ 0. We express the BM factorization of convex MLPs below.

p∗LMLP = min
U∈Rd×m

V∈Rc×m

F (XUV⊤) +
β

2

(
∥U∥2F + ∥V∥2F

)
(17)

p∗GMLP = min
Uj∈Rd×m

Vj∈Rc×m

F (

P∑
j=1

DjXUjV
⊤
j ) +

β

2

P∑
j=1

(
∥Uj∥2F + ∥Vj∥2F

)
(18)

p∗RMLP = min
Uj∈Rd×m:(2Dj−In)XUj≥0

Vj∈Rc×m

F (

P∑
j=1

DjXUjV
⊤
j ) +

β

2

P∑
j=1

(
∥Uj∥2F + ∥Vj∥2F

)
(19)

To the best of our knowledge, (19) presents the first application of BM factorization to a non-linear
neural network, which is enabled by the convex model (3).

In the linear case, the BM factorization (17) is identical to the original non-convex formulation of
a linear MLP with m neurons. In the case of gated ReLU, the BM factorization when m = 1 is
equivalent to the original non-convex formulation. However, for ReLU activation two-layer networks,
the BM factorization even when m = 1 corresponds to a different (i.e. constrained, rather than
ReLU activation) model than the non-convex formulation. While the original convex program is
NP-hard due to the quasi-nuclear norm (Sahiner et al., 2021b), the per-iteration complexity of the
BM factorization is much lower than for the convex ReLU MLP.

The BM factorizations of these convex MLPs are non-convex, hence finding a global min-
imum appears intractable. However, the following theorem demonstrates that as long as a
rank-deficient local minimum to the BM factorization is obtained, it corresponds to a global optimum.
Theorem 3.3. If m ≥ dc + dr, all local minima of the BM factorization (14) are global minima.

Furthermore, if F is twice-differentiable, any rank-deficient local minimum R̂ :=

[
Û

V̂

]
of (14)

corresponds to a global minimizer Z∗ = ÛV̂⊤ of (16).

This result demonstrates that these two-layer convex MLPs have no spurious local minima under
mild conditions. However, there remains an algorithmic challenge: it is not straightforward to obtain
a guaranteed local minima when the gradients of f are not Lipschitz continuous. The following result
provides a general condition under which stationary points of the (14) are global optima of (16).

Theorem 3.4. For any non-negative objective function F , for a stationary (Û, V̂) of (14) with
corresponding Ẑ = ÛV̂⊤ with objective p̂ for (16), the relative optimality gap p̂−p∗

p∗ satisfies

p̂− p∗

p∗
≤

(
∥∇ZF (MẐ)∥∗D

β
− 1

)
+

(20)

where ∥ · ∥∗D is the dual norm of ∥ · ∥D.

This bound can be calculated by taking the gradient of the unregularized objective function, evaluated
at candidate solution Ẑ to the convex problem (16), which is formed by the stationary point of
BM problem (14). In the case of a linear MLP with X = Id, F a squared-loss objective, and
∥∇ZF (MẐ)∥∗D ≤ β, our result exactly recovers the result of Theorem 2.1 from Mardani et al.
(2013). When this condition is not exactly satisfied, (20) provides a novel result in the form of
an optimality gap bound. To our knowledge, this is the first result that generalizes the optimality
conditions for stationary points from any BM factorization of a neural network. This provides an
easily computable bound after solving (14) which quantifies how close a solution is to the global
minimum. In the case of a ReLU MLP, the relative optimality gap is given by

p̂− p∗

p∗
≤

 max
j∈[P ]
u∈B2
Kju≥0

1

β
∥∇Zj

F (

P∑
j′=1

Dj′XẐj′)u∥2 − 1


+

.
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Computing this quantity requires solving a cone-constrained PCA problem (Deshpande et al., 2014).
In certain cases, the optimality gap of stationary points (20) is always zero.

Theorem 3.5. A stationary point (Û, V̂) of (14) is a global minimizer of (16) if R = C = 2 and

rank(Û) = rank(V̂) = min{dc, dr}. (21)

Thus, for linear and gated ReLU MLPs, we can ensure that if the Burer-Monteiro factorization
achieves a stationary point with full rank, it is corresponds with the global optimum of the convex
program. We now can further extend these results to CNNs and self-attention architectures.

3.2 CNNS

Before proceeding to explore the BM factorization in the context of two-layer CNNs, we first provide
a new result on an equivalent convex program for two-layer ReLU CNNs with arbitrary linear pooling
operations, which extends the results of Sahiner et al. (2021b); Ergen & Pilanci (2020) on Global
Average Pooling CNNs. Define Pa ∈ Ra×K to be a linear pooling matrix which pools the K spatial
dimensions to an arbitrary size a. Then, we express the non-convex two-layer CNN problem as

p∗CNN := min
w1j∈Rh

W2j∈Rc×a

n∑
i=1

F

 m∑
j=1

W2jPaσ(Xiw1j)

+
β

2

m∑
j=1

∥w1j∥22 + ∥W2j∥2F . (22)

Theorem 3.6. For β > 0 and ReLU activation σ(·) = (·)+, if m ≥ m∗ where m∗ ≤ nac, then (22)
is equivalent to a convex optimization problem, given by

p∗CNN = min
Zk∈Rh×ac

n∑
i=1

F

 P∑
k=1

trace(PaD
(i)
k XiZ

(1)
k )

...
trace(PaD

(i)
k XiZ

(c)
k )


+ β

P∑
k=1

∥Zk∥∗,Kk
, (23)

Kk := (2Dk − InK)

[
X1

· · ·
Xn

]
, Z

(c′)
k ∈ Rh×a ∀c′ ∈ [c].

Thus, we provide a novel result which characterizes two-layer CNNs with arbitrary linear pooling
operations as a convex program. Similar results can be shown for the linear and gated-ReLU activation
cases2. With this established, we present our main results on the BM factorization for CNNs.
Lemma 3.7. The BM factorization of the convex CNN problem with ReLU activation is given as:

p∗RCNN = min
ujk∈Rh

Vjk∈Rc×a

n∑
i=1

F

 P∑
k=1

m∑
j=1

VjkPaD
(i)
k Xiujk

+
β

2

P∑
k=1

m∑
j=1

(
∥ujk∥2F + ∥Vjk∥2F

)
,

(24)

s.t. (2D
(i)
k − I)Xiujk ≥ 0 ∀j ∈ [m], ∀k ∈ [P ]

The BM factorization closely resembles the original non-convex formulation (22). Generally, (24)
inherits the results of Theorems 3.3, 3.4, and 3.5; we present one such corollary here.

Corollary 3.8. A stationary point ((ûjk, V̂jk)
m
j=1)

P
k=1 of (24) corresponds to a global minimizer

Ẑk =
∑m

j=1 ûjkvec
(
V̂jk

)⊤
of (23) provided that

∥
n∑

i=1

∇ZkF

 P∑
k′=1


trace(PaD

(i)

k′ XiZ
(1)

k′ )
...

trace(PaD
(i)

k′ XiZ
(c)

k′ )


u∥2 ≤ β, ∀k ∈ [P ], ∀u ∈ B2 : (2D

(i)
k − I)Xiu ≥ 0.

(25)
2We examine linear and gated ReLU activations for CNNs in Appendix B.2.
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3.3 MULTI-HEAD SELF-ATTENTION

We now for the first time extend BM factorization theory to self-attention networks.
Lemma 3.9. The BM factorization of the convex linear-activation3 self-attention problem is given as:

p∗LSA = min
Uj∈Rd×d

Vj∈Rd×c

n∑
i=1

F

 m∑
j=1

XiUjX
⊤
i XiVj

+
β

2

m∑
j=1

∥Uj∥2F + ∥Vj∥2F . (26)

In addition to inheriting all of the results of Theorems 3.3, 3.4, and 3.5, noting the equivalence of the
BM factorization with the original non-convex program (8), we are the first to show conditions under
which there are no spurious local minima for self-attention networks.
Corollary 3.10. The linear-activation self-attention network (26) has no spurious local minima
as long as the number of heads satisfies m ≥ m∗ where m∗ ≤ d2 + dc. Furthermore, for any
twice-differentiable objective F , if for any local minimum (Ûj , V̂j)

m
j=1 of (26), the matrix

R̂ :=

[
vec(Û1) · · · vec(Ûm)

vec(V̂1) · · · vec(V̂m)

]
∈ Rd(d+c)×m (27)

is rank-deficient, then this local minimum is also a global minimum of (104).

4 EXPERIMENTAL RESULTS

(a) CIFAR-10 (b) Fashion-MNIST

Figure 1: BM enables layerwise training of convex ReLU CNNs, which are competitive with end-to-end ReLU
networks of the same depth. For CIFAR-10, with m = 4 we achieve a test accuracy of 81.5% compared to
81.6% for end-to-end non-convex training, and for Fashion-MNIST, with m = 4 we achieve a test accuracy of
91.6% compared to 91.2% for non-convex training (Kiliçarslan & Celik, 2021; Bhatnagar et al., 2017).

4.1 THE RELATIVE OPTIMALITY GAP BOUND

In this section, we illustrate the utility of our proposed relative optimality bound for stationary
points in the setting of two-layer fully-connected networks. We also seek to examine how this
bound changes with respect to the number of samples n, the regularization parameter β (which
controls the sparsity of the convex solution), and the number of factors in the BM factorization
m. We initialize a class-balanced three-class spiral data set with varied number of samples n (see
Figure 3 in Appendix C.1 for examples). For this dataset, we then train the gated ReLU MLP BM
factorization (18) with varying number of factors m. We then compare the stationary points of these
BM factorizations found by gradient descent (GD) to the global optimum, which we compute from (5).

For each stationary point of the BM factorization, we compute the relative optimality gap
bound provided in our result in Theorem 3.4. We note that since d = 2, c = 3 in this case, for
all j, as long as m ≥ 5 all local minima of the BM factorization are global minima (Burer &
Monteiro, 2005; Haeffele et al., 2014). While Lee et al. (2016) demonstrated that gradient descent

3We examine gated ReLU and ReLU activations for self-attention in Appendix B.3.
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with a random initialization converges to a local optimum almost surely for losses whose gradient
is Lipschitz continuous, we use squared loss with one-hot-encoded class labels, which is not
Lipschitz continuous (Mukkamala & Ochs, 2019). Thus, there is no guarantee that GD will find
the global minimum. We display results over β in Figure 2. Our bound gives a useful proxy for
whether the BM factorization converges to the global minimum. For larger values of β, it be-
comes much easier for GD to find an optimal solution, but GD almost never finds the global minimum.

We find that GD applied to the BM factorization finds saddle points that are not quite local
minima, but close. Interestingly, there is only a minor relationship between the optimality gap and
the rank of the BM factorization m. This experiment further validates the need to consider stationary
points of the BM factorization, rather than just local minima.

4.2 BM ENABLES LAYERWISE TRAINING OF CONVEX CNNS

Figure 2: Relative optimality gap of the non-
convex BM factorization of a gated-ReLU two-
layer MLP for three-class spiral data classification
(n = 150, d = 2, c = 3). We demonstrate how
β and m affect relative optimality gap, both in in
terms of the proposed bound and the actual gap,
where the global minimum is found by convex op-
timization.

We consider the task of leveraging the theory
of two-layer convex ReLU neural networks for
training deep image classifiers. Following the
approach of (Belilovsky et al., 2019), we seek to
train two-layer convex CNNs greedily to mimick
the performance of a deep network. In the non-
convex setting, the greedy approach proceeds by
training a single two-layer CNN, then freezing
the weights of this CNN, using the latent repre-
sentation of this CNN as the features for another
two-layer CNN, and repeating this process for
a specified number of stages. We leverage the
result of Theorem 3.6 to convert this non-convex
layerwise training procedure to a convex one,
training stages of convex two-layer gated ReLU
CNNs. We apply this procedure to the CIFAR-10
(Krizhevsky et al., 2009) and Fashion-MNIST
(Xiao et al., 2017) datasets, using the architec-
ture of (Belilovsky et al., 2019) (see Appendix
C.2).

In a memory-limited setting, layerwise training with the convex model equation 23 is im-
possible, because the latent representation to be used as input for the second stage, given by
{{D(i)

j XiZ
(c′)
j )}Pj=1}cc′=1, has Pac channels, which for reasonable choices of P = 256, a = 4,

c = 10 yields upwards of 104 channels for the input to the second CNN stage. Accordingly, we
employ the BM factorization of size m, so the latent representation only consists of mP channels.

Figure 1 demonstrates that this BM scheme for layerwise training allows for performance
to improve one stage the next of the layerwise training procedure, reaching the performance of
much deeper networks while enabling a convex optimization procedure. Training five stages of a
BM factorized convex two-layer gated ReLU CNN on CIFAR-10 resulted in a final test accuracy
of 80.9%, 81.1%, and 81.5% for m ∈ [1, 2, 4] respectively. Previously, it has been demonstrated
that a six-layer ReLU CNN achieves 81.6% on CIFAR-10 when trained end-to-end (Kiliçarslan
& Celik, 2021). Interestingly, we find that increasing m generally improves performance. The
three-stage trained BM factorized convex two-layer gated ReLU CNN on Fasion-MNIST achieved a
final test accuracy of 91.5%, 91.4%, and 91.6% for m ∈ [1, 2, 4] respectively, compared to 91.2% for
a four-layer ReLU CNN trained end-to-end (Bhatnagar et al., 2017). On this dataset, we observe that
the impact of increasing m on performance is less pronounced than for CIFAR-10.

The BM factorization is essential for convex neural networks to match deep ReLU net-
works. Without the BM factorization, the induced regularizer of convex CNNs is intractable to
compute, and the latent representation used for layerwise learning is prohibitively large. While
inheriting the guarantees of Theorems 3.3, 3.4, and 3.5, these layerwise trained BM networks match
the performance of end-to-end, highly non-convex ReLU deep networks.
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A PROOFS

A.1 COMPLEXITY AND CONVERGENCE RESULTS OF THE BM FACTORIZATION

In this subsection, we provide some additional details on the complexity and convergence of the BM
factorization (19). We consider the problem dimensions of X ∈ Rn×d, BM factorization size m, and
network output dimension c.

First, we can compare the per-iteration time complexity of a naive implementation of pro-
jected gradient descent on (19) to the the per-iteration time complexity of a Frank-Wolfe algorithm
designed to solve (3) as proposed in Sahiner et al. (2021b). Consider the case of squared loss, e.g.
F (Ŷ,Y) = 1

2∥Ŷ − Y∥2F . For r := rank(X), it is shown in Appendix A.4.2 of Sahiner et al.
(2021b) that a single iteration of Frank-Wolfe has time complexity O(Pnr), where P is the number
of hyperplane arrangements.

In comparison, projected gradient descent applied to (19) takes two steps:

1. Gradient descent steps on {(Uj ,Vj)}Pj=1. The gradient of the objective of (19) with respect
to Uj is given by

(DjX)⊤

 P∑
j′=1

Dj′XUj′V
⊤
j′ −Y

Vj + βUj . (28)

Noting that the residual R :=
∑P

j′=1 Dj′XUj′V
⊤
j′ − Y can be computed once in

O(P (n2c + ndc + dcm)) time and re-used in all gradient computations, the total
complexity of computing all gradients and taking a gradient descent step is given by
O
(
P (n2(d+ c) + ndc+ dcm)

)
.

2. A projection step of Uj onto the space (2Dj − I)XUj ≥ 0 for each j ∈ [P ]– this naively
can be solved in O(P (n3 + n2dm)) time.

Overall, then, using projected gradient descent on (19) is of time complexity
O(P (n3 + n2(d + c + dm) + dcm)), which unless m is exponential in r is significantly
more computationally efficient than solving (3) with Frank-Wolfe in O(Pnr) time.

For the convergence rates of naive gradient descent applied to BM factorizations (17), (18),
and (19), we point to Zhang et al. (2023), which suggests that these formulations may converge
sub-linearly to a stationary point in the case that m exceeds the rank of the optimal solution Z∗.
However, Zhang et al. (2023) suggest a pre-conditioning method to gradient descent applied to BM
formulations which guarantees linear convergence and can be applied here.

A.2 RESULT OF (BURER & MONTEIRO, 2005) AND ITS APPLICATIONS TO RECTANGULAR
MATRICES

In this subsection, we outline the precise theoretical statement of (Burer & Monteiro, 2005) and
describe exactly how it corresponds to our summary in Section 2.2, and thus the application to the
later derivations in our work. We first describe the following result, without proof, from (Burer &
Monteiro, 2005).
Lemma A.1 (Lemma 2.1 of (Burer & Monteiro, 2005)). Suppose R ∈ R(d+c)×r, S ∈ R(d+c)×r

satisfy RR⊤ = SS⊤. Then, S = RQ for some orthogonal Q ∈ Rr×r.

Now, we proceed to prove analogs of Theorem 2.3 of (Burer & Monteiro, 2005) for general SDPs
with a rank constraint.
Lemma A.2 (Analog of Lemma 2.2 of (Burer & Monteiro, 2005)). Consider the problem

min
R∈R(d+c)×r

F ′(RR⊤). (29)

R̂ is a local minimum of (29) if and only if R̂Q is a local minimum of (29) for all orthogonal
Q ∈ Rr×r.
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Proof. Since Q is orthogonal, (R̂Q)(R̂Q)⊤ = R̂QQ⊤R̂⊤ = R̂R̂⊤. Thus, R̂′ := R̂Q attains the
same objective value, gradients, and higher order derivatives as R̂. Thus, R̂ is a local minimum if
and only if R̂′ is a local minimum.

Theorem A.3 (Analog of Theorem 2.3 of (Burer & Monteiro, 2005)). Consider the following two
problems.

min
X∈R(d+c)×(d+c)

X⪰0
rank(X)≤r

F ′(X), (30)

min
R∈R(d+c)×r

F ′(RR⊤). (31)

Then, for any continuous function F ′, a feasible solution X̂ is a local minimizer of (30) if and only if,
for X̂ = R̂R̂⊤, R̂ is a local minimizer of (31).

Proof. We follow the exact same lines as (Burer & Monteiro, 2005). By continuity of the map
R → RR⊤, we know that if X̂ is a local minimizer of (30), then R̂ is a local minimizer of (31).
Now, we must prove the other direction, namely that if X̂ = R̂R̂⊤ is not local minimizer of (30),
then R̂ is not a local minimizer of (31).

Suppose that X̂ is not a local minimum. By continuity of F ′, then, there must be a se-
quence of feasible solutions {Xk} of (30) converging to X̂ such that F ′(Xk) < F ′(X̂) for all k.
For each k, choose Rk such that Xk = RkRk⊤. Since {Xk} is bounded, it follows that {Rk} is
bounded and hence has a subsequence {Rk}k∈K converging to some R such that X̂ = RR⊤. Since
F ′(RkRk⊤) = F ′(Xk) < F ′(X̂) = F ′(RR⊤), we see that R is not a local minimum of (31).
Using the fact that X̂ = R̂R̂⊤ = RR⊤ together with Lemmas A.1 and A.2, we conclude that R̂ is
not a local minimum of (31).

With this established, we now describe the setting described in Section 2.2, i.e. the rectangular matrix,
non-SDP case.

Lemma A.4. Consider the optimization problems

p∗1 := min
X∈R(d+c)×(d+c)

X⪰0
rank(X)≤m∗

F ′(X), (32)

and
p∗2 := min

Z∈Rd×c
F (Z), (33)

where F is convex. Define F ′ : R(d+c)×(d+c) → R such that

F ′(

[
X1 X2

X3 X4

]
) := F (X2) (34)

for X1 ∈ Rd×d, X2 ∈ Rd×c, X3 ∈ Rc×d, X4 ∈ Rc×c. Then, any local minimizer X̂ to (32)
corresponds a global minimizer Z∗ = X̂2 of (33) for some m∗ ≤ d+ c.

Proof. This follows from Boumal et al. (2020), Corollary 3.2.

Lemma A.5 (Used in Section 2.2). For any convex, continuous function F , a local minimum (Û, V̂)
of

min
U∈Rd×m,V∈Rc×m

F (UV⊤), (35)

corresponds to a global minimum Z∗ = ÛV̂⊤ of (33) as long as m ≥ m∗ for some m∗ ≤ d+ c.
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Proof. Define F ′ : R(d+c)×(d+c) → R such that

F ′(

[
X1 X2

X3 X4

]
) := F (X2) (36)

for X1 ∈ Rd×d, X2 ∈ Rd×c, X3 ∈ Rc×d, X4 ∈ Rc×c. Then, let R =

[
U
V

]
∈ R(d+c)×m. One can

re-write F (UV⊤) as F ′(RR⊤). Then, we see that (35) can be expressed as (31), and any local
minimizer to (35) is a local minimizer to (31).

Next, note that from Theorem A.3 that any local minimizer of (31) is a local minimizer of
(30). Lastly, note from Lemma A.4 that any local minimizer of (30) corresponds to a global
minimizer of (33) for m∗ ≤ d+ c. Thus, any local minimizer of (35) is a global minimizer of (33) as
long as m ≥ m∗, where m∗ ≤ d+ c.

A.3 RESULT OF (HAEFFELE ET AL., 2014) AND ITS APPLICATION TO RECTANGULAR
MATRICES

In this subsection, we outline the precise theoretical statement of (Haeffele et al., 2014) and describe
exactly how it corresponds to our summary in Section 2.2, and thus the application to the later
derivations in our work. We first describe the following result, without proof, from (Haeffele et al.,
2014).

Theorem A.6 (Theorem 2 of (Haeffele et al., 2014)). Let F ′ : S+
n → R be of the form such that

F ′(X) = G′(X) +H ′(X), where G′ is convex, twice differentiable with compact level sets, and H ′

is a proper convex function such that F ′ is lower semi-continuous. Then, if R̂ is a rank-deficient
local minimizer of

min
R∈R(d+c)×m

F ′(RR⊤), (37)

then X∗ = R̂R̂⊤ is a global minimizer of

min
X∈R(d+c)×(d+c)

X⪰0

F ′(X). (38)

We now describe how this theorem applies to the setting described in Section 2.2, i.e. the rectangular
matrix, non-SDP case.

Lemma A.7 (Used in Section 2.2). Let F : Rd×c → R be of the form such that F (Z) = G(Z) +
H(Z), where G is convex, twice differentiable with compact level sets, and H is a proper convex

function such that F is lower semi-continuous. Then, if R̂ =

[
Û

V̂

]
is a rank-deficient local minimizer

of
min

U∈Rd×m

V∈Rd×m

F (UV⊤), (39)

then Z∗ = ÛV̂⊤ is a global minimizer of

min
Z∈Rd×c

F (Z). (40)

Proof. Define F ′ : R(d+c)×(d+c) → R such that

F ′(

[
X1 X2

X3 X4

]
) := F (X2) (41)

for X1 ∈ Rd×d, X2 ∈ Rd×c, X3 ∈ Rc×d, X4 ∈ Rc×c. Clearly, if F = G + H , where
G is twice-differentiable and H is proper convex, then, F ′ = G′ + H ′ where G′ is twice-
differentiable and H ′ is proper convex. From the proof of Lemma A.5, we know that (39) is

exactly the same as (37) for R =

[
U
V

]
. Furthermore, we know from Lemma A.4 that any
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global minimum Z∗ of (40) corresponds to a global minimum X∗ of (38). Lastly, we know from
Theorem A.6 that any rank-deficient local minimum of (37) corresponds to a global minimizer of (38).

Putting it all together, we have that a rank-deficient local minimizer R̂ =

[
Û

V̂

]
of (39) is a

rank-deficient local minimizer of (37), which corresponds to a global optimizer X∗ = R̂R̂⊤ of (38)
(Theorem A.6), which corresponds to a global optimizer Z∗ = ÛV̂⊤ of (40) (Lemma A.4).

A.4 ADDITIONAL RESULTS ON SIZE OF BM FACTORIZATION

We note the additional result from Zhang (2022). In the case that F is twice-differentiable, L-smooth,
and µ-strongly convex, a local minimum (Û, V̂) of (35) corresponds to a global minimum of (33) as
long as m ≥ 1

4 (L/µ− 1)2m∗, where m∗ = rank(Z∗) and Z∗ is the optimal solution to (33).

A.5 PROOF OF LEMMA 3.1

Proof. We first analyze the solution of the following optimization problem

f∗ = min
uj ,vj

1

2

 m∑
j=1

∥uj∥2C + ∥vj∥2R

 s.t.UV⊤ = Z. (42)

We can write this as an equivalent problem here (Bach et al., 2008; Pilanci & Ergen, 2020):

f∗ = min
uj∈BC ,vj

 m∑
j=1

∥vj∥R

 s.t.UV⊤ = Z. (43)

We can form the Lagrangian of this as

f∗ = min
uj∈BC ,vj

max
R

 m∑
j=1

∥vj∥R

− trace
(
R⊤UV⊤)+ trace

(
R⊤Z

)
. (44)

By Sion’s minimax theorem, we can switch the maximum over R and minimum over V and minimize
over V to obtain

f∗ = min
u∈BC

max
R

trace
(
R⊤Z

)
s.t.∥u⊤R∥∗R ≤ 1. (45)

As long as m ≥ rank(Z), by Slater’s condition, we can switch the minimum and maximum (Shapiro,
2009) to obtain

f∗ = max
R

trace
(
R⊤Z

)
s.t.∥u⊤R∥∗R ≤ 1 ∀u ∈ BC . (46)

By the definition of dual norm, we can also write this as

f∗ = max
R

trace
(
R⊤Z

)
s.t.u⊤Rv ≤ 1 ∀u ∈ BC , ∀v ∈ BR = ∥Z∥D. (47)

Thus, with this result, we have

p∗ := min
U∈Rdc×m

V∈Rdr×m

f(U,V) +
β

2

 m∑
j=1

∥uj∥2C + ∥vj∥2R

 , (48)

equivalently as

p∗ = min
U∈Rdc×m

V∈Rdr×m

F (MUV⊤) +
β

2

 m∑
j=1

∥uj∥2C + ∥vj∥2R

 , (49)

or also as

p∗ = min
Z:rank(Z)≤m

F (MZ) + min
U∈Rdc×m

V∈Rdr×m

UV⊤=Z

β

2

 m∑
j=1

∥uj∥2C + ∥vj∥2R

 , (50)

17



Published as a conference paper at ICLR 2024

where we now apply our previous result to obtain

p∗ = min
Z:rank(Z)≤m

F (MZ) + β∥Z∥D, (51)

which if rank(Z∗) ≥ m is equivalent to

p∗ = min
Z

F (MZ) + β∥Z∥D. (52)

A.6 PROOF OF THEOREM 3.3

Proof. We simply note that (14) is the Burer-Monteiro factorization of (16). Thus, from Lemma A.5,
as long as m ≥ dc + dr, all local minima of (14) are global minima. Furthermore, note that (16)
is composed of two components, one of which is a twice-differentiable function, and the other is a
proper convex function. Thus, by Lemma A.7, all rank-deficient local minima are global minima.

A.7 PROOF OF THEOREM 3.4

Proof. Stationary points of (14) satisfy

0 ∈ ∇Uf(Û, V̂) + β∥Û∥C∂∥Û∥C
0 ∈ ∇Vf(Û, V̂) + β∥V̂∥R∂∥V̂∥R,

where we define

∥Û∥C :=

m∑
j=1

∥ûj∥C

and the same for ∥V̂∥R. By the definition of the subgradient, this stationarity condition can be written
as

∃U′ s.t. trace(Û⊤U′) = ∥Û∥C , ∥U′∥∗C ≤ 1, 0 = ∇Uf(Û, V̂) + β∥Û∥CU′

∃V′ s.t. trace(V̂⊤V′) = ∥V̂∥R, ∥V′∥∗R ≤ 1, 0 = ∇Vf(Û, V̂) + β∥V̂∥RV′.

By the chain rule, we have that

0 = ∇ZF (MẐ)V̂ + β∥Û∥CU′

0 = ∇ZF (MẐ)⊤Û+ β∥V̂∥RV′

We now right-multiply the top equation by Û⊤ and the bottom equation by V̂⊤ to obtain

0 = ∇ZF (MẐ)V̂Û⊤ + β∥Û∥CU′Û⊤ (53)

0 = ∇ZF (MẐ)⊤ÛV̂⊤ + β∥V̂∥RV′V̂⊤. (54)

Taking the trace, we have

− 1

β
trace

(
∇ZF (MẐ)⊤Ẑ

)
= ∥Û∥Ctrace

(
U′Û⊤

)
= ∥Û∥Rtrace

(
V′V̂⊤

)
. (55)

Noting the definitions of U′ and V′, we have

− 1

β
trace

(
∇ZF (MẐ)⊤Ẑ

)
= ∥Û∥2C = ∥V̂∥2R (56)

Furthermore, since clearly F (MẐ) = f(Û, V̂), we have that

− 1

β
trace

(
∇ZF (MẐ)⊤Ẑ

)
= ∥Û∥2C = ∥V̂∥2R =

1

2
(∥Û∥2C + ∥V̂∥2R) = ∥Ẑ∥D. (57)

Now, we examine the optimality conditions for (16). In particular, we have

p∗ = min
Z

F (MZ) + β∥Z∥D, (58)
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which by definition of the dual norm, is equivalent to

p∗ = min
Z

max
Z′∈BD∗

F (MZ) + βtrace(Z⊤Z′). (59)

Now suppose we have an approximate saddle point (Ẑ, Ẑ′) with objective value p̂ such that ∇ZF (Ẑ)+

βẐ′ = 0, trace(Ẑ⊤Ẑ′) = ∥Ẑ∥D, and Ẑ′ ∈ (1 + ϵ)BD∗ for some ϵ ≥ 0. Let Z̃ = 1
1+ϵ Ẑ

′. By strong
duality and non-negativity of F , we have

p∗ = max
Z′∈BD∗

min
Z

F (MZ) + βtrace(Z⊤Z′) (60)

≥ min
Z

F (MZ) + βtrace(Z⊤Z̃) (61)

= min
Z

F (MZ) +
β

1 + ϵ
trace(Z⊤Ẑ′) (62)

≥ 1

1 + ϵ
min
Z

(
F (MZ) + βtrace(Z⊤Ẑ′)

)
(63)

=
1

1 + ϵ
p̂ (64)

Rearranging, we have that
p̂− p∗

p∗
≤ ϵ. (65)

For the assumptions of this inequality to hold, for any candidate solution Ẑ, one must sat-
isfy ∇ZF (MẐ) + βẐ′ = 0 and trace(Ẑ⊤Ẑ′) = ∥Ẑ∥D. Solving the former equality for
Ẑ′ = − 1

β∇ZF (MẐ), we have by (57) that the latter equality is satisfied at any stationary point of
the BM factorization. Lastly, for (65) to hold for a particular ϵ, one must have

Ẑ′ = − 1

β
∇ZF (MẐ) ∈ (1 + ϵ)BD∗ , (66)

so ϵ =
(

∥∇ZF (MẐ)∥∗
D

β − 1
)
+

, i.e.

p̂− p∗

p∗
≤

(
∥∇ZF (MẐ)∥∗D

β
− 1

)
+

(67)

A.8 PROOF OF THEOREM 3.5

Proof. From the stationary point condition, we have

0 = ∇ZF (MẐ)V̂ + βÛ (68)

0 = ∇ZF (MẐ)⊤Û+ βV̂. (69)

From (69) we can obtain
Û⊤∇ZF (MẐ) = −βV̂⊤. (70)

Substituting this into (68), we have

0 = −βV̂⊤V̂ + βÛ⊤Û (71)

V̂⊤V̂ = Û⊤Û. (72)

Thus, let r := rank(V̂) = rank(Û) ≤ min{dc, dr}. We can write the compact SVD of the stationary
point as

Û = LUΛR⊤

V̂ = LVΛR⊤,
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where LU ∈ Rdc×r, LV ∈ Rdr×r. Assume without loss of generality that dc > dr, so dr =
min{dc, dr}. We have

0 = ∇ZF (MẐ)V̂ + βÛ (73)

0 = ∇ZF (MẐ)LVΛR⊤ + βLUΛR⊤ (74)

−βLU = ∇ZF (MẐ)LV. (75)

If r = dr, LV is square and therefore unitary, so

∥∇ZF (MẐ)∥2 = ∥∇ZF (MẐ)LV∥2 (76)
= ∥ − βLU∥2 (77)
= β. (78)

Thus, we satisfy (20) with equality.

In general, note that when r < min{dc, dr}, we have

∥∇ZF (MẐ)∥2 = ∥∇ZF (MẐ)∥2∥LV∥2 ≥ ∥∇ZF (MẐ)LV∥2 (79)
= ∥ − βLU∥2 (80)
= β, (81)

so (20) is a lower bound, which depends on how ∇ZF (Ẑ) behaves when operating on vectors in
null(L⊤

V).

A.9 PROOF OF THEOREM 3.6

Proof. We begin with the non-convex objective (22)

p∗CNN := min
w1j∈Rh

W2j∈Rc×a

n∑
i=1

F

 m∑
j=1

W2jPa(Xiw1j)+

+
β

2

m∑
j=1

∥w1j∥22 + ∥W2j∥2F . (82)

We can re-write this as (Bach et al., 2008; Pilanci & Ergen, 2020)

p∗CNN = min
w1j∈B2

W2j∈Rc×a

n∑
i=1

F

 m∑
j=1

W2jPa(Xiw1j)+

+ β

m∑
j=1

∥W2j∥F . (83)

We can also re-write this as

p∗CNN = min
w1j∈B2

W2j∈Rc×a

ri

n∑
i=1

F (ri) + β

m∑
j=1

∥W2j∥F s.t.

m∑
j=1

W2jPa(Xiw1j)+ = ri (84)

Forming the Lagrangian, we have

p∗CNN = min
w1j∈B2

W2j∈Rc×a

ri

max
vi

n∑
i=1

F (ri) + β

m∑
j=1

∥W2j∥F +

n∑
i=1

v⊤
i

 m∑
j=1

W2jPa(Xiw1j)+ − ri


(85)

By Sion’s minimax theorem, we can swap the minimum over W2j , ri and maximum over vi, and
minimize over W2j , ri to obtain

p∗CNN = min
u∈B2

max
vi

−
n∑

i=1

−F ∗(vi)

s.t. ∥
n∑

i=1

Pa(Xiu)+v
⊤
i ∥F ≤ β (86)
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where F ∗ is the Fenchel conjugate of F . Now, as long as β > 0 and m ≥ m∗ where m∗ ≤ nac, we
can switch the order of max and min by Slater’s condition (Shapiro, 2009; Sahiner et al., 2021b) to
obtain

p∗CNN = max
vi

−
n∑

i=1

−F ∗(vi)

s.t. max
u∈B2

∥
n∑

i=1

Pa(Xiu)+v
⊤
i ∥F ≤ β. (87)

Enumerating over the hyperplane arrangements {Dk}Pk=1, we can further write this as

p∗CNN = max
vi

−
n∑

i=1

−F ∗(vi)

s.t. max
k∈[P ]
u∈B2

(2D
(i)
k −I)Xiu≥0

∥
n∑

i=1

PaD
(i)
k Xiuv

⊤
i ∥F ≤ β. (88)

Now, noting that vec(ABC) = (C⊤ ⊗A)vec(B) (Magnus & Neudecker, 2019), this is equivalent
to

p∗CNN = max
vi

−
n∑

i=1

F ∗(vi)

s.t. max
k∈[P ]
u∈B2

(2D
(i)
k −I)Xiu≥0

∥
n∑

i=1

(vi ⊗PaD
(i)
k Xi)u∥2 ≤ β (89)

This may also be written further as

p∗CNN = max
vi

−
n∑

i=1

F ∗(vi)

s.t. max
k∈[P ]
u∈B2

(2D
(i)
k −I)Xiu≥0
g∈B2

g⊤
n∑

i=1

(vi ⊗PaD
(i)
k Xi)u ≤ β, (90)

and thereby as

p∗CNN = max
vi

−
n∑

i=1

F ∗(vi)

s.t. max
k∈[P ]
u∈B2

(2D
(i)
k −I)Xiu≥0
g∈B2

trace

(
n∑

i=1

(vi ⊗PaD
(i)
k Xi)ug

⊤

)
≤ β. (91)

Now, we let Z = ug⊤ to obtain

p∗CNN = max
vi

−
n∑

i=1

F ∗(vi)

s.t. max
k∈[P ]

Z=ug⊤

u∈B2

(2D
(i)
k −I)Xiu≥0
g∈B2

trace

(
n∑

i=1

(vi ⊗PaD
(i)
k Xi)Z

)
≤ β. (92)
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We let Ck := conv
{
ug⊤ : (2D

(i)
k − I)Xiu ≥ 0, u ∈ B2, g ∈ B2

}
and note that since our objective

is linear we can take the convex hull of the constraints without changing the objective, to obtain

p∗CNN = max
vi

−
n∑

i=1

F ∗(vi)

s.t. max
k∈[P ]
Z∈Ck

trace

(
n∑

i=1

(vi ⊗PaD
(i)
k Xi)Z

)
≤ β. (93)

Note that the constraint Z ∈ Ck is equivalent to stating that ∥Z∥∗,Kk
≤ 1 for the constrained nuclear

norm definition with Kk = (2Dk − I)X. Then, we have

p∗CNN = max
vi

−
n∑

i=1

F ∗(vi)

s.t. max
k∈[P ]

∥Z∥∗,Kk
≤1

trace

(
n∑

i=1

(vi ⊗PaD
(i)
k Xi)Z

)
≤ β. (94)

Now, we form the Lagrangian, given by

p∗CNN = max
vi

min
∥Zk∥∗,Kk

≤1
min
λk≥0

−
n∑

i=1

F ∗(vi)+

P∑
k=1

λk

(
β −

n∑
i=1

vec(Zk)
⊤vec

(
v⊤
i ⊗ (PaD

(i)
k Xi)

⊤
))

.

(95)
By Sion’s minimax theorem, we are permitted to change the order of the maxima and minima, to
obtain

p∗CNN = min
λk≥0

min
∥Zk∥∗,Kk

≤1
max
vi

−
n∑

i=1

F ∗(vi)+

P∑
k=1

λk

(
β −

n∑
i=1

vec(Zk)
⊤vec

(
v⊤
i ⊗ (PaD

(i)
k Xi)

⊤
))

.

(96)
Now, defining Ka,1 as the (a, 1) commutation matrix we have the following identity from (Magnus
& Neudecker, 2019):

vec
(
v⊤
i ⊗ (PaD

(i)
k Xi)

⊤
)
=
(
Ic ⊗

(
(Ka,1 ⊗ Ih)(vec(X

⊤
i D

(i)
k P⊤

a )
))

vec(vi).

Using this identity and maximizing over vi, we obtain

p∗CNN = min
∥Zk∥∗,Kk

≤1
min
λk≥0

n∑
i=1

F

(
P∑

k=1

(
Ic ⊗

(
vec(X⊤

i D
(i)
k P⊤

a )
⊤(K1,a ⊗ Ih)

))
vec(Zk)

)
+β

P∑
k=1

λk.

(97)
Rescaling such that Z̃k = λkZk, we obtain

p∗CNN = min
Zk∈Rh×ac

n∑
i=1

F

(
P∑

k=1

(
Ic ⊗

(
vec(X⊤

i D
(i)
k P⊤

a )
⊤(K1,a ⊗ Ih)

))
vec(Zk)

)
+β

P∑
k=1

∥Zk∥∗,Kk
.

(98)
Simplifying further, we can write this as

p∗CNN = min
Zk∈Rh×ac

n∑
i=1

F

 P∑
k=1

trace(PaD
(i)
k XiZ

(1)
k )

...
trace(PaD

(i)
k XiZ

(c)
k )


+ β

P∑
k=1

∥Zk∥∗,Kk
, (99)

where Z
(c′)
k ∈ Rh×a.

A.10 PROOF OF LEMMA 3.7

Proof. We start with the convex formulation

p∗RCNN = min
Zk∈Rh×ac

n∑
i=1

F

 P∑
k=1

trace(PaD
(i)
k XiZ

(1)
k )

...
trace(PaD

(i)
k XiZ

(c)
k )


+ β

P∑
k=1

∥Zk∥∗,Kk
. (100)
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In order to compute the Burer-Monteiro factorization, we factor Zk = UkV
⊤
k , where Uk ∈ Rh×m,

Vk ∈ Rac×m, and (2D
(i)
k − I)XiUk ≥ 0. Then, with V

(c′)
k ∈ Ra×m. Then for each k,trace(PaD

(i)
k XiZ

(1)
k )

...
trace(PaD

(i)
k XiZ

(c)
k )

 =


trace(PaD

(i)
k XiUkV

(1)
k

⊤
)

...

trace(PaD
(i)
k XiUkV

(c)
k

⊤
)



=


trace(V

(1)
k

⊤
PaD

(i)
k XiUk)

...

trace(V
(c)
k

⊤
PaD

(i)
k XiUk)



=


∑m

j=1 v
(1)
jk

⊤
PaD

(i)
k Xiujk

...∑m
j=1 v

(c)
jk

⊤
PaD

(i)
k Xiujk


=

m∑
j=1

V⊤
jkPaD

(i)
k Xiujk,

where

V⊤
jk :=

v(1)
jk

⊤

· · ·
v
(c)
jk

⊤

 ∈ Rc×a. (101)

The equivalent Burer-Monteiro formulation thus is given by

p∗RCNN = min
{{ujk∈Rh}m

j=1}
P
k=1

{{Vjk∈Rc×a}m
j=1}

P
k=1

(2D
(i)
k −I)Xiujk≥0

n∑
i=1

F

 P∑
k=1

m∑
j=1

VjkPaD
(i)
k Xiujk

+
β

2

P∑
k=1

m∑
j=1

(
∥ujk∥2F + ∥Vjk∥2F

)
.

(102)

A.11 PROOF OF COROLLARY 3.8

Proof. We simply apply the result of Theorem 3.4, noting that stationary points correspond to global
minima if the norm of the gradient is less than β. Thus, this condition is equivalent to

∥
n∑

i=1

∇Zk
F

 P∑
k′=1

trace(PaD
(i)
k′ XiZ

(1)
k′ )

...
trace(PaD

(i)
k′ XiZ

(c)
k′ )


u∥2 ≤ β, ∀k ∈ [P ], ∀u ∈ B2 : (2D

(i)
k −I)Xiu ≥ 0.

(103)

A.12 PROOF OF LEMMA 3.9

Proof. Courtesy of Theorem 3.1 of (Sahiner et al., 2022), we first present the equivalent convex mod-
els for linear activation self-attention. Specifically, as long as m ≥ m∗, where m∗ ≤ min{d2, dc},
the objective in equation 8 is equivalent to

p∗LSA = min
Z∈Rd2×dc

n∑
i=1

F

(
d∑

k=1

d∑
ℓ=1

Gi[k, ℓ]XiZ
(k,ℓ)

)
+ β∥Z∥∗, (104)

where Gi := X⊤
i Xi, Gi[k, l] ∈ R, and {Z(k,ℓ) ∈ Rd×c} are block matrices which form Z.
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To prove Lemma 3.9, we begin from the convex formulation (104). Now, we seek to find
the Burer-Monteiro factorization. We let Z = UV⊤, where U ∈ Rd2×m and V ∈ Rdc×m. Let
vec−1(uj) ∈ Rd×d be the result of taking chunks of d-length vectors from uj for j ∈ [m] and
stacking them in columns. Similarly, let vec−1(vj) ∈ Rc×d be the result of taking chunks of c-length
vectors from vj and stacking them in columns. Furthermore, we will let vec−1(uj)k be the kth
column of vec−1(uj). Then, recognize that

Z(k,ℓ) =

m∑
j=1

vec−1(uj)kvec
−1(vj)

⊤
ℓ .

Thus,

d∑
k=1

d∑
ℓ=1

Gi[k, ℓ]XiZ
(k,ℓ) =

d∑
k=1

d∑
ℓ=1

m∑
j=1

Gi[k, ℓ]Xivec
−1(uj)kvec

−1(vj)
⊤
ℓ

= Xi

d∑
k=1

d∑
ℓ=1

m∑
j=1

vec−1(uj)kGi[k, ℓ]vec
−1(vj)

⊤
ℓ

= Xi

m∑
j=1

vec−1(uj)Givec
−1(vj)

⊤

=

m∑
j=1

Xivec
−1(uj)X

⊤
i Xivec

−1(vj)
⊤.

Now, overloading notation, let vec−1(uj) = Uj and vec−1(vj)
⊤ = Vj . We have clearly that the

Burer-Monteiro factorization of (104) is given by

p∗LSA = min
Uj∈Rd×d

Vj∈Rd×c

n∑
i=1

F

 m∑
j=1

XiUjX
⊤
i XiVj

+
β

2

m∑
j=1

∥Uj∥2F + ∥Vj∥2F . (105)

A.13 PROOF OF COROLLARY 3.10

Proof. We simply need to apply the result of Theorem 3.3 to this setting. In this case, the non-convex
linear self-attention network is equivalent to the Burer-Monteiro factorization of the convex form.
To obtain this Burer-Monteiro factorization, we factorize convex weights Z ∈ Rd2×dc, so letting
m∗ ≤ d2 + dc, we can observe that as long as the number of heads m exceeds m∗, from Lemma A.5,

all local optima are global. Further, we can form R̂ =

[
Û

V̂

]
, and as long as this is a rank-deficient

local minimum, it also corresponds to a global minimum when F is twice-differentiable by Lemma
A.7.

B ADDITIONAL THEORETICAL RESULTS

B.1 MLPS

The following theorem demonstrates that we can extend the results of (Sahiner et al., 2021b) beyond
simply weight-decay regularization, and to arbitrary regularization.

Theorem B.1. The non-convex ReLU training objective

p∗ := min
w1j ,w2j

F (

m∑
j=1

(Xw1j)+w2j) +
β

2

 m∑
j=1

∥w1j∥2C + ∥w2j∥2R

 (106)
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is equivalent to the convex training objective

p∗ = min
Zj

F (

P∑
j=1

DjXZj) + β

P∑
j=1

∥Zj∥Dj
, (107)

as long as β > 0 and m ≥ m∗ where m∗ ≤ nc, where

∥Z∥Dj
:= max

R
trace(R⊤Z) s.t. u⊤Rv ≤ 1 ∀u ∈ BC : (2Dj − In)Xu ≥ 0, ∀v ∈ BR. (108)

Proof. We start by re-stating the convex objective (Bach et al., 2008; Pilanci & Ergen, 2020)

p∗ := min
w1j∈BC

w2j

F (

m∑
j=1

(Xw1j)+w2j) + β

m∑
j=1

∥w2j∥R. (109)

Then, we can re-write this in a constrained form

p∗ = min
w1j∈BC

w2j

R

F (R) + β

m∑
j=1

∥w2j∥R s.t.

m∑
j=1

(Xw1j)+w2j = R, (110)

and then the Lagrangian

p∗ = min
w1j∈BC

w2j

R

max
V

F (R) + β

m∑
j=1

∥w2j∥R + trace

V⊤

 m∑
j=1

(Xw1j)+w2j −R

 . (111)

By Sion’s minimax theorem, we can swap the order of the maximization over V and minimization
over w2j and R. Then, minimizing over these two, we have

p∗ = min
u∈BC

max
V

−F ∗(V) s.t.∥V⊤(Xu)+∥∗R ≤ β. (112)

By Slater’s condition, which holds when β > 0 and m ≤ m∗ where m∗ ≤ nc (Shapiro, 2009;
Sahiner et al., 2021c), we can switch the order of minimum and maximum to obtain

p∗ = max
V

−F ∗(V) s.t. max
u∈BC

∥V⊤(Xu)+∥∗R ≤ β. (113)

Introducing hyperplane arrangements, we have

p∗ = max
V

−F ∗(V) s.t. max
j∈[P ]
u∈BC

(2Dj−I)Xu≥0

∥V⊤DjXu∥∗R ≤ β. (114)

By the concept of dual norm, this is equivalent to

p∗ = max
V

−F ∗(V) s.t. max
j∈[P ]
u∈BC

(2Dj−I)Xu≥0
g∈Br

trace
(
V⊤DjXug⊤) ≤ β. (115)

Define

∥Z∥j := max
t≥0

t s.t. Z ∈ tconv{ug⊤ : u ∈ BC , (2Dj − I)Xu ≥ 0, g ∈ Br}. (116)

Then, we can write our problem as

p∗ = max
V

−F ∗(V) s.t. max
j∈[P ]

∥Z∥j≤1

trace
(
V⊤DjXZ

)
≤ β. (117)

Now, observe that ∥Z∥j = ∥Z∥Dj
. In particular, let us examine (108), which we can re-write as

∥Z∥Dj = max
R

trace(R⊤Z) s.t. max
∥Z∥j≤1

trace(Z⊤R) ≤ 1 (118)

= max
R

trace(R⊤Z) s.t. ∥R∥∗j ≤ 1 (119)

= ∥Z∥j , (120)
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where the simplifications are made noting the definition of the dual norm. Now, we can write our
objective as

p∗ = max
V

−F ∗(V) s.t. max
j∈[P ]

∥Z∥Dj
≤1

trace
(
V⊤DjXZ

)
≤ β. (121)

Forming the Largrangian, we have

p∗ = max
V

min
∥Zj∥Dj

≤1

λj≥0

−F ∗(V) +

P∑
j=1

λj

(
β − trace

(
V⊤DjXZj

))
. (122)

By Sion’s minimax theorem, we can switch max and min and solve over V to obtain

p∗ = min
∥Zj∥Dj

≤1

λj≥0

F (

P∑
j=1

λjDjXZj) + β

P∑
j=1

λj . (123)

Lastly, we can combine Zjλj into one variable to obtain

p∗ = min
Zj

F (

P∑
j=1

DjXZj) + β

P∑
j=1

∥Zj∥Dj , (124)

as desired.

B.2 CNNS

Lemma B.2. The Burer-Monteiro factorization of the convex CNN problem with linear and gated
ReLU activation are given as follows.

p∗LCNN = min
{uj∈Rh}m

j=1

{Vj∈Rc×a}m
j=1

n∑
i=1

F

 m∑
j=1

VjPaXiuj

+
β

2

m∑
j=1

(
∥uj∥22 + ∥Vj∥2F

)
(125)

p∗GCNN = min
{{ujk∈Rh}m

j=1}
P
k=1

{{Vjk∈Rc×a}m
j=1}

P
k=1

n∑
i=1

F

 P∑
k=1

m∑
j=1

VjkPaD
(i)
k Xiujk

+
β

2

P∑
k=1

m∑
j=1

(
∥ujk∥2F + ∥Vjk∥2F

)
(126)

Proof. The proofs follow almost identically from the proof of Lemma 3.7. In the linear case, the
convex objective is given by

p∗LCNN = min
Z∈Rh×ac

n∑
i=1

F


trace(PaXiZ

(1))
...

trace(PaXiZ
(c))


+ β∥Z∥∗. (127)
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In order to compute the Burer-Monteiro factorization, we factor Z = UV⊤, where U ∈ Rh×m,
V ∈ Rac×m. Then, with V(c′) ∈ Ra×m. Then,trace(PaXiZ

(1))
...

trace(PaXiZ
(c))

 =


trace(PaXiUV(1)⊤)

...
trace(PaXiUV(c)⊤)



=


trace(V(1)⊤PaXiU)

...
trace(V(c)⊤PaXiU)



=


∑m

j=1 v
(1)
j

⊤
PaXiuj

...∑m
j=1 v

(c)
j

⊤
PaXiuj


=

m∑
j=1

V⊤
j PaXiuj ,

where

V⊤
j :=

v(1)
j

⊤

· · ·
v
(c)
j

⊤

 ∈ Rc×a. (128)

The equivalent Burer-Monteiro formulation thus is given by

p∗LCNN = min
{uj∈Rh}m

j=1

{Vj∈Rc×a}m
j=1

n∑
i=1

F

 m∑
j=1

VjPaXiuj

+
β

2

m∑
j=1

(
∥uj∥22 + ∥Vj∥2F

)
. (129)

In the gated ReLU case, the convex program is given by

p∗GCNN = min
Zk∈Rh×ac

n∑
i=1

F

 P∑
k=1

trace(PaD
(i)
k XiZ

(1)
k )

...
trace(PaD

(i)
k XiZ

(c)
k )


+ β

P∑
k=1

∥Zk∥∗. (130)

In order to compute the Burer-Monteiro factorization, we factor Zk = UkV
⊤
k , where Uk ∈ Rh×m,

Vk ∈ Rac×m. Then, with V
(c′)
k ∈ Ra×m. Then for each k,trace(PaD

(i)
k XiZ

(1)
k )

...
trace(PaD

(i)
k XiZ

(c)
k )

 =


trace(PaD

(i)
k XiUkV

(1)
k

⊤
)

...

trace(PaD
(i)
k XiUkV

(c)
k

⊤
)



=


trace(V

(1)
k

⊤
PaD

(i)
k XiUk)

...

trace(V
(c)
k

⊤
PaD

(i)
k XiUk)



=


∑m

j=1 v
(1)
jk

⊤
PaD

(i)
k Xiujk

...∑m
j=1 v

(c)
jk

⊤
PaD

(i)
k Xiujk


=

m∑
j=1

V⊤
jkPaD

(i)
k Xiujk,
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where

V⊤
jk :=

v(1)
jk

⊤

· · ·
v
(c)
jk

⊤

 ∈ Rc×a. (131)

The equivalent Burer-Monteiro formulation thus is given by

p∗GCNN = min
{{ujk∈Rh}m

j=1}
P
k=1

{{Vjk∈Rc×a}m
j=1}

P
k=1

n∑
i=1

F

 P∑
k=1

m∑
j=1

VjkPaD
(i)
k Xiujk

+
β

2

P∑
k=1

m∑
j=1

(
∥ujk∥2F + ∥Vjk∥2F

)
.

(132)

B.3 SELF-ATTENTION

Lemma B.3. The Burer-Monteiro factorization of the convex self-attention problem with gated ReLU
and ReLU activations are given as follows.

p∗GSA = min
Ujk

Vjk

n∑
i=1

F

 P∑
k=1

m∑
j=1

(
diag−1(D

(i)
k )⊙ (XiUjkX

⊤
i )
)
XiVjk

 (133)

+
β

2

P∑
k=1

m∑
j=1

∥Ujk∥2F + ∥Vjk∥2F

p∗RSA = min
Ujk

Vjk

n∑
i=1

F

 P∑
k=1

m∑
j=1

(
diag−1(D

(i)
k )⊙ (XiUjkX

⊤
i )
)
XiVjk

 (134)

+
β

2

P∑
k=1

m∑
j=1

∥Ujk∥2F + ∥Vjk∥2F s.t. (2diag−1(D
(i)
k )− 11⊤)⊙ (XiUjkX

⊤
i ) ≥ 0,

where diag−1(D
(i)
k ) ∈ Rs×s takes elements along the diagonal of D(i)

k and places them in matrix
form.

Proof. Courtesy of (Sahiner et al., 2022), we first present the equivalent convex models for gated
ReLU and ReLU activation self attention. First, define

X :=

[
X1 ⊗X1

· · ·
Xn ⊗Xn

]
{Dj}Pj=1 := {diag (1{Xu ≥ 0})}Pj=1,

then, we have

p∗GSA = min
Zj∈Rd2×dc

n∑
i=1

L

 P∑
j=1

d∑
k=1

d∑
ℓ=1

G
(k,ℓ)
i,j XiZ

(k,ℓ)
j ,Yi

+ β

P∑
j=1

∥Zj∥∗, (135)

p∗RSA = min
Zj∈Rd2×dc

n∑
i=1

L

 P∑
j=1

d∑
k=1

d∑
ℓ=1

G
(k,ℓ)
i,j XiZ

(k,ℓ)
j ,Yi

+ β

P∑
j=1

∥Zj∥Kj ,∗, (136)

where

Gi,j := (Xi ⊗ Is)
⊤D

(i)
j (Xi ⊗ Is),

for G(k,ℓ)
i,j ∈ Rs×s and Z

(k,ℓ)
j ∈ Rd×c.
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We then proceed to take the Burer-Monteiro factorization of these models. Here, we will
show the Burer-Monteiro factorization of the ReLU model, noting that the proof is the same for the
Gated ReLU model sans the constraints.

We let Zj = UjV
⊤
j , where Uj ∈ Rd2×m and Vj ∈ Rdc×m, where KjUj ≥ 0. Let

vec−1(ujx) ∈ Rd×d be the result of taking chunks of d-length vectors from ujx for j ∈ [m] and
stacking them in columns. Similarly, let vec−1(vjx) ∈ Rc×d be the result of taking chunks of
c-length vectors from vjx and stacking them in columns. Furthermore, we will let vec−1(ujx)k be
the kth column of vec−1(ujx). Then, recognize that

Zj
(k,ℓ) =

m∑
x=1

vec−1(ujx)kvec
−1(vjx)

⊤
ℓ .

Thus, for each j,

d∑
k=1

d∑
ℓ=1

G
(k,ℓ)
i,j XiZ

(k,ℓ)
j =

m∑
x=1

d∑
k=1

d∑
ℓ=1

G
(k,ℓ)
i,j Xivec

−1(ujx)kvec
−1(vjx)

⊤
ℓ

=

m∑
x=1

d∑
k=1

d∑
ℓ=1

[
(Xi ⊗ Is)

⊤D
(i)
j (Xi ⊗ Is)

](k,ℓ)
Xivec

−1(ujx)kvec
−1(vjx)

⊤
ℓ

=

m∑
x=1

d∑
k=1

d∑
ℓ=1

(Xi[·, k]⊗ Is)
⊤D

(i)
j (Xi[·, ℓ]⊗ Is)Xivec

−1(ujx)kvec
−1(vjx)

⊤
ℓ

=

s∑
y=1

m∑
x=1

d∑
k=1

d∑
ℓ=1

D
(i)(y,y)

j Xivec
−1(ujx)kvec

−1(vjx)
⊤
ℓ Xi[y, k]Xi[y, ℓ]

=

m∑
x=1

(
diag−1(D

(i)
j )⊙ (XiUjxX

⊤
i )
)
XiVjx,

where the constraint that (2D(i)
j − I)XUj ≥ 0 can also be re-written as (2diag−1(D

(i)
k )− 11⊤)⊙

(XiUjxX
⊤
i ) ≥ 0 for all x ∈ [m]. Thus, we have proven the statement.

C EXPERIMENTAL DETAILS

C.1 THE RELATIVE OPTIMALITY BOUND

(a) n = 45 (b) n = 150

Figure 3: Example of three-class spiral dataset, with different numbers of samples n.

See Figure 3 for dataset evaluated. In all cases, we solve the BM factorization with GD using Pytorch
(Paszke et al., 2019) on a CPU with a momentum parameter of 0.9, a learning rate of 1.0 which
decays by a factor of 0.9 whenever the training loss plateaus, and train for 20000 epochs such that
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(a) n = 3 (b) n = 45 (c) n = 75

Figure 4: Supplement to Figure 2. Relative optimality gap of the non-convex BM factorization
of a gated-ReLU two-layer MLP for three-class spiral data classification (d = 2, c = 3). For
n ∈ [3, 45, 75], we demonstrate how β and m affect relative optimality gap, both in in terms of the
proposed bound and the actual gap, where the global minimum is determined by convex optimization.

GD always converges. For convex optimization, to determine the global optimum of each problem,
we use the MOSEK interior point solver (Andersen & Andersen, 2000) with CVXPY (Diamond &
Boyd, 2016). The parameters we evaluate are n ∈ [3, 45, 75, 150], β ∈ [10−4, 10−3, 10−2, 10−1]

and m ∈ [1, 2, 5] (see Figure 4 for n = 3, 45, 75). We use a randomly subsampled set of P̂ = 100
hyperplane arrangements. We perform this experiment over three random seeds, which are used to
generate the hyperplane arrangements as well as the random Gaussian initializations of the weights.

C.2 BM ENABLES LAYERWISE TRAINING OF CONVEX CNNS

(a) CIFAR-10 (b) Fashion-MNIST

Figure 5: Supplement to Figure 1. Training accuracies of layerwise trained BM factorized convex
gated-ReLU CNNs.

Our layerwise training procedure was trained on a single NVIDIA 1080 Ti GPU using the Pytorch
deep learning library (Paszke et al., 2019). In particular, we follow the implementation of (Belilovsky
et al., 2019), who proposed greedily, sequentially training two-layer CNNs. At each stage, a
two-layer CNN (convolutional layer + average pooling + fully connected layer) is trained, and then
the weights are frozen, the fully connected layer and average pooling are discarded, and the trained
convolutional layer is used as a feature-generator for the following stage. At certain stages, before
the CNN is applied, an invertible downsampling operation (Dinh et al., 2016) is used to reduce the
spatial dimensions of the image. In (Belilovsky et al., 2019), ReLU activations are used as well as an
average pooling operation to spatial dimensions of 2× 2 (i.e. a = 4) is used, followed by a flattening
operation and a fully connected layer. They also use a softmax cross-entropy loss, a batch size of
128, weight decay parameter of β = 5e − 4, along with stochastic gradient descent (SGD) with
momentum fixed to 0.9, 50 epochs per stage, and learning rate decay by a factor of 0.2 every 15
epochs.

In our experiments, we keep all network and optimization parameters the same, aside from
replacing the non-convex CNN at each stage with our convex CNN objective (23). We then apply the
Burer-Monteiro factorization with m ∈ [1, 2, 4] to this architecture to make it tractable for layerwise
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learning as described in the main paper. At each stage, we randomly subsample P̂ = 256 hyperplane
arrangements. We further use gated ReLU rather than ReLU activations for simplicity, which can
work as well as ReLU in practice (Fiat et al., 2019). These techniques have been used effectively
for convex learning to exceed the performance of two-layer non-convex neural networks (Pilanci &
Ergen, 2020; Ergen & Pilanci, 2020; Ergen et al., 2021).

For the CIFAR-10 experiment, we use 5 stages (following (Belilovsky et al., 2019)), whereas
for the Fashion-MNIST experiment, we use 3 stages, since the training accuracy saturates after
3 stages. We choose learning rates per stage from {10−1, 10−2, 10−3, 10−4} per stage based on
training accuracy for CIFAR-10. The chosen learning rates were [10−1, 10−2, 10−3, 10−2, 10−2] for
CIFAR-10. For Fashion-MNIST, we empirically observed the training loss was better optimized
with slightly higher learning rates, so we used [2× 10−1, 5× 10−2, 5× 10−3]. In Figure 5 we also
provide the training accuracies at each stage for the results provided in Figure 1. Ultimately, our
CIFAR-10 network with 5 stages took 9163 seconds to train, and the Fashion-MNIST network with 3
stages took 4931 seconds to train. In (Kiliçarslan & Celik, 2021), it is shown that an end-to-end
6-layer CNN with ReLU activations takes 640 seconds to train on CIFAR-10 and 285 seconds to
train on Fasion-MNIST. We note that the purpose of this experiment is not to advocate for the use of
layerwise BM networks over end-to-end trained networks, but simply to demonstrate the utility of the
BM network in enabling convex neural networks to scale to the performance of end-to-end deep
networks by using layerwise learning.

C.3 ADDITIONAL EXPERIMENTAL DETAILS

(a) Time per epoch. (b) Peak GPU memory.

Figure 6: Supplement to Figure 1. Time per epoch and peak GPU memory consumption of different
formulations of gated ReLU CNNs trained in a layerwise fashion on CIFAR-10. For "Convex",
training causes memory consumption to exceed NVIDIA 1080 Ti GPU’s 12 GB memory capacity
after the first stage, preventing ability to train convex CNN (23) in a layerwise fashion.

In this subsection, we show additional details on the experiments in Figure 1 to show the scaling
issues in using the convex formulation of the gated ReLU CNN described in (23) for layerwise
training. We further compare the per-iteration complexity of the convex formulation to that of the
BM factorization (126). In Figure 6, we measure the training time per epoch and GPU memory
consumption across various stages of the training a BM-factorized CNN in a layerwise fashion on
CIFAR-10, using the same experimental setup as described in Appendix C.2. We also compare
training the BM formulation to training the convex formulation (23) in this setting. Due to memory
constraints, we are not able to train more than a single stage of the convex formulation, illustrating
that convex neural networks encounter major scaling issues that prevents their application to layerwise
learning. We observe that the BM factorization leads to significantly reduced memory consumption
and time per iteration compared to the original convex formulation, demonstrating the utility of the
BM factorization for scaling convex neural networks to the layerwise training setting.
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