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A THEORETICAL ANALYSIS

For the binary classification problem, we use the binary cross entropy loss to optimize the classifier
f(x) by minimizing the loss Ln

f :

Ln
f = −

( |X|∑
i=0

log(1− f(xi)) +

|X−|∑
k=0

log f(xk)
)
. (1)

When we have arbitrarily large samples, the weak law of large numbers shows that the objective
function Ln

f converges in probability to Lf :

Lf = −
(
EX(log(1− f(x))) + EX−(log f(x−))

)
. (2)

Let p(x, y) = p(y)p(x|y) be an expanded generative model for x defined as:

x ∼ a(x) if y = 0,

x ∼ b(x) if y = 1
(3)

When the number of positive and negative samples is equal, we can express the loss function as:

Lf = −
∫ (

log(1− f)a(x) + log(f)b(x)
)
dx. (4)

∂Lf

∂f
= −

∫ ( 1

f − 1
a(x) +

1

f
b(x)

)
dx. (5)

When the derivative is constantly zero, the objective function achieves an extremum. By doing this,
we can obtain an optimized classifier:

f∗ ≈ b(x)

a(x) + b(x)
= p(y = 1|x) (6)

f(x) is the output of the classifier with input x and is the predicted anomaly score of the sample x.
We can obtain the optimal classifier f∗(x) ≈ p(y = 1|x) after minimizing the loss Lf .The proof
above referenced the counterparts from (Gutmann & Hyvärinen, 2012).

To distinguish inliers and outliers with limited samples, two restrictions are placed, one assumption
on the datasets and another on the optimizer. We then provide a simplified proof of the correctness of
NOD.

Assumption 1. [Distribution assumption] Outliers are sparser distributed than inliers and should
be sufficiently distant from any inlier.

Due to the highly unbalanced nature of the sample, we assume that outliers are sparser distributed than
inliers and nonoverlapping with inliers. Without this assumption, it would be very hard to differentiate
between inliers and outliers. This assumption has been adopted in density-based studies. However,
the difficulty lies in how to effectively and efficiently estimate the density of high-dimensional data,
due to the ”curse of dimensionality”. Many UOD calibrate the anomaly score based on the localized
distance/density estimation to reduce computation cost. It is difficult for them to use samples beyond
their scope. Fig. 1(a) of a toy sample shows the limitations of kNN in the localized calculation.
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(a) kNN(k=1,2) (b) NOD-based anomaly score

Figure 1: Anomaly score with kNN and NOD on the 2D dataset. Sample A is close to the normal
cluster and with lower score than B,C. However, kNN(k=1,2) assign same socre to A,B and C.

Certainly, the sparse assumption may not be valid for outliers that are clustered together. However,
we argue that we can only effectively address these small clusters with domain-specific knowledge.
Section 4.3 in paper contains a discussion on the effects of clustered outliers.

This Smoothness Prior (Rosca et al., 2020) specifies that the changing rate of f(x) across the whole
value space is below a certain threshold and has been wildly used in designing many optimizers,
especially those optimizers used in DNNs to estimate a smooth function, e.g., Adam (Kingma & Ba,
2014) and SGD (Bottou & Bousquet, 2007).

Lemma 1. When the value space is limited, using a limited amount of uniform noise, it is ensured
that ρ(xi) > ρ(xk) > ρ(xj), where xi ∈ Xn, xj ∈ Xo, xk ∈ X−, and ρ(·) is the density function.

Proof. For ∀xj1, xj2 ∈ Xo,∀xi1, xi2 ∈ Xn we have d(xj1, xj2) > 4
√
dimd(xi1, xi2) where dim

is the space dimension for the dataset and the 4 is a scaling factor. We let D = maxi1,i2d(xi1, xi2),
S be the dataset space, and ρ(·) be the density function. ρ(x) = maxy

C(N(x,d(x,y)),x)
Sqr(N(x,d(x,y))) , where x,y

come from the same dataset, N(x, dx) = {z|d(x, z) ≤ dx, z ∈ S}, C(N, x) means the number of
the data which has the same tag as x and is in the subset N , Sqr(N) means the volume of the subset
N . Construct the noise following a uniform distribution, in which the distance between two adjacent
points is 4D; we have: minj1,k1d(xj1, xk1) <

√
dim
2 ∗ 4D < 4

√
dimD < minj1,j2d(xj1, xj2),

where xj1, xj2 ∈ Xo, xk1 ∈ X−. This indicates that noise is distributed near the outlier instead of
the outlier and ∀xj ∈ Xo,∀xk ∈ X−, ρ(xk) > ρ(xj). Given that maxx∈Sminxk1∈X−d(x, xk1) =

2
√
dimD, we can generate the uniform noise data to guarantee ∃d(xi1, xk1) ≥ 2D. Then:

mini1,k1d(xi1, xk1) > 2D − maxi1,i2d(xi1, xi2) = maxi1,i2d(xi1, xi2).

It means that ∀xi ∈ Xn,∀xk ∈ X−, ρ(xk) < ρ(xi). Thus, ρ(xj) < ρ(xk) < ρ(xi). In other words,
it is always possible to generate a uniform noise that has a density between that of the inliers and
outliers.

Lemma 2. Let D = maxj
(
mink d(xj , xk)

)
, where xj ∈ Xo, xk ∈ X−. There exists an optimized

f∗(x) with respect to Equ. 1 that satisfy ∀xj ∈ Xo, f
∗ (xj) ≥ 1−MD,MD < 1.

This lemma shows that the learned optimized function always gives the outlier an anomaly score
bigger than a certain positive value.

Proof.[proof by contradiction] If ∃xj ∈ Xo, s.t. f(xj) < 1 − MD, with smoothness prior
(i.e., xj , xk are in a subspace with d(xj , xk) < ϵ, thus, f(xj) → f(xk)), ∃xk ∈ X−, f (xk) <
1 − MD + Md(xj , xk∗) < 1. xk∗ is the closest of xk ∈ X− to xj . Thus, there is an optimal
classification value f∗(x), so that f(xk) ≤ f∗(xk),∀xk ∈ X−, and we further define f∗(x) as:

f∗(x) =


1, ∀x ∈ X−,

f(x), ∀x ∈ Xn,

1−MDx, ∀x ∈ Xo.

(7)
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Here, Dx = mink d(xk, x), xk ∈ X−. According to Equ. 1, we define C as a sample set that belongs
to the same subspace as xj and ∀x ∈ C, x ∈ X−. Let g(x) = −

(
log

(
1− (x− δ)

)
+ log(x)

)
, 0 <

δ < 1, because g(1) < g(x), ∀δ ≤ x < 1. With Assumption 1 and Lemma 1, one outlier has little
effect on another outlier. Thus, we can only care about one outlier and noise samples around that
outlier. We use Lf(xj) to represent the loss function, where xj is the outlier:

Lf(xj) = −
( |C|∑

k

log f(xk) + log(1− f(xj))
)

≥ −
(
log(1− f(xj)) + log f(xk∗) +

|C|\{xk∗}∑
k

log f∗(xk)
)

≥ −
(
log(1− f∗(xj)) + log f∗(xk∗) +

|C|\{xk∗}∑
k

log f∗(xk)
)

= Lf∗(xj),

(8)

where f∗(xk) = 1, f∗(xj) = 1−mink Md(xj , xk), xk ∈ X−, xj ∈ Xo. Therefore, if there exists
∃xj ∈ Xo, s.t. f(xj) < 1−MD, it is theoretically possible to find f (xj) that minimizes the loss,
which contradicts the fact that f (x) is optimal. Thus Lemma 2 holds true.

Theorem 1. Each predicted value of the outlier is higher than each predicted value of the inlier.
∀xi ∈ Xn, xj ∈ Xo, it holds that f∗ (xj) > λ > f∗ (xi), where λ is a boundary value.

Proof. Due to the high density of inliers, ∀xi ∈ Xn, when ρ (xi) → +∞, we have f∗ (xi) → 0.
Thus, there exists a density value ρ0, s.t. ∀xi ∈ Xn, we have f∗ (xi) < τ . According to Lemma
2, it is possible to learn a classifier f∗(·) that satisfies the following conditions: ∀xi ∈ Xn, xj ∈
Xo, f

∗ (xi) < τ ≤ λ ≤ 1 − MD ≤ f∗ (xj). For instance, when M < 1
2D , τ = 0.5. Therefore,

Theorem 1 holds.

This theorem establishes that the anomaly scores of outliers are higher than those of inliers. If we
have an outlier ratio, the classifier f∗(x) can distinguish between Xn and Xo. Fig. 1(b) shows the
anomaly score distribution in the toy example. It clearly shows that NOD can effectively balance the
impact of both local and remote samples with the support of uniform noise. The anomaly scores span
the entire value space and exhibit a gradual increase as the points move farther from the inlier center.
Therefore, NOD can identify the anomaly degree of samples A, B, and C.

B SUMMARY OF 22 REAL-WORLD DATASETS

Table 1 summarizes 22 real-world datasets used for evaluating UOD. (mat) represents dataset from
ODDS1 and (arff) from DAMI2. These datasets are highly representative in terms of diversity in
feature dimensions, data volume, and anomaly proportions. The following experiments are the
average results obtained from 20 independent experiments on these 22 datasets.

C PERFORMANCE ON 22 DATASETS USING 22 OUTLIER DETECTORS

NOD is compared with 21 other outlier detectors, including classical methods: kNN(Ramaswamy
et al., 2000), LOF(Breunig et al., 2000), HBOS(Goldstein & Dengel, 2012), OC-SVM (Schölkopf
et al., 2001), COPOD(Li et al., 2020), ECOD(Li et al., 2022), IForest(Liu et al., 2008), SUOD(Zhao
et al., 2021), LSCP(Zhao et al., 2019a) and DNN-based detectors: Deep SVDD (D SVDD) (Ruff
et al., 2018), AE(Xia et al., 2015), VAE (Kingma & Welling, 2013), LUNAR (Goodge et al., 2021),
DROCC (Goyal et al., 2020), GOAD (Bergman & Hoshen, 2020), Neutral AD (N AD) (Qiu et al.,
2021), SO-GAAL (Liu et al., 2020), REPEN(Pang et al., 2018), DAGMM(Zong et al., 2018),
ICL(Shenkar & Wolf, 2021) and flows ood(Kirichenko et al., 2020).

1http://odds.cs.stonybrook.edu
2http://www.dbs.ifi.lmu.de/research/outlier-evaluation/DAMI
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Table 1: Summary of 22 real-world datasets (Ratio means Outlier Ratio).

Dataset dim Sample Ratio (%) Dataset dim Sample Ratio (%)

pima(mat) 8 768 34.90 breastw(mat) 9 683 34.99
WBC(arff) 9 223 4.48 wine(mat) 13 129 7.75

HeartDisease(arff) 13 270 44.44 pendigits(mat) 16 6870 2.27
Lymphography(arff) 18 148 4.05 Hepatitis(arff) 19 80 16.25

Waveform(arff) 21 3443 2.90 wbc(mat) 30 378 5.56
WDBC(arff) 30 367 2.72 WPBC(arff) 33 198 23.74

satimage-2(mat) 36 5803 1.22 satellite(mat) 36 6435 31.64
KDDCup99(arff) 41 60839 0.40 SpamBase(arff) 57 4207 39.91

optdigits(mat) 64 5216 2.88 mnist(mat) 100 7603 9.21
musk(mat) 166 3062 3.17 Arrhythmia(arff) 259 450 45.78

speech(mat) 400 3686 1.65 InternetAds(arff) 1555 1966 18.72

For kNN, LOF, HBOS, OC-SVM, COPOD, ECOD, IForest, SUOD, LSCP, AE, VAE, and D SVDD,
we use the implementations from PyOD (Zhao et al., 2019b) which is a popular and open-source
Python library for Outlier Detection. For others, we use the code given in their papers. In particular,
from their source code, D SVDD, DROCC, GOAD, N AD, and LUNAR demand pure inliers, i.e.,
these methods select inliers based on labels and use only inliers as training data. For a fair comparison,
we adapt them to the UOD setting by using the original dataset containing both inliers and outliers
for model training. The comparison of experimental results using the initial settings of the paper and
the UOD settings is presented in Sec. D.

Detailed Hyperparameter Settings. For kNN, LOF, HBOS, OC-SVM, COPOD, ECOD, IForest,
SUOD and LSCP, we use default settings in the PyOD library where n neighbors is 5 in kNN, n bins
is 10 in HBOS, n neighbors is 20 in LOF and OC-SVM uses the sigmoid kernel. SUOD and LSCP are
ensemble learning methods, and their basic detector composition is [LOF, LOF, LOF, LOF, COPOD,
IForest, IForest], the parameters n neighbors for the first four LOF algorithms are 15, 20, 25 and 35
respectively.

For DNN models, AE, VAE and D SVDD use the sigmoid activation function and the SGD optimizer.
We train them using 500 epochs with a learning rate of 0.005 and 2 hidden layers. The hidden
layer dimensions are dim

2 and dim
4 for the two models, respectively. We train DROCC 100 epochs

where 50 epochs are with CELOSS. The number of hidden nodes for the LSTM model is 128, and
the SGD optimizer is used with a 0.005 learning rate and 0.99 momentum. We use the config file
“config arrhy.yml” provided in the source code from N AD paper where residual transformation,
Adam with 0.005 learning rate, 5 hidden layers with 64 dimensions and DCL loss are used. For
SO-GAAL, the SGD optimizer is used with a 0.0001 learning rate for the generator and a 0.01
learning rate for the discriminator. LUNAR uses kNN with 20 n neighbors to build a graph and
constructs a discriminator with 4 layers with the Tanh activation function. SGD optimizer with a
learning rate of 0.01 is adopted. REPEN uses the “rankod.py” from the paper code library to evaluate
and the number of training epochs is 50. DAGMM adopts the Adam optimizer with a learning rate of
10−4 and a training epochs count of 200, where the gmm k parameter is 4. flows ood uses Adam
optimizer with 10−3 learning rate and 5× 10−5 L2 regularization weight decay, and the number of
training epochs is 100. For flows ood, we use the file “train unsup ood uci.py” from the paper code
library to train.

Tables 2, 4 and Tables 3, 5 show the results of NOD compared to other outlier detectors, in terms of
AUC ROC, F1-score respectively. Table 2 and Table 3 show the performance comparison between
NOD and traditional methods, while Table 4 and Table 5 show the comparison with deep learning
methods The results show that most outlier detectors display significant performance variance on
different datasets. Original data distribution highly influences the performances of traditional outlier
detection algorithms due to their strong data assumptions, and only a tiny fraction of them can achieve
good performance on the 22 datasets. For instance, kNN performs well on the wine(mat), wbc(mat),
breastw(mat), Lymphography(arff),WBC(arff), satimage-2(mat) and WDBC(arff) datasets, but poorly
on others as its performance is highly influenced by k.
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Table 2: Results in ROC AUC (%) of all 9 compared classical detectors (average of 20 independent
trials).

Dataset kNN LOF HBOS OC-SVM COPOD ECOD IForest SUOD LSCP nod

pima 60.76 53.84 68.6 50 65.4 51.73 67.33±0.9 64.93±0.76 61.7±0.81 62.9±2.95
breastw 97.53 38.32 98.5 0.49 99.44 99.14 98.7±0.16 90.95±1.76 75.69±1.56 99.29±0.24
WBC 98.73 83 98.2 0.75 99.06 99.01 99.04±0.21 98.31±0.31 97.4±0.12 99.16±0.21
wine 99.62 99.75 76.6 50 86.72 71.01 79.23±3.7 98.5±0.19 97.98±0.44 97.21±1.16

HeartDisease 60.53 50.05 74.7 14.78 69.46 58.81 62.22±1.24 61.77±1.01 57.02±0.84 67.08±3.76
pendigits 70.87 47.94 92.8 76.67 90.48 90.9 94.41±1.1 86.96±1.13 69.57±3 91.59±1.84

Lymphography 99.65 97.65 99.8 8.1 99.65 99.53 99.91±0.08 99.54±0.15 98.17±0.66 99.74±0.29
Hepatitis 66.88 62.57 77.7 69.8 80.37 78.65 69.41±1.89 73.08±2.56 72.24±1.78 69.69±3.39

Waveform 73.7 73.41 70 61.03 73.43 72.03 70.79±1.86 75.2±1.56 74.95±0.8 80.74±4.8
wbc 95 92.97 95.8 1.56 96.36 90.01 93.7±0.81 95.06±0.5 94.41±0.5 95.9±0.85

WDBC 99.41 98.15 93.1 50 97.09 91.74 93.53±0.91 96.77±0.22 95.77±0.15 97.39±0.47
WPBC 51.54 51.85 54.5 44.86 52.33 48.01 49±1.52 50.89±0.52 49.94±0.92 57.76±1.34

satimage-2 92.96 53.25 97.2 50 97.45 97.32 99.36±0.1 98.45±0.1 90.04±3.19 99.51±0.1
satellite 67.01 53.95 76.6 50 63.35 74.63 70.75±1.67 69.87±0.44 61.46±0.52 74.43±4.66

KDDCup99 43.9 62.54 98.4 91.33 99.19 99.24 98.91±0.08 99.03±0.05 93.73±1.46 98.94±0.13
SpamBase 48.64 45.13 63.7 30.43 67.71 64.45 62.1±1.96 61.16±0.85 55.97±0.96 68.4±0.98
optdigits 43.57 58.79 87 53.6 68.24 61.53 70.97±4.69 68.5±1.23 60.65±1.87 76.15±5.54

mnist 79.41 64.49 68.7 91.09 77.39 83.81 79.8±1.8 80.26±0.61 72.15±0.61 86.3±2.04
musk 30.38 41.24 99.8 1.1 94.63 95.5 99.97±0.05 91.71±0.81 67.39±9.94 98.18±0.69

Arrhythmia 74.33 72.59 74.8 66.83 75.76 77.37 75.05±1.3 75.22±0.28 73.29±0.33 73.98±0.54
speech 49.29 50.87 47.6 50.57 49.11 48.9 48.12±1.53 49.3±0.58 50.15±0.21 62.02±1.78

InternetAds 71.27 65.54 68.3 38.35 67.64 67.67 68.81±2 74.62±0.83 71.92±2.13 68.71±0.75

AUC avg 71.59 64.45 81.0 43.24 80.47 78.23 79.6±1.3 80.0±0.7 74.6±1.5 83.0±1.8

Table 3: Results in F1-score (%) of all 9 compared classical detectors (average of 20 independent
trials).

Dataset kNN LOF HBOS OC-SVM COPOD ECOD IForest SUOD LSCP nod

pima 44.8 34.11 50.75 0 48.88 37.31 51.38±1.27 47.82±1.42 44.13±1.19 48.99±1.81
breastw 87.88 13.84 93.5 0 94.56 92.89 92.33±0.63 78.01±3.1 51.26±3.35 94.46±0.9
WBC 70.59 0 70 0 80 80 70±3.16 63.61±6.7 59.85±2.35 75.5±4.97
wine 77.78 66.67 0 0 40 20 14.5±6.69 70.49±1.53 68.76±7.2 67±11

HeartDisease 44.34 45.3 70 15.83 60.83 52.5 51.5±1.25 51.68±1.6 45.75±0.94 59.29±3.59
pendigits 7.25 6.36 32.05 16.03 26.28 25 32.76±3.79 10.7±1.18 15.4±3.3 20.06±7.69

Lymphography 83.33 72.73 83.33 0 83.33 83.33 90±8.16 84.23±2.69 69.46±6.08 85±10.41
Hepatitis 0 17.39 30.77 30.77 46.15 38.46 19.23±3.85 22.01±5.32 21.23±4.53 22.69±7.08

Waveform 19.65 12.09 7 6 4 8 7.1±1.48 6.12±1.3 16.94±1.08 12.5±4.79
wbc 45 43.24 61.9 0 71.43 42.86 53.57±5.4 56.24±5.01 57.53±3.48 65±4.83

WDBC 80 84.21 40 0 80 50 64±4.9 79.43±1.36 62.67±4.39 63.5±4.77
WPBC 13.64 19.15 19.15 14.89 21.28 14.89 14.79±1.84 15.53±2.11 15.67±1.75 30.32±2

satimage-2 40 4.92 64.79 0 74.65 63.38 87.75±2.14 31.99±3.03 36.52±4 89.15±1.42
satellite 49.46 36.22 56.83 0 48.04 55.16 57.59±1.49 56.24±0.64 44.55±0.7 49.7±7.64

KDDCup99 7.74 0 39.02 53.66 45.93 45.53 40.92±1.35 37.29±6.96 30.7±6.67 37.36±1.5
SpamBase 40.04 34.26 51.53 23.94 56.46 54.14 50.21±2 50.41±0.81 43.76±1.28 57.33±0.99
optdigits 3.76 11.43 18.67 10.92 1.33 1.33 2.53±1.19 7.06±0.96 9.49±0.39 5.7±1.67

mnist 37.6 22.63 17.14 56.71 23.57 34.86 29.84±2.17 31.49±1.14 27.77±0.63 39.79±5.29
musk 1.4 3.73 90.72 0 36.08 40.21 96.8±3.86 14.15±3.35 15.02±8.43 65.15±7.09

Arrhythmia 64.82 62.69 64.56 57.28 64.56 66.5 64.95±1.61 66.4±1.04 63.64±0.64 64.49±0.82
speech 1.79 2.38 3.28 3.28 3.28 3.28 3.36±1.68 2.6±0.82 4.07±0.81 1.89±1.4

InternetAds 32.56 39.07 46.47 9.51 44.57 44.57 43.24±2.82 50.67±1.45 48.45±2.28 46.37±1.28

F1 avg 38.79 28.75 45.97 13.58 47.96 43.37 47.2±2.85 42.46±2.43 38.75±2.97 50.06±4.22
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DNN-based methods: AE, VAE, D SVDD, DROCC, GOAD, N AD, SO-GAAL, LUNAR, DAGMM
and flows ood are in a similar situation. In particular, LUNAR relies on the kNN method, SO-GAAL
has no clear criteria for the distance between positive and negative samples and VAE is based on the
assumption that the inliers can be decoded from the encoding space better than the outliers. Moreover,
D SVDD, DROCC, GOAD, N AD, and LUNAR need to use pure normal samples for training,
contrary to the unsupervised setting. Therefore, we use the original datasets containing both inliers
and outliers rather than only containing inliers to train these models. The following experimental
results (Sec. D) show that training data mixed with some noise samples hurt their model performance.
Except for REPEN, REPEN uses representation learning techniques to map high-dimensional data
into low-dimensional embeddings and can be complementary to NOD. One of our future directions is
to integrate representation learning techniques into NOD. With the loose assumption, NOD has a
rather stable performance and achieves excellent ROC AUC on almost all the tested datasets. It is
worth noting that NOD has 9 average ROC AUC scores above 0.95 on 22 datasets and NOD performs
best among DNN methods with large margins. The results verify the effectiveness and robustness of
NOD.

D PERFORMANCE ON DIFFERENT TRAINING SETTINGS

Following the papers of DROCC, GOAD, N AD and LUNAR, these approaches need pure normal
samples (inliers) to train the model. Since we focus on the unsupervised domain, these models are
trained using original data (including outliers) as training data. Table 6 shows comparative results
using the original paper setting and unsupervised setting. The results show that GOAD, N AD and
LUNAR are interfered by the noise in the training data. On the contrary, DROCC generally performs
better in the unsupervised setting. This is because DROCC can be extended to solve One-class
Classification with Limited Negatives. For both versions, their results are inferior to NOD.
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Table 6: Results in ROC AUC (%) using different training settings (average of 20 independent trials).
(S) means using the original settings of the paper and (U) denotes the unsupervised setting.

Dataset DROCC(S) DROCC(U) GOAD(S) GOAD(U) N AD(S) N AD(U) LUNAR(S) LUNAR(U)

pima 49.6±12.3 48.2±30.2 41.5±3.1 45.0±2.6 60.7±1.3 49.9±1.4 52.1±0 50.5±0.1
breastw 53.4±34.7 46.8±31.9 67.9±16.7 77.2±3.0 96.2±1.0 70.4±2.0 39.3±0.1 49.4±0.1
WBC 54.2±33.6 53.8±31.8 24.9±16.2 5.7±3.2 81.5±4.6 85.8±2.3 35.3±0.8 47.1±0.3
wine 65.5±32.8 47.9±31.6 39.0±18.1 71.6±20.3 95.4±1.9 79.3±4.6 42.8±1.3 30.0±0.6

HeartDisease 46.7±20.0 38.6±26.8 43.7±11.1 47.9±3.2 69.1±4.9 46.2±2.4 50.1±0.3 47.9±0.2
pendigits 16.7±13 44.7±30.4 24.8±13.8 20.1±12.6 98.5±0.8 78.6±4.9 51.2±0 56.4±0.1

Lymphography 48.8±28.6 56.4±31.2 98.2±3.6 21.4±13.7 90.0±4.9 83.0±9.3 47.8±1.4 25.3±1.4
Hepatitis 55.2±18.4 39.7±25.8 59.8±10.2 39.2±5.6 63.3±7.9 39.2±11.9 55.5±7.1 46.5±5.0

Waveform 49.2±7.4 53.8±35.6 44.0±2.9 44.2±2.2 80.1±1.3 76.1±2.1 48.0±0.2 49.5±0.1
wbc 47.3±30.1 45.6±31.0 49.5±14.9 15.0±3.4 92.7±2.0 85.7±2.6 96.1±0.1 42.6±0.3

WDBC 37.8±34.8 62.6±30.1 54.8±16.1 9.9±3.8 97.7±0.6 96.6±1.0 54.0±0.7 47.6±0.2
WPBC 58.0±8.7 54.2±36.6 50.3±4.2 51.1±2.5 49.0±7.1 43.9±3.3 49.2±0.4 47.8±0.2

satimage-2 33.4±7.8 58.6±30.6 98.8±0.6 87.8±8.2 99.8±0.1 97.2±0.7 99.9±0 55.4±0
satellite 44.0±1.8 50.4±33.6 70.8±1.2 48.2±2.9 81.1±0.4 70.2±2.2 50.0±0 50.9±0

KDDCup99 4.4±1.4 50.4±36.2 91.3±4.6 89.4±8.1 75.9±12.5 76.2±14.4 49.6±0 50.8±0
SpamBase 28.3±6.5 52.3±35.8 40.0±7.4 46.2±3.0 60.9±3.2 39.1±1.9 28.8±0.1 49.2±0
optdigits 74.3±13.0 56.8±29.1 73.5±15.1 58.3±13.2 82.8±4.6 55.0±4.4 99.5±0.1 48.6±0.2

mnist 24.1±6.1 56.2±33.0 56.5±7.0 45.0±7.9 97.8±0.2 88.4±1.3 92.4±0.3 49.2±0.1
musk 89.4±5.4 54.2±36.1 95.1±9.5 83.6±16.2 99.4±0.1 99.8±0.2 53.1±0.4 47.4±0.2

Arrhythmia 47.9±9.8 48.0±28.0 57.6±3.2 42.0±3.1 69.3±1.8 73.6±0.9 52.0±0.1 48.1±0.4
speech 58.8±5.5 58.2±32.3 51.7±4.3 51.9±3.7 47.9±2.6 50.0±1.6 49.7±0.2 56.8±0.3

InternetAds 13.6±0.5 49.0±36.4 52.4±5.2 43.0±2.2 75.7±1.0 67.2±2.8 40.8±0.1 51.3±0.1

AUC avg 45.5±15.1 51.2±32.0 58.5±8.6 47.4±6.6 80.2±2.9 70.5±3.6 56.2±0.6 47.7±0.5

E PERFORMANCE ON DIFFERENT NOISE

To verify the effectiveness of uniformly distributed negative sampling under the NOD framework,
we conduct experiments on two commonly used negative sampling methods in the field of outlier
detection, SUBSPACE (Goodge et al., 2021) and GAN-BASED (Liu et al., 2020). The SUBSPACE
method generates noise by adding Gaussian noise to the subset of feature dimensions of real data.
The GAN-BASED method uses GAN to generate noise close to the real data.

To generate uniform noise, we first use uniform probability distribution to generate random values
that we named Uniform Random (UR). However, the resulting two negative samples may be very
close, giving false signals and disturbing model learning. So we adopt the Fast Poisson Disk
(FPD) implementation (Bridson, 2007) to generate negative samples. FPD guarantees that the
distance between the two samples is at least user-supplied r. But it runs too slowly to generate
high-dimensional noise. Thus we only provide results on datasets where dim is below 10 using the
FPD method.

In Table 7, we observe that the UR method is more effective than the SUBSPACE and GAN-BASED
methods. In addition, the ROC AUC (AVG PART) shows no significant performance difference
between FPD and UR. Considering the running time in high dimensions, we choose UR as the
negative sampling method in NOD.We also incorporated Gaussian noise.NR0.5 means a Gaussian
distribution with a mean of 0.5 and a standard deviation of 0.5.NR0.1 means a Gaussian distribution
with a mean of 0.5 and a standard deviation of 0.1.The difference between their results is not
significant because a Gaussian distribution with a larger std approches Uniform noise.

F ANALYSIS OF DIFFERENT CLASSIFIERS

We evaluate the performance of different optimizers for the binary classification problem. In addition
to the SGD, the SVC with RBF kernel (SVC), Decision Tree (DT), and Random Forest (RF) are
tested. Fig. 2 shows the results of four different classifiers in the simulated 2-D OD problem. And the
ROC AUC performance of different classifiers is shown in Table 8.

Although most machine learning algorithms are designed with the so-call “smoothness prior”, i.e.,
the function learn should not vary very much within a small region (Goodfellow et al., 2016), their
actual performance in this binary classification task is quite different. As shown in Fig. 2, SVC RBF,
DT and RF try to separate different regions between positive samples and generated noise points with
rigid boundaries. However, the inliers may overlap or be close to the random noise points. Thus,
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Table 7: ROC AUC (%) performance under different noise.(”/” indicates that the method did not
obtain results within 2 hours)

Dataset SUBSPACE GAN FPD NR0.5 NR0.1 UR

pima 54.5 26.9 61.9 62.9 62.5 62.9
breastw 47.1 5.8 99.4 99.4 98.7 99.3
WBC 42.4 18.8 99.2 99.2 98.7 99.2
wine 44.3 10.8 / 93.8 94.4 97.2

HeartDisease 44.7 17.7 / 64.5 70.1 67.1
pendigits 56.9 79.2 / 91.8 83.3 91.6

Lymphography 56.2 48.4 / 99.8 99.3 99.8
Hepatitis 47.2 71.8 / 64.4 73.3 69.7

Waveform 51.6 57.3 / 80.8 79.6 80.7
wbc 50.1 1.5 / 95.2 95.6 95.9

WDBC 55.5 2.1 / 97.3 97.2 97.4
WPBC 50.4 44.4 / 57.9 57.0 57.8

satimage-2 48.3 73.1 / 99.0 99.4 99.5
satellite 48.7 72.3 / 78.9 68.6 74.4

KDDCup99 46.7 96.2 / 99.0 98.8 98.9
SpamBase 52.5 38 / 67.9 67.6 68.4
optdigits 50.4 51.8 / 76.0 78.5 76.2

mnist 45.8 82.2 / 86.7 83.6 86.3
musk 53.6 99.2 / 99.3 90.8 98.2

Arrhythmia 51.4 68.9 / 74.0 73.7 74
speech 49.4 49.2 / 60.8 58.7 62

InternetAds 51.8 40.6 / 68.7 68.6 68.7
lympho 52.6 81 / 97.7 96.2 97.3

arrhythmia 49.7 78.3 / 77.9 77.7 77.8
vowels 44 20.1 / 60.7 70.3 63.5
letter 50.7 45.8 / 59.7 58.8 58.9
cardio 58.1 70.9 / 80.4 74.3 77.8

mammography 43 36 84.9 84.8 74.6 81.7
shuttle 35.9 38.8 / 91.2 94.6 95.7
Stamps 48.8 67.7 91.3 90.6 84.6 88.6
Pima 46.5 29 62.8 63.7 60.9 63.4

AUC avg 49.3 49.2 / 82.6 81.7 83.0
AUC(PART) 47 30.7 83.3 83.4 81.6 82.5

Figure 2: Comparison of different classifiers.
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Table 8: ROC AUC (%) performance under different classifiers.

Dataset Linear SVC DT RF LGB SGD ADAM

pima 53.7 50.2 50.3 55.5 62.9 58.9
breastw 66.0 50.3 50.6 48.1 99.3 98.6
WBC 83.2 55.0 55.0 91.2 99.2 99.2
wine 81.0 49.8 49.6 67.6 97.2 93.7

HeartDisease 53.5 50.0 50.0 50.0 67.1 63.0
pendigits 63.5 50.3 50.0 59.8 91.6 87.0

Lymphography 98.1 50.0 50.0 98.9 99.7 99.9
Hepatitis 49.1 50.0 50.0 40.0 69.7 53.9

Waveform 75.1 50.2 50.3 59.7 80.7 82.1
wbc 64.2 52.2 52.2 83.8 95.9 84.6

WDBC 74.3 56.7 60.0 82.3 97.4 93.5
WPBC 48.6 50.2 49.5 52.2 57.8 55.3

satimage-2 96.0 50.9 50.6 96.6 99.5 99.7
satellite 59.2 50.0 50.0 52.2 74.4 48.4

KDDCup99 50.0 50.0 50.0 50.0 98.9 98.8
SpamBase 50.0 50.0 50.0 50.0 68.4 65.8
optdigits 50.0 50.0 50.0 50.0 76.2 70.5

mnist 50.0 50.0 50.0 50.0 86.3 88.1
musk 50.0 50.0 50.0 54.4 98.2 91.5

Arrhythmia 50.0 49.8 50.0 38.2 74.0 75.8
speech 49.9 49.9 50.0 49.1 62.0 60.8

InternetAds 50.0 49.9 50.0 51.5 68.7 57.8

AUC avg 62.1 50.7 50.8 60.5 83.0 78.5

these classifiers cannot produce a smooth distribution estimation with their hard separation methods.
SGD, in contrast, can generate smooth boundaries with different levels of abnormality. As seen in
NOD, the center of the cluster has a very low anomaly score, and we have high anomaly scores when
there are fewer inliers or outliers. In practice, there is often no clear boundary between outliers and
outliers. Therefore, our solution can provide more detailed information about the degree of sample
abnormality than solutions with only 0,1 labels.

G EXAMPLE OF MULTIPLE CLUSTERING CENTERS ON TWO-DIMENSIONAL
DATA

As shown in Fig.3, we constructed some two-dimensional composite datasets with multiple clustering
centers and visualized the distribution of NOD anomaly scores on each dataset. From Fig.3, it can be
seen that under the premise of complying with the basic assumption of NOD, NOD is effective on
datasets with multiple clustering centers.
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Figure 3: Example of multiple clustering centers on two-dimensional datasets.

H PERFORMANCE OF THE DIFFERENT EMBEDDING METHODS IN IMAGE
DATASETS

Table 9 shows the anomaly detection performance of NOD on anomaly detection datasets constructed
using different image embedding methods. From the experimental results in the table, it can be seen
that different embedding methods can seriously affect the performance of NOD. Different pre-training
models have different capabilities to capture intricate presentations or patterns. Resnet152 is much
stronger than resnet18. Therefore, Resnet152 embeds more information than resnet18. Thus, the
embeddings of outliers from resnet18, due to its lack of interacted patterns, are much more clustered
than the ones from resnet152. This might explain the huge performance difference between resnet18
and resnet152 while the small performance difference between resnet50 and resnet152. Therefore,
extending NOD to end-to-end anomaly detection solutions is a direction that needs to be explored in
the future.

Table 9: ROC AUC(%) performance of the different embedding methods on Image datasets.

Dataset resnet18 resnet50 resnet152
airplane 68.22±0.79 91.34±0.18 95.31±0.07

automobile 42.75±0.91 95.94±0.05 96.62±0.08
bird 57.41±0.57 85.56±0.02 87.95±0.21
cat 46.83±1.00 88.87±0.02 90.01±0.13

deer 74.21±0.35 92.91±0.03 95.62±0.09
dog 41.20±1.02 88.95±0.32 92.28±0.26
frog 63.97±0.92 95.42±0.10 96.50±0.06

horse 53.54±0.59 91.14±0.25 95.19±0.11
ship 65.02±0.70 96.20±0.07 97.00±0.10
truck 57.83±0.91 96.89±0.10 97.66±0.01

AUC avg 57.10±0.78 92.23±0.11 94.41±0.11

I PERFORMANCE COMPARISON BETWEEN NOD AND SOME DENSITY-BASED
METHODS

NOD is suitable for density-based scenarios. Here, some classical density-based methods are involved
in comparisons including LOF(Breunig et al., 2000), CBLOF(He et al., 2003), COF(Tang et al.,
2002) and LOCI(Papadimitriou et al., 2003). Compared to these methods, NOD still has a significant
performance lead.
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Table 10: ROC AUC(%) performance comparison between NOD and some density-based methods.
(”/” indicates that the method did not obtain results within 2 hours, OOM denotes the out-of-memory
error with 512G memory)

Dataset LOF CBLOF COF LOCI NOD
pima 53.84 60.52 51.86 44.45 62.9

breastw 38.32 96.27 33.22 17.03 99.29
WBC 83 98.73 73.94 86.2 99.16
wine 99.75 99.92 97.9 65.46 97.21

HeartDisease 50.05 57.92 52.7 35.35 67.08
pendigits 47.94 92.2 52.37 / 91.59

Lymphography 97.65 99.88 99.41 83.92 99.74
Hepatitis 62.57 63.61 51.09 39.27 69.69

Waveform 73.41 74.97 70.03 / 80.74
wbc 92.97 94 87.13 / 95.9

WDBC 98.15 98.18 99.1 78.99 97.39
WPBC 51.85 46.78 47.43 43.61 57.76

satimage-2 53.25 99.86 55.83 / 99.51
satellite 53.95 73.2 53.55 / 74.43

KDDCup99 62.54 OOM 60.86 / 98.94
SpamBase 45.13 55.08 43.49 / 68.4
optdigits 58.79 88.28 57.29 / 76.15

mnist 64.49 80.43 62 / 86.3
musk 41.24 100 40.7 / 98.18

Arrhythmia 72.59 73.45 71.91 64.95 73.98
speech 50.87 47.28 52.98 / 62.02

InternetAds 65.54 71.42 67.86 / 68.71

AUC avg 64.45 79.62 62.85 55.92 82.96

J PARAMETER SENSITIVITY ANALYSIS

This section examines the effects of various settings in NOD, including the ratios of negative samples,
hidden layer dimensions, number of layers, and the usage of early stopping. Fig. 4(a) shows relative
ROC AUC change rates (Y-axis) with different ratios of negative samples (e.g., 0.1 ∗ |X|). X-axis
values denote the dataset index ordered as Table 1. |X| is normalized to 1 for the 22 datasets. Dots
above 1 mean improved performance, while those below 1 indicate underperformance. We observe
that the performance generally deteriorates when there are too many/small negative samples (e.g., the
brown dots). Fig. 4(b) shows the effect of varying the hidden layer dimension. NOD is insensitive
to changes in the hidden layer dimension. Fig. 4(c) shows the impacts of the number of layers
with average ROC AUC and standard deviations across 20 runs. The results indicate that a model
with two layers outperforms a single-layer model. However, as the number of layers increases, the
model’s fitting ability increases while the risk of overfitting also rises. Fig. 4(d) shows the comparison
with(out) the proposed early stop. For most datasets, the early stop can effectively reduce the impact
of overfitting and achieve better performance.

(a) Ratio of Neg (b) Dimension of Layers (c) Num. of Layers (d) Early stop or not

Figure 4: Performance under different settings. Shaded areas indicate standard deviations. X axis of
(a) and (d) is the number of datasets with the same order as Table 2

.
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