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MULTI-VIEW REPRESENTATION IS WHAT YOU NEED
FOR POINT-CLOUD PRE-TRAINING
– SUPPLEMENTARY MATERIAL

1 DETAILS OF FIGURE 1 IN MAIN PAPER
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Our model (blue) achieves state-of-the-art performance across a broad range of tasks at both the
scene and shape levels. The distance to the origin indicates the task result. We compared with other
pre-training methods (Hou et al., 2021; Xie et al., 2020; Xue et al., 2023; Zhang et al., 2023; 2022) that
achieve state-of-the-art performance on different tasks. ‘Seg-ScanNet’ refers to the validation mean
IoU on ScanNet’s semantic segmentation. ‘Seg-S3DIS’ indicates the mean IoU from S3DIS’s 6-fold
cross-validation result. ‘Seg-S3DIS-A5’ represents the mean IoU for the S3DIS Area 5 validation
result. ‘Det-ScanNet’ corresponds to mAP@0.25 on the ScanNet detection task. ‘Det-SUN RGB-D’
signifies mAP@0.25 on the SUN RGB-D detection task. ‘PartSeg-ShapeNetPart’ denotes the part
segmentation result on ShapeNetPart dataset. ‘Cls-ScanObjectNN’ denotes the shape classification
result on ScanObjectnn. ‘FewCls-MN40’ denotes the 10-way 10-shot few shot classification result
on ModelNet40.

2 PRE-TRAINING DETAILS
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Figure 1: Feature encoding network details.
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2.1 FEATURE ENCODING NETWORK DETAILS

As illustrated in Figure 5, the feature encoding network takes a colored point cloud P ∈ RM×6 as
input, with the first three channels denoting coordinates and the subsequent three channels signifying
RGB values. This point cloud, P , is then voxelized based on its 3D coordinates, which generates a
grid-based representation V ∈ RM ′×6, where M ′ denotes the number of voxels.

The encoder comprises 4 Sparse Conv ResBlocks (Choy et al., 2019) with a total of 21 convolution
layers, while the decoder is made up of 4 Sparse DeConv ResBlocks with 13 layers. The design of
each ResBlock follows the basic 2D ResNet block pattern, and every conv/deconv layer within the
network is succeeded by Batch Normalization (BN) and a ReLU activation function. The overall
U-Net architecture comprises 37.85M parameters.

The network’s output consists of C-dimensional per-voxel features FV ∈ RM ′×C . Subsequently,
these per-voxel features FV are interpolated to procure per-point features from the original point
cloud, represented as FP ∈ RM×C . In our implementation, the value of C is set at 96.

2.2 POINT-CLOUD FEATURE VOLUME PROJECTION DETAILS

As we implement augmentation strategies, the one-to-one correspondence between each pixel in each
input view and the corresponding 3D point is established through a standard projection operation.
Specifically, the relationship between a 3D point with homogeneous coordinates P = (X,Y, Z, 1)T

and a 2D pixel (x, y)T is given by:
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 = K · I ′ · Ei · P (1)

Here, Ei ∈ E1, E2 and K represent the extrinsic and intrinsic matrices, respectively. I ′ refers to the
canonical projection matrix. Equation (1) enables us to derive 2D feature maps F1, F2, each having
dimensions H ×W × C.

2.3 MORE PRE-TRAINING DETAILS

During pre-training, our model comprises a total of 110M parameters and operates at 31 GFLOPs.
Additionally, the procedure of converting RGB-D scans into point clouds takes roughly 10 hours on a
machine equipped with a 64-core CPU. Furthermore, storing the resultant point clouds necessitates
an additional 600GB of storage space.

3 MORE EXPERIMENT RESULTS

3.1 COMPARISON WITH SUPERVISED METHODS ON SEMANTIC SEGMENTATION

As shown in Table 1, compared with state-of-the-art supervised methods, our approach also achieves
superior performance. Please note that our approach outperforms multi-view representation-based
methods (Kundu et al., 2020; Hamdi et al., 2023) with significant improvements.

3.2 COMPARISON WITH PRE-TRAINING METHODS WITH DIFFERENT NETWORK BACKBONES
ON SHAPE-LEVEL TASKS

Many existing pre-training approaches adopt different network backbones to in pursuit of better
performance, making fair comparisons challenging. In Table 2, we compared our method against
these approaches. Even under diverse settings, our method consistently achieves state-of-the-art
results across all the benchmarks.
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Method S3DIS Area 5 S3DIS 6-Fold ScanNet

OA mAcc mIoU OA mAcc mIoU mIoU

PointNet (Qi et al., 2017) 53.5 49.0 41.1 78.5 66.2 47.6 -
PointCNN (Li et al., 2018) 85.9 63.9 57.3 88.1 75.6 65.4 45.8
SPGraph (Landrieu & Simonovsky, 2018) 86.4 66.5 58.0 85.5 73.0 62.1 -
PointWeb (Zhao et al., 2019) 87.0 66.6 60.3 87.3 76.2 66.7 -
MinkowskiNet (Choy et al., 2019) - 71.7 65.4 - - - 67.9
Vision MVFusion (Kundu et al., 2020) - - 65.4 - - - 74.6
Voint Cloud (Hamdi et al., 2023) - - 66.1 - - - 74.8
PointTransformer (Zhao et al., 2021) 90.8 76.5 70.4 90.2 81.9 73.5 70.6
PointNeXt (Qian et al., 2022) 90.7 - 70.8 90.3 - 74.9 71.5
Stratified Trans (Lai et al., 2022) 91.5 78.1 72.0 - - - 74.3
PointMetaBase (Lin et al., 2022) 91.4 - 72.0 91.3 - 77.0 72.8
SR-UNet (Xie et al., 2020) 89.1 75.5 68.2 90.2 82.1 73.6 72.2
MVNet 91.7(91.6) 79.5(79.3) 73.8(73.3) 91.8(91.7) 86.3(86.2) 78.3(78.1) 75.6(75.2)

Table 1: Comparison with supervised methods on S3DIS (evaluation by 6-Fold or in Area 5) and ScanNet
V2. The average result of 3 runs is given in parentheses.

Method Backbone ScanObjectNN ShapeNetPart

OBJ-BG OBJ-ONLY PB-T50-RS ins. mIoU cls. mIoU

Jigsaw (Sauder & Sievers, 2019) DGCNN 86.8 86.2 83.5 85.3 -
OcCo (Wang et al., 2020) DGCNN 88.2 87.5 85.0 -
CrossPoint (Afham et al., 2022) DGCNN - - 85.5 83.7
ULIP (Xue et al., 2023) Transformer 91.3 89.4 86.4 - -
ULIP (Xue et al., 2023) PointMLP 93.2 90.4 89.4 - -
Point-M2AE (Zhang et al., 2022) M2AE 91.2 88.8 86.4 86.5 84.9
I2P-MAE Zhang et al. (2023) M2AE 94.2 91.6 90.1 86.8 85.2
MVNet-L Transformer 95.2 94.2 91.0 86.8 85.2

Table 2: Performance comparison with pre-training approaches using different network backbones on
shape-level downstream tasks.

3.3 FEW-SHOT CLASSIFICATION ON MODELNET40

We conduct few-shot classification on ModelNet40, adopting the ”K-way N-shot” configurations
detailed in previous studies (Wang et al., 2021; Yu et al., 2022; Pang et al., 2022). Specifically, from
the 40 available classes, we randomly select K and then sample N+20 3D shapes from each class. Of
these, N shapes are designated for training, while 20 are reserved for testing. We assess MVNet’s
performance across four distinct few-shot scenarios: 5-way 10-shot, 5-way 20-shot, 10-way 10-shot,
and 10-way 20-shot. To counteract potential biases from random sampling, we carry out 10 separate
runs for each scenario, subsequently reporting both the average accuracy and standard deviation.
Remarkably, our model excels using the standard transformer architecture.

3.4 LABEL EFFICIENCY TRAINING

Pre-training enables models to be effectively fine-tuned with a minimal quantity of labeled data.
In our study, we examine the label efficiency of our model in 3D object detection by adjusting the
proportion of supervised training data used. The results of this study can be viewed in Figure 2.

We utilize VoteNet (Qi et al., 2019) as the training network, incorporating 20%, 40%, 60%, and 80%
of the training data derived from the ScanNet and SUN RGB-D datasets. Interestingly, we observe
that our pre-training approach yields larger improvements when less labeled data is used. Remarkably,
with approximately 60% of training data from ScanNet/SUN RGB-D, our model performs comparably
to a model trained from scratch with full data.

To further prove the efficacy of our method, We also compare our method with the most recent
works (Xie et al., 2020; Chen et al., 2022) on SUN RGB-D detection task. During these experiments,
we trained our model using varied proportions of the dataset, specifically 20%, 50%, and 100%, and
subsequently evaluated the performance on the same test dataset. We reported the mAP @0.5 results
in Table 4. Our observations indicate that our pre-training method yields more significant gains with
reduced amounts of labeled training data. Notably, with only 50% of the training data, our method
surpasses the performance achieved by training from scratch using the full 100% dataset.
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Method 5-way 10-way

10-shot 20-shot 10-shot 20-shot
DGCNN† 31.6 ± 2.8 40.8 ± 4.6 19.9 ± 2.1 16.9 ± 1.5
OcCo 90.6 ± 2.8 92.5 ± 1.9 82.9 ± 1.3 86.5 ± 2.2
CrossPoint 92.5 ± 3.0 94.9 ± 2.1 83.6 ± 5.3 87.9 ± 4.2

Transformer† 87.8 ± 5.2 93.3 ± 4.3 84.6 ± 5.5 89.4 ± 6.3
OcCo 94.0 ± 3.6 95.9 ± 2.3 89.4 ± 5.1 92.4 ± 4.6
PointBERT 94.6 ± 3.1 96.3 ± 2.7 91.0 ± 5.4 92.7 ± 5.1
MaskDiscr 95.0 ± 3.7 97.2 ± 1.7 91.4 ± 4.0 93.4 ± 3.5
PointMAE 96.3 ± 2.5 97.8 ± 1.8 92.6 ± 4.1 95.0 ± 3.0
MVNet 97.297.297.2 ± 1.81.81.8 98.398.398.3 ± 1.81.81.8 93.493.493.4 ± 3.43.43.4 95.895.895.8 ± 3.23.23.2

Table 3: Few-shot classification on ModelNet40. We report the average accuracy (%) and standard deviation
(%) of 10 independent experiments. † represents the from scratch results and all other methods represent the
fine-tuning results using pretrained weights.

Method 20% 50% 100%
Train from scratch 18.8 24.7 32.9
PointContrast 24.5 29.2 37.5
4DContrast 26.3 31.5 38.2
MVNet 28.5 33.2 39.6

Table 4: Label efficient training on SUN RGB-D object detection task. We take the VoteNet as
network architecture and compare our method with PointContrast and 4DContrast.

These findings suggest that our pre-training approach can enhance the performance of downstream
tasks even when less data is available, thereby increasing the efficiency of the training process.

4 VISUALIZATION OF MULTI-VIEW CONSISTENCY MODULE PREDICTION

Figure 3 shows the qualitative results of the multi-view consistency module prediction. The figure
consists of various elements, each showcasing two images from distinct viewpoints. This visualization
emphasizes the accuracy and efficiency of our multi-view consistency module. Furthermore, the
results demonstrate that our pre-trained model learns the ability to capture 3d features.

5 QUALITATIVE RESULTS ON SEMANTIC SEGMENTATION TASK

In this section, we show more qualitative results on the S3DIS Area 5 semantic segmentation task.
We compare our method with SceneContext (Hou et al., 2021), the second-best approach.

6 BROADER IMPACTS

The total emission is estimated to be 161.28 kgCO2eq, equivalent to 652 km driven by an average
car. This emission estimation is conducted using the Machine Learning Impact calculator presented
in (Lacoste et al., 2019). To mitigate repetitive labor and negative environmental impact in future
research, we will release our open-source implementation together with trained network weights after
the anonymous period.
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Figure 3: Qualitative results of multi-view consistency module prediction. Each element consists
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dot, and they are connected by the green line.
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Figure 4: Qualitative results on S3DIS semantic segmentation task. We compare our method with
the second-best approach, SceneContext (Hou et al., 2021).
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Figure 5: More qualitative results on S3DIS semantic segmentation task. We compare our method
with the second-best approach, SceneContext (Hou et al., 2021).
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