
Supplementary Material
PINK NOISE IS ALL YOU NEED

A COLORED NOISE AND ORNSTEIN-UHLENBECK NOISE

Colored noise has an interesting property that was not mentioned in the main text: integrating a
colored noise signal with parameter β again yields a colored noise signal, only with parameter
β + 2. This stems from the property of the Fourier transform that an integration in the time domain
corresponds to a multiplication with (i2πf)−1 in the frequency domain. Let v(t) be the original
colored noise signal with |v̂(f)|2 ∝ f−β . Then the PSD of x(t) =

∫ t

0
v(τ) dτ is

|x̂(f)|2 =

∣∣∣∣F[∫ t

0

v(τ) dτ

]
(f)

∣∣∣∣2 =

∣∣∣∣ 1

i2πf
v̂(f)

∣∣∣∣2 ∝ f−2|v̂(f)|2 ∝ f−(β+2). (1)

From this, and the definition of white noise as colored noise with β = 0, it follows that Brownian
motion (integrated white noise) is also colored noise with parameter β = 2. In Figure A.1, sampled
signals of most of the noise types we use in this paper are shown, and in Figure A.2, we plot the
power spectral densities of some of these.

−2

0

2

ε t

White noise (β = 0) β = 0.5 Pink noise (β = 1)

0 250 500 750 1000
t

−2

0

2

ε t

β = 1.5

0 250 500 750 1000
t

Red nosie (β = 2)

0 250 500 750 1000
t

OU noise (θ = 0.15)

Figure A.1: Sampled signals from various action noise processes with noise scale σ = 1. The
exception is OU noise, whose noise scale is adjusted such that var[εt] = 1 (see discussion below).

We generate colored noise using the procedure described by Timmer & Koenig (1995), based
on the Fast Fourier Transform (FFT) (Cooley & Tukey, 1965). This method is very efficient, as
it only requires sampling a Gaussian signal in the frequency space (where the PSD is shaped),
and then transforming it to the time domain via the FFT. In particular, this procedure is faster
than sampling an Ornstein-Uhlenbeck signal (using the most common procedure, which we
describe below). We use the colorednoise Python package (https://github.com/
felixpatzelt/colorednoise) to sample colored noise signals, and always sample signals
of the complete episode length (which we denote by ε1:T ∼ CNT (β)). The Python implementation
contained a bug, which among other things made it so the generated “white noise” was correlated, and
our fix of this bug is included as of version 2.1.0 of the package. Colored noise sampled according to
this procedure is stationary and Gaussian: the signals are marginally identical to standard Gaussian
distributions, i.e. p(εt) = N (εt | 0, 1). The only difference to white noise (independent Gaussian
samples at every time step) is that they are temporally correlated: p(εt, εt′) 6= p(εt)p(εt′). This is
shown empirically on the example of pink noise in Figure A.3.

1

https://github.com/felixpatzelt/colorednoise
https://github.com/felixpatzelt/colorednoise

10−2 10−1 100

f

10−2

100

102

104

Po
w

er
Sp

ec
tr

al
D

en
si

ty

Colored Noise

White noise (β = 0)
Pink noise (β = 1)
Red noise (β = 2)

True f−β

10−2 10−1 100

f

Brownian Motion, OU Noise, Red Noise

Integrated WN
OU noise (θ = 0.15)
Red noise (β = 2)

True f−2

Figure A.2: Left: The power law trends can be seen in the PSDs of sampled colored noise signals.
Right: Brownian motion, here generated by integrating white noise sampled from N (0, 1), is
compared to two related stationary noises: Ornstein-Uhlenbeck noise (θ = 0.15), and red noise. The
similarity between OU and red noise is visible. All signals are of length T = 1000.

A.1 ORNSTEIN-UHLENBECK NOISE GENERATION AND VARIANCE CORRECTION

Also included in Figure A.3 is Ornstein-Uhlenbeck (OU) noise. It can be seen that OU noise starts
out as non-stationary but quickly converges to the same marginal distribution p(εt) = N (εt | 0, 1)
as the other noise types. Important to note is that all these noise types are suitable for use as action
noise only because they are (or quickly become) stationary, and hence their variance does not grow
without bounds (contrary to that of Brownian motion). The property that all noise types have the same
marginal distribution shows that our results are only due to a change in the temporal correlation of
the action noise, not in the scale or shape of the distribution, as this is the same as of regular Gaussian
white noise. To make sure that OU noise converges to a standard Gaussian marginal distribution we
cannot use a noise scale of σ = 1, but have to correct it. Ornstein-Uhlenbeck noise can be defined by
the stochastic differential equation

dxt = −θxt dt+ σ dwt , (2)

0 250 500 750 1000
t

−3

−2

−1

0

1

2

3

ε t

White noise (εt ∼ N (0, 1))

0 250 500 750 1000
t

Pink noise (ε1:T ∼ CNT (1))

0 250 500 750 1000
t

OU noise (ε1:T ∼ OUT)

0

0.2

0.4

0.6

0.8

D
en

si
ty

Figure A.3: The colored noise we use as action noise has the same marginal distribution as indepen-
dent Gaussian samples. We sampled 3×105 action noise signals of length T = 1000 from each of the
following random processes: independent Gaussian samples (white noise, left), pink noise (center),
Ornstein-Uhlenbeck noise (right). At every time step t we show a histogram density estimate over
action noise values εt. This shows that our results are only due to the increased temporal correlation
of the action noise signals, as the marginal distributions remain unchanged from white noise.

2

where wt is a Wiener process (integrated white noise with the property that w(t)−w(t′) ∼ N (0, t−t′)
for any 0 ≤ t′ < t). This definition of Ornstein-Uhlenbeck noise is equivalent to the Langevin
equation (3) in the main text, but is nicer to work with, as the white noise process ηt is ill-defined as
the derivative of the Wiener process. We sample OU noise signals by discretizing the equation above:

x[t+∆t] = x[t]− θx[t]∆t+ σ
√
∆tε, (3)

where ε ∼ N (0, 1). Denoting xt := x[t∆t] (with x−1 = 0) and εt ∼ N (0, 1) for all t ∈ N0, it can
be seen that

x0 = σ
√
∆tε0

x1 = x0 − θx0∆t+ σ
√
∆tε1

= σ
√
∆t(1− θ∆t)ε0 + σ

√
∆tε1

x2 = σ
√
∆t(1− θ∆t)2ε0 + σ

√
∆t(1− θ∆t)ε1 + σ

√
∆tε2

...
xt = σ

√
∆t

t∑
τ=0

(1− θ∆t)t−τετ .

Thus, as a sum of zero-mean Gaussian distributions, the marginal distribution is:

p(xt) = σ
√
∆tN

(
0,

t∑
τ=0

((1− θ∆t)t−τ)2

)

= N

(
0, σ2∆t

t∑
τ=0

(1− θ∆t)2τ

)
.

The variance of this distribution is a geometric series which converges as t→∞ if (1− θ∆t)2 < 1,
which holds if 0 < θ∆t < 2. It is interesting to note that if θ∆t = 1, then Eq. (3) yields white noise,
as it reduces to xt = σ

√
∆tε. On the other hand, if θ∆t = 0, the equation describes integrated white

noise (Brownian motion), which is known to have unbounded variance. If 1 < θ∆t < 2, then the
signal exhibits negative temporal correlation, which follows from Eq. (3). If the geometric series
converges, then the limiting variance is given by

σ2∆t

1− (1− θ∆t)2
.

We can thus ensure a standard Gaussian marginal distribution (in the limit) by setting the noise scale
to a “corrected” value of

σ =

√
1− (1− θ∆t)2

∆t
, (4)

which is how we set the OU noise scale throughout the paper to make the comparison with white and
colored noise fair. In Figure A.3, it can be seen that this limiting marginal distribution is reached
fairly quickly. In Section B, we also report Ornstein-Uhlenbeck results with the more common choice
of σ = 1, which we find to generally perform slightly worse (cf. Figure B.1).

If the variance is corrected, then θ∆t is the only parameter of OU noise, such that e.g. (θ = 0.3,∆t =
1) is equivalent to (θ = 30,∆t = 0.01). This immediately follows by plugging Eq. (4) into Eq. (3),
yielding

xt+1 = (1− θ∆t)xt +
√
1− (1− θ∆t)2εt,

which only contains the product θ∆t as a parameter. In this paper we thus set ∆t = 0.01 without
loss of generality. In the main text we also only consider OU noise as a replacement for strongly
correlated Brownian motion and always set θ = 0.15, as this is the most common default setting used
in practice.1 However, as noted in the discussion above, Ornstein-Uhlenbeck noise can also exhibit
intermediate temporal correlation between white noise and Brownian motion, by setting 0 < θ < 100
(i.e. 0 < θ∆t < 1). This raises the question of whether there is a certain parameterization of OU
noise which is as general as pink noise.

1We chose these values for ∆t and θ because these are the default choices the RL libraries we consider
(Raffin et al., 2021; Pardo, 2020). Lillicrap et al. (2016) also recommend θ = 0.15. If the variance is not
corrected (we report these experiments in Section B), then the choice of ∆t does make a difference.

3

10−3 10−1

f

10−3

10−1

101

103

Power Spectral Density

Pink

104 105 106

Area

2

4

6

8
Bounded Integrator (H/nats)

Pink

10−3 10−2 10−1

Resonant frequency f

10−3

10−2

10−1

Oscillator (E/ harmf)

Pink

10−2

10−1

100

101

102

θ

Figure A.4: Left: Power spectral densities of OU noise. OU noise interpolates between white noise
and Brownian motion by changing the cutoff frequency of a low-pass filter which filters white noise.
Center: Entropy achieved by OU noise of different θ on the bounded integrator environment. No
θ achieves a higher worst-case entropy than pink noise. Right: Energy achieved by OU noise of
different θ on the harmonic oscillator environment. No θ achieves a worst-case energy that comes
close to the one of pink noise.

A.2 GENERALITY OF ORNSTEIN-UHLENBECK NOISE

The way in which OU noise interpolates between white noise and Brownian motion by choosing
θ ∈ (0, 100) is very different to colored noise with β ∈ (0, 2). We have shown (e.g. in Figure A.2)
that colored noise with intermediate temporal correlation has a power-law power spectral density
with intermediate exponent (or slope in the log-log plot). On the other hand, Ornstein-Uhlenbeck
noise can be interpreted as a “leaky integration” of white noise, i.e. white noise passed through a
low-pass filter. How “leaky” this integrator is, is controlled by the parameter θ: if θ = 0 then the
integrator is ideal, resulting in integrated white noise (Brownian motion with diverging variance). If
θ = 100 (with ∆t = 0.01), then the integrator is “completely leaky” (an all-pass filter) and the white
noise passes through without being integrated. In terms of the power spectral density this change
in θ corresponds to shifting the cutoff frequency of the low-pass filter. This is shown on the left in
Figure A.4 for θ ∈ {0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100}.
For an action noise type to be general (cf. Section 6), we want it to work well on all environments.
In the power spectral density plots, it can already be seen that pink noise distributes power over the
frequencies much more “generally” than Ornstein-Uhlenbeck noise of any θ: At any given frequency
f , pink noise exhibits higher power than most values of θ, and all values of θ have lower power than
pink noise at most frequencies. Why this makes pink noise a more general action noise can be made
more concrete by revisiting the bounded integrator and harmonic oscillator environments introduced
in Section 6. The generality of a noise measures how robust it is to the choice or parameterization of
the environment: The most general noise type is the one which performs best on the most adversarial
environment parameterization. Thus, the most general θ for an environment parameterized by a
parameter α solves the following optimization problem:

max
θ

min
α

perf(α, θ),

where the performance metric perf(α, θ) should be normalized appropriately such that the maximum
performance attainable for different values of α is identical. This can be ensured by simply dividing
by the performance attained by the best θ for each value of α:

max
θ

min
α,θ′

perf(α, θ)

perf(α, θ′)︸ ︷︷ ︸
generality(θ)

. (5)

This gives the worst-case performance of the most general noise in terms of the best possible
performance achievable by changing the noise type on this worst-case environment. By replacing the
expression perf(α, θ) by perf(α, pink) and removing the maximization over θ, we can also calculate
the generality of pink noise.

4

As discussed in Section 6, the performance of a noise type on the bounded integrator and oscillator
environments is given by the achieved entropy and energy, respectively. This is shown for all
values θ (as well as for pink noise) in Figure A.4, where the parameterization parameter α is the
environment size for the bounded integrator and the resonant frequency for the harmonic oscillator.
It can already be seen that on both environments, for each choice of θ there exists a parameter α
where the performance of θ is worse than the worst-case performance of pink noise. This can be
quantified by calculating the generality of each θ and pink noise on these environments according to
Eq. (5). On the bounded integrator, the maximum generality of OU noise is 77%, and on the oscillator
environment the maximum generality is 9.1%. On both environments, the maximum is attained by
θ = 3. Pink noise achieves generalities of 79% and 22% on the bounded integrator and oscillator
environments, respectively. This gives further evidence that pink noise is good default.

B ADDITIONAL RESULTS

B.1 TD3

In addition to MPO and SAC, we also performed all experiments from the main text on TD3. MPO
and SAC parameterize a stochastic policy, meaning they learn the action noise scale as a function
σ(s) of the state. TD3, on the other hand, uses a deterministic policy, and the action noise is added
independently of the state. Usually, the noise scale σ is kept fixed over the course of training, and this
how we handle it in our experiments as well. However, σ is an important hyperparameter, and there
is no single value that works well on all environments. Thus, we repeat our experiments with all of
the values σ ∈ {0.05, 0.1, 0.3, 0.5, 1}, and 10 different random seeds.

In Figure B.1, the results of the TD3 experiments with constant noise type are shown in the form of
bootstrap distributions for the expected average performance, and compared to the same experiments
on MPO and SAC, as well as to a Figure 3-like plot where the influence of the agent has been
normalized out. As we have an additional hyperparameter (σ), we first average the TD3 performance
over all σ values, before computing the average performance across tasks. The beneficial effect of

−1.5

−1.0

−0.5

0.0

0.5

1.0

A
ve

ra
ge

Pe
rf

or
m

an
ce

MPO + SAC + TD3 MPO

WN 0.1 0.2 0.35 0.5 0.75 1.0 1.5 2.0 OU

β

−1.5

−1.0

−0.5

0.0

0.5

1.0

A
ve

ra
ge

Pe
rf

or
m

an
ce

SAC

WN 0.1 0.2 0.35 0.5 0.75 1.0 1.5 2.0 OU

β

TD3

Figure B.1: All three algorithms (MPO, SAC, TD3) show a clear preference for pink action noise
as measured by the average performance over the environments of Figure 2. The results of the OU
experiments with the uncorrected noise scale of σ = 1 are marked with a dotted median.

5

−4 −2 0 2 4
Average Performance

MPO

SAC

TD3
Figure B.2: Average performances
across environments are combined
from all β values (incl. WN). It can
be seen that TD3 is consistently out-
performed by both MPO and SAC.
A closer look at the mean perfor-
mance over all β values on each
individual environment reveals that
TD3 is outperformed on all environ-
ments by both MPO and SAC.

pink noise can be clearly seen on TD3 as well. In this figure we also show the results of Ornstein-
Uhlenbeck noise with a noise scale of σ = 1 rather than the corrected noise scale of Eq. (4).
Incidentally, these results also confirm Fujimoto et al. (2018)’s finding that, on TD3, white noise and
OU noise (with θ = 0.15) perform similarly.

The reason why we did not include TD3 into the analysis of the main text, is that we found TD3
to be consistently outperformed by both MPO and SAC. In Figure B.2, the average performances
across environments are combined from all β values (incl. white noise), and shown for MPO, SAC
and TD3. It can be seen that TD3 generally performs much worse than MPO and SAC. Looking at
the mean performance over all β values on each individual environment, TD3 is outperformed on all
environments by both MPO and SAC. We thus decided to exclude TD3 from our main analysis.

B.2 MPO & SAC

In the majority of this work, we measure performance in terms of the mean evaluation return over a
training process. We use this method, because it implicitly measures both the final policy performance,
and the sample efficiency (how quickly does the algorithm reach high performance). Most of the data
we present is additionally normalized, which is necessary to aggregate performances over different
environments, and thus it is often not very clear how exactly to interpret the results (other than
recognizing statistical significance). In this section, we want to present some of our results in more
familiar terms, namely learning curves and final policy performance.

To validate the approach of using the (mean) performance instead of the performance of the final
policy, we have reproduced the results in Figure 3 using the final policy performance (mean evaluation
return in the last 5% of the training process), shown in Figure B.3. In Figure B.4, we show learning
curves of white noise, pink noise, and OU noise on all environments for MPO and SAC. Both
visualizations confirm our takeaway that pink noise is a better default action noise than white noise or
OU noise. More detailed results can be found in Section G.

The bootstrap distributions for the expected average performance (such as in Figures 3, 4, B.1, and
B.3) are constructed by randomly choosing one seed for each environment, yielding one scalar

WN 0.1 0.2 0.35 0.5 0.75 1.0 1.5 2.0 OU

β

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

A
ve

ra
ge

Fi
na

lP
er

fo
rm

an
ce Figure B.3: The average final per-

formance is like the average per-
formance (see Section 4), but only
uses the evaluation returns of the
last 5% of training, thereby measur-
ing the quality of the final learned
policy. This figure shows the same
analysis on MPO and SAC as Fig-
ure 3, and demonstrates that pink
noise is preferable also in terms of
final policy performance.

6

0

200

400

600

800

R
et

ur
n

MPO SAC

0

250

500

750

1000
MPO SAC

WN
OU
OU (σ = 1)
Pink

0

200

400

600

800

R
et

ur
n

MPO SAC

0

250

500

750

1000
MPO SAC

−50

0

50

100

R
et

ur
n

MPO SAC

0

50

100

150

MPO SAC

0

200

400

600

R
et

ur
n

MPO SAC

0

250

500

750

1000
MPO SAC

0.0 0.5 1.0
Interactions×106

0

200

400

600

R
et

ur
n

MPO

0.0 0.5 1.0
Interactions×106

SAC

0.0 0.5 1.0
Interactions×106

0

1000

2000

3000

MPO

0.0 0.5 1.0
Interactions×106

SAC

Pendulum Cartpole (b.)

Cartpole (s.) Ball-In-Cup

MountainCar Hopper

Walker Reacher

Cheetah Door

Figure B.4: Learning curves (median and interquartile range of evaluation returns) of the two baseline
action noise types white noise (WN) and Ornstein-Uhlenbeck (OU) noise, as well as our suggestion
of pink noise. It can be seen that pink noise, while not being better than both on all environments, is
the best default choice. It is never outperformed by both white noise and OU noise, and routinely
outperforms white noise (e.g. MountainCar), OU noise (e.g. Door), or both (e.g. Hopper).

(normalized) performance per environment, assuming all other variables like algorithm and noise type
are fixed. Averaging these normalized performances (the reason that performances are normalized
on each environment is so that this averaging is reasonable) gives an estimate for the average
performance across environments of the given variables (e.g. noise type and algorithm). As there are
S different random seeds (typically S = 20), we can repeat this procedure S times (with resampling)
and take the mean of all S average performance estimates, giving us an estimate for the expected
average performance of the given variables. Doing this N times (we use N = 105), the N estimates
for the expected average performance can be collected into a bootstrap distribution, as shown in these
figures.

7

C ENVIRONMENTS & ALGORITHMS

We evaluate our method on 10 different tasks (see Figure 2). Most of these are from the DeepMind
Control Suite (DMC, Tassa et al., 2018), but we also use OpenAI Gym (Brockman et al., 2016)
and the Adroit hand suite (Rajeswaran et al., 2018). The respective sources and exact IDs of all
environments are compiled in Table C.1.

Environment Source ID

Pendulum DMC pendulum (swingup)
Cartpole (b.) DMC cartpole (balance_sparse)
Cartpole (s.) DMC cartpole (swingup_sparse)
Ball-In-Cup DMC ball_in_cup (catch)
MountainCar Gym MountainCarContinuous-v0
Hopper DMC hopper (hop)
Walker DMC walker (run)
Reacher DMC reacher (hard)
Cheetah DMC cheetah (run)
Door Adroit door-v0

Table C.1: Environments used in this work (see also Figure 2).

For our experiments, we relied on the TD3 and SAC implementations in Stable-Baselines3 (Raffin
et al., 2021), as well as the MPO implementation in the Tonic RL library (Pardo, 2020). We only
used the default hyperparameters of these algorithms, as provided by the libraries. Our own code
for using colored noise with these libraries is made available online at https://github.com/
martius-lab/pink-noise-rl.

D BANDIT METHOD DETAILS

Algorithm D.1: Thompson Sampling
Input: Arms B = (β1, . . . , βK),

Reward distributions std σ
Initialize m ∈ RK ,Σ ∈ SK+
for i ∈ N do

Sample q ∼ N (m,Σ)
ai ← argmaxk∈{1,...,K} qk
τi ← Run rollout with βai

ri ← score of rollout τi
Do Bayesian update of m,Σ using
{aj , rj}ij=1, σ

end

To use a bandit algorithm to select the action noise
color β for a rollout, it is necessary to define the
bandit reward, which should score a rollout in terms
of the β that was chosen. In our case, we use the
rollout return (sum of rewards) as the score, as ex-
plained in Section 5.2. Additionally, we have to se-
lect a list of colors (“bandit arms”) to search over:
B = (β1, β2, . . . , βK) (with βk ∈ [0, 2],∀k in our
case). If we assume that the bandit rewards (= roll-
out scores) are Gaussian distributed with a known
standard deviation σ, we can use Bayesian inference
to estimate the means (µ ∈ RK) of the reward dis-
tributions. A simple bandit algorithm we can use in
this context is Thompson sampling, shown in Algo-
rithm D.1 (SK+ denotes the set of positive semi-definite K ×K matrices). The relationships between
the random variables are shown in the Bayesian network in Figure D.1a.

There is a second strong assumption in the Thompson sampling algorithm shown in Algorithm D.1
(similarly for other algorithms like UCB): it assumes that the reward distributions are stationary, i.e.
that they don’t change over time. This is not the case in the context of reinforcement learning: if
the rollout score ri is defined as the return, then, if the reinforcement learning algorithm works, it
should naturally be the case that the policy improves over time, and thus, on average, ri > rj for
i� j. This setting of non-stationary bandit distributions can be addressed by using a sliding-window
approach (e.g. Garivier & Moulines, 2008): instead of updating the belief parameters m,Σ with
respect to the whole history of observations, only keep a window of the last N rollouts.

There remains one other problem: how do we choose the prior parameters m and Σ and the variance
σ2 of the reward distributions? For Σ, the easiest solution is to assume independent arms, i.e. make

8

https://github.com/martius-lab/pink-noise-rl
https://github.com/martius-lab/pink-noise-rl

ai

µaiµ ri

m,Σ

N

σ

N

i ∈ N

(a)

ai

µai

ri

µ r̃i

m,Σ

N

σ

N
c

b

i = 1, . . . , N

(b)

Figure D.1: (a) A Bayesian bandit with Gaussian reward distributions. The rewards from arm k are
sampled from N (µk, σ). Thompson sampling (Alg. D.1) can infer µ while trading off exploration
and exploitation. (b) By introducing the constants b and c, the algorithm can be made scale invariant
by performing Thompson sampling with respect to the normalized reward r̃i = (ri − b)/c.

Σ diagonal. This is not necessarily the most efficient solution, as one can imagine that two similar β
values will also perform similarly in their rollouts.2 For m, the non-stationarity becomes a problem:
again assuming we use the rollout return as a score, these scores will probably be much lower
at the beginning of training than at the end. Additionally, we might not even know the scale of
returns in a task. To account for this, it would be necessary to make the prior variances Σkk very
large/uninformed. Similarly, σ needs to be large, to account for the unknown scale of the bandit
reward spread. However, this would mean that many more samples (rollouts) are necessary to tighten
the belief distributions. This is a problem, especially because we only have a small set of N rollouts
when using the sliding-window method.

The ideal would be a bandit method which is invariant with respect to affine transformations of the
rewards, in the sense that it would make no difference if all rewards r were transformed to be br + c
for some constants b > 0 and c ∈ R for all arms. In Figure D.1b, this situation is shown in a Bayesian
network. Here, the generative process is almost the same as before (see Figure D.1a), except that
the reward r̃i is scaled and translated by ri = br̃i + c before observation. If, as shown, the constants
b and c are independent of the chosen arm and stay constant within the window, it is possible to
optimize them via maximum marginal likelihood, given the window of past observations of ri.

The bandit inference task is to infer the distributional means µ = (µ1, . . . , µk) from the actions
(color indices) a = (ai)

N
i=1 and rewards (rollout scores) r = (ri)

N
i=1. We set the prior means of

the belief distributions to 0 (m = 0), because we want the normalized reward distributions to be
centered around 0. For now, we don’t fix Σ, but let it be any positive semi-definite K ×K matrix.
The generative model for r is defined via the following prior and likelihood function:

p(µ | Σ) = N (µ | 0,Σ) (6)

p(r | µ,a, b, c, σ) =
∏
i

N (ri | bµai
+ c, (bσ)2) (7)

These lead us to the following evidence/marginal likelihood function:

p(r | a, b, c, σ,Σ) =
∏
i

p(ri | ai, b, c, σ,Σ) (8)

=
∏
i

∫
p(ri | µ, ai, b, c, σ) p(µ | Σ)dµ (9)

=
∏
i

∫
N (ri | be>ai

µ+ c, (bσ)2)N (µ | 0,Σ)dµ (10)

=
∏
i

N (ri | be>ai
0+ c, (bσ)2 + be>ai

Σbeai
) (11)

2We also tried a different approach by using a modified RBF kernel matrix to account for covariance between
the arms, but the results were essentially the same as with independent arms.

9

=
∏
i

N (ri | c, b2(σ2 +Σaiai
)), (12)

where we used canonical basis vectors to represent µai = e>ai
µ. For maximization, it is convenient

to work with the log-evidence:

log p(r | a, b, c, σ,Σ) = log
∏
i

N (ri | c, b2(σ2 +Σaiai
)) (13)

=
∑
i

−1

2
log
(
2πb2(σ2 +Σaiai

)
)
− (c− ri)

2

2b2(σ2 +Σaiai
)

(14)

=: L(b, c) (15)

We can now maximize the evidence by setting the partial derivatives to 0:

∂cL(b, c) ∝
∑
i

(c− ri) = 0 (16)

∂bL(b, c) =
∑
i

−1
b

+
(c− ri)

2

b3(σ2 +Σaiai
)
= 0 (17)

Solving these equations gives us

c =
1

N

∑
i

ri (18)

b2 =
1

N

∑
i

(c− ri)
2

σ2 +Σaiai

. (19)

Using these values, we can “reconstruct” the unscaled/normalized reward

r̃i =
ri − c

b
(20)

and perform Thompson sampling with respect to r̃i. This normalized Thompson sampling algorithm,
including the sliding window modification, is presented in Algorithm D.2.

Algorithm D.2: Normalized TS
Input: Arms B = (β1, . . . , βK),

Window size N
Initialize
m← 0 ∈ RK ,Σ ∈ SK+ , σ ← 1

for l ∈ N do
i← l mod N
M ← min{l, N}
Sample q ∼ N (m,Σ)
ai ← argmaxk∈{1,...,K} qk
τi ← Run rollout with βai

ri ← score of rollout τi
c← 1

M

∑M
j=1 rj

b←
√

1
M

∑M
j=1

(c−rj)2

σ2+Σajaj

r̃i ← ri−c
b

Do Bayesian update of m,Σ using
{aj , r̃j}Mj=1, σ

end

Next, we want to show that this method is indeed in-
variant to affine transformations of the bandit reward.
Proposition 1. The posterior distribution over µ in
the normalized bandit algorithm (Alg. D.2) is iden-
tical for the observations r = (r1, . . . , rN) and
r′ = b′r + c′, for all b′ > 0 and c′ ∈ R. In other
words, the algorithm is invariant to a scaling and
translation of the rewards.

Proof. In this setting, the observed rewards ri are
normalized to

r̃i =
ri − c(r)

b(r)
(21)

with

c(r) =
1

N

N∑
i=1

ri (22)

b(r) =

√√√√ 1

N

N∑
i=1

(c(r)− ri)2

σ2 +Σaiai

. (23)

To prove the invariance of the algorithm, we will simply show that this normalized reward is the same
for both sets of observations, i.e. that r̃ = r̃′. Then, clearly, the posteriors p(µ | r̃) and p(µ | r̃′)
will also be the same. Expanding r̃′, we get:

10

r̃′ =
r′ − c(r′)

b(r′)
(24)

=
b′r + c′ − c(b′r + c′)

b(b′r + c′)
(25)

=
b′r + c′ − 1

N

∑N
i=1(b

′ri + c′)√√√√ 1

N

N∑
i=1

(1
N

∑N
j=1(b

′rj + c′)− (b′ri + c′))2

σ2 +Σaiai

(26)

=
b′r + c′ − b′ 1

N

∑N
i=1 ri − c′√√√√ 1

N

N∑
i=1

(b′ 1
N

∑N
j=1 rj + c′ − b′ri − c′)2

σ2 +Σaiai

(27)

=
b′(r − c(r))√√√√ 1

N

N∑
i=1

b′
2
(c(r)− ri)

2

σ2 +Σaiai

(28)

=
r − c(r)

b(r)
(29)

= r̃ (30)

Thus, we can conclude that the reward normalization indeed guarantees invariance to affine reward
transformations in algorithms such as Thompson sampling.

With this reward normalization, the prior parameters m (of m = m1) and s (of Σ = s2I) become
redundant. We have already set m = 0, and we now also set the prior variances Σkk to 1. This en-
courages the algorithm to keep the normalized mean estimates µk approximately N (0, 1)-distributed.
The “likelihood” parameter σ remains to be tuned, but it is now not necessary to account for the
large uncertainty in the reward scale, as σ is only concerned with the normalized reward. In our
experiments we always set σ = 1.

D.1 BANDIT VS. RANDOM

Environment Bandit 6= Random p

Pendulum 7 0.98
Cartpole (b.) 7 0.09
Cartpole (s.) 7 0.67
Ball-In-Cup 7 0.87
MountainCar 7 0.54
Hopper 7 0.09
Walker 7 0.15
Reacher 7 0.70
Cheetah 7 0.20
Door 7 0.59

Table D.1: Bandit vs. Random (Welch t-test)

Although we found the normalized
bandit algorithm (Alg. D.2) to work
well on simple non-stationary tasks,
in the RL setting (for choosing β)
the performance was just as that of
a random β selection for every roll-
out. In Table D.1, we list the results
of a Welch t-test, testing for inequal-
ity of the performance distributions
achieved by the bandit algorithm and
random β selection on every environ-
ment. It can be seen that the two meth-
ods are statistically indistinguishable.
This shows that the bandit method
does not work as intended, as “ran-
dom arm selection” should be an easy
baseline to outperform. The reason for this is probably due to the rollout return not being informative
enough as a bandit reward signal.

11

E SOLVING MOUNTAINCAR BY FFT

MountainCar is a very simple environment. Although its dynamics are almost those of a harmonic
oscillator, there is a difference to the oscillator environment from Section 6: MountainCar’s oscillation
dynamics are non-linear. At the bottom of MountainCar’s valley (see Figure 2), the small-angle
approximation of a non-linear oscillator may be used, but for the motion to go up to the top, the
behavior is different from simple harmonic motion. Nevertheless, we can use this insight to develop a
very simple open-loop control algorithm to solve this environment, by running one rollout without
applying any action (just letting the mountain make the car go back and forth a bit), then analyzing
the resulting trajectory and inferring the hill’s (small-angle) resonant frequency (via the Fast Fourier
Transform algorithm). Finally, we can control the car by simply swinging it back and forth at the
resonant frequency. This algorithm, which works very well on this task, is shown below.

1 import gym
2 import numpy as np
3 from scipy.fft import rfft
4

5 # Initialize environment
6 env = gym.make('MountainCarContinuous-v0')
7 T = env._max_episode_steps
8

9 # Run a single rollout with no force. Save x-coordinate to `x`.
10 obs = env.reset()
11 x = [obs[0]]
12 for t in range(T):
13 obs, *_ = env.step([0])
14 x.append(obs[0])
15

16 # Find resonant frequency = highest peak of FFT (excluding DC)
17 f = (np.argmax(abs(rfft(x))[1:]) + 1) / (T + 1)
18

19 # Action plan (harmonic excitation)
20 a = np.sin(2*np.pi*f * np.arange(T))
21

22 # Test on 1000 rollouts
23 N = 1000
24 solved = 0
25 for i in range(N):
26 env.reset()
27 for t in range(T):
28 _, r, _, _ = env.step([a[t]])
29 if r > 0:
30 solved += 1
31 break
32

33 print(f"Solved: {solved/N * 100:.0f}%.") # prints "Solved: 100%."

F OSCILLATOR ENVIRONMENT

The oscillator environment, which we make available online as a gym environment (<anonymous>),
models the 1-dimensional motion of a particle of mass m, attached to the origin by an ideal spring of
stiffness k, damped with friction coefficient b, and driven by a force (the action) F . This motion is
described by the ordinary differential equation

mẍ = F − bẋ− kx, (31)

where x is the particle’s position. In our experiments we set the friction coefficient b to zero, i.e.
the system is undamped. This setup is then called a simple harmonic oscillator. The energy of the
oscillator is the sum of kinetic and potential energy:

E =
1

2
mẋ2 +

1

2
kx2. (32)

12

<anonymous>

The resonant frequency is:

f =
1

2π

√
k

m
. (33)

As we want to configure the oscillator to have a given resonant frequency f , we need to find m and k
accordingly. To get a unique solution, we impose a second constraint: the energy at x = 1 and ẋ = 0
should be E = 2π2. If we now solve the two equations (32) and (33) for m and k, imposing the
constraint on E, we get the solution

k = 4π2 (34)

m =
1

f2
(35)

to set the resonant frequency. In Figure F.1, a few pure-noise trajectories (akin to Figure 1) are shown
on the oscillator environment.

−2.5 0.0 2.5

−0.04

−0.02

0.00

0.02

0.04

f
=

2
×

10
−

3

ẋ

White noise

−2.5 0.0 2.5

Pink noise

−2.5 0.0 2.5

OU noise

0 5
−0.6

−0.4

−0.2

0.0

0.2

0.4

f
=

2
×

10
−

2

ẋ

0 5 0 5

−10 0 10
x

−15

−10

−5

0

5

10

15

f
=

2
×

10
−

1

ẋ

−10 0 10
x

−10 0 10
x

Figure F.1: Trajectories on the oscillator environment. For each of the 3 resonance frequencies
f ∈ {0.002, 0.02, 0.2}, we sample 5 action noise signals of length 10

f of white noise, pink noise and
OU noise. We can see what was already shown in Figure 5: pink noise is much less sensitive to the
parameterization than white noise and OU noise, and always manages to excite the oscillator up to a
certain amplitude. White noise and OU noise only work well in the high- and low-frequency regime,
respectively.

13

G DETAILED RESULTS

Environment Agent Performance WN OU Pink Oracle Anti-Oracle Gain

Pendulum MPO Mean 247 651 558 670 239 430
Final Policy 311 702 574

SAC Mean 158 283 294 361 158 202
Final Policy 224 350 446

Cartpole (b.) MPO Mean 928 940 967 967 928 39
Final Policy 999 1000 1000

SAC Mean 939 890 941 950 890 59
Final Policy 960 908 958

Cartpole (s.) MPO Mean 535 499 666 666 489 177
Final Policy 703 784 788

SAC Mean 226 459 532 533 159 374
Final Policy 377 608 730

Ball-In-Cup MPO Mean 926 909 948 948 909 39
Final Policy 974 973 978

SAC Mean 930 901 933 941 901 39
Final Policy 976 975 979

MountainCar MPO Mean 13 52 91 92 13 78
Final Policy 13 56 92

SAC Mean 0 89 93 93 0 93
Final Policy 0 90 94

Hopper MPO Mean 14 34 69 69 14 54
Final Policy 25 62 108

SAC Mean 43 53 77 80 43 36
Final Policy 89 94 119

Walker MPO Mean 384 284 363 390 284 106
Final Policy 530 377 448

SAC Mean 437 363 471 472 363 108
Final Policy 593 506 602

Reacher MPO Mean 864 600 871 888 581 306
Final Policy 956 856 966

SAC Mean 776 653 745 776 653 122
Final Policy 955 914 940

Cheetah MPO Mean 481 440 543 543 440 103
Final Policy 666 612 678

SAC Mean 469 439 483 502 439 63
Final Policy 631 577 640

Door MPO Mean 1830 1376 2207 2207 1376 830
Final Policy 2586 2492 2909

SAC Mean 1332 546 1183 1332 546 785
Final Policy 2192 1535 2195

Table G.1: Comparison of final policy performance (see Section B.2) and mean performance over the
training process (Section 4) on all environments. Results are averaged across seeds, and shown for
white noise (WN), Ornstein-Uhlenbeck noise (OU), and pink noise (Pink) as action noise on MPO
and SAC. Additionally, the Oracle and Anti-Oracle performances are shown. The gain between these
(rightmost column) represents the difference achievable by changing the noise type, and is the basis
for the “performance gain” measure used in Section 4.2.

14

REFERENCES

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.org/
abs/1606.01540. 8

James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of Computation, 19:297–301, 1965. 1

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, volume 80 of Proceedings of Machine Learning Research, pp. 1582–1591. PMLR, 2018.
URL http://proceedings.mlr.press/v80/fujimoto18a.html. 6

Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for non-stationary bandit
problems. arXiv: 0805.3415, 2008. URL https://arxiv.org/abs/0805.3415. 8

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In
Yoshua Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1509.02971. 3

Fabio Pardo. Tonic: A deep reinforcement learning library for fast prototyping and benchmarking.
CoRR, abs/2011.07537, 2020. URL https://arxiv.org/abs/2011.07537. 3, 8

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. J. Mach. Learn.
Res., 22:268:1–268:8, 2021. URL http://jmlr.org/papers/v22/20-1364.html. 3,
8

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. In Hadas Kress-Gazit, Siddhartha S. Srinivasa, Tom Howard,
and Nikolay Atanasov (eds.), Robotics: Science and Systems XIV, Carnegie Mellon University,
Pittsburgh, Pennsylvania, USA, June 26-30, 2018, 2018. doi: 10.15607/RSS.2018.XIV.049. URL
http://www.roboticsproceedings.org/rss14/p49.html. 8

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A. Riedmiller.
Deepmind control suite. CoRR, abs/1801.00690, 2018. URL http://arxiv.org/abs/
1801.00690. 8

Jens Timmer and Michel Koenig. On generating power law noise. Astronomy and Astrophysics, 300:
707, 1995. 1

15

http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://proceedings.mlr.press/v80/fujimoto18a.html
https://arxiv.org/abs/0805.3415
http://arxiv.org/abs/1509.02971
https://arxiv.org/abs/2011.07537
http://jmlr.org/papers/v22/20-1364.html
http://www.roboticsproceedings.org/rss14/p49.html
http://arxiv.org/abs/1801.00690
http://arxiv.org/abs/1801.00690

	Colored Noise and Ornstein-Uhlenbeck Noise
	Ornstein-Uhlenbeck noise generation and variance correction
	Generality of Ornstein-Uhlenbeck noise

	Additional results
	TD3
	MPO & SAC

	Environments & Algorithms
	Bandit method details
	Bandit vs. Random

	Solving MountainCar by FFT
	Oscillator Environment
	Detailed Results

