
Published as a conference paper at ICLR 2025

M3PC: TEST-TIME MODEL PREDICTIVE CONTROL
FOR PRETRAINED MASKED TRAJECTORY MODEL

Kehan Wen1†, Yutong Hu1,2†, Yao Mu3∗, Lei Ke4∗
1ETH Zurich, 2KU Leuven, 3Hong Kong University, 4Carnegie Mellon University

ABSTRACT

Recent work in Offline Reinforcement Learning (RL) has shown that a unified
Transformer trained under a masked auto-encoding objective can effectively cap-
ture the relationships between different modalities (e.g., states, actions, rewards)
within given trajectory datasets. However, this information has not been fully
exploited during the inference phase, where the agent needs to generate an op-
timal policy instead of just reconstructing masked components from unmasked
ones. Given that a pretrained trajectory model can act as both a Policy Model
and a World Model with appropriate mask patterns, we propose using Model Pre-
dictive Control (MPC) at test time to leverage the model’s own predictive capa-
bility to guide its action selection. Empirical results on D4RL and RoboMimic
show that our inference-phase MPC significantly improves the decision-making
performance of a pretrained trajectory model without any additional parame-
ter training. Furthermore, our framework can be adapted to Offline to Online
(O2O) RL and Goal Reaching RL, resulting in more substantial performance
gains when an additional online interaction budget is provided, and better gen-
eralization capabilities when different task targets are specified. Code is available:
https://github.com/wkh923/m3pc.

1 INTRODUCTION

The Masked Modeling paradigm has a simple, self-supervised training objective: predicting a ran-
domly masked subset of the original sequence. It has become a powerful technique for generation
or representation learning for sequential data, e.g., language tokens (Devlin et al., 2018) or image
patches (He et al., 2022). Unlike autoregressive models like GPT (Brown et al., 2020), which con-
dition only on the past context in the “left”, bidirectional models trained with this objective learn to
model the context from both sides, leading to richer representations and deeper understandings of
the data’s underlying dependencies.

Given that a sequential decision-making trajectory inherently involves a sequence of states s and
actions a, and other optional augmented properties like return-to-go (RTG) g (Chen et al., 2021)
or approximate state-action value v (Yamagata et al., 2023) across T timesteps, the mask modeling
paradigm can be adapted easily for sequential decision-making tasks. For example, in the case of
Reinforcement Learning, the policy output P(a|s) at each time step can be regarded as predicting
a masked action a conditioned on given states s. Moreover, recent works (Carroll et al., 2022; Liu
et al., 2022; Wu et al., 2023) have demonstrated that a unified bidirectional trajectory model (BTM)
pretrained with a highly random masking pattern can be applied zero-shot in various downstream
tasks. Different reconstruction tasks can be deliberately created by applying appropriate masks to
different modalities- whether states, actions, or rewards- during inference time.

However, the inherent flexibility and versatility of models trained with random masking techniques
have not been fully exploited in deployment settings. Previous research has highlighted the mul-
titasking capabilities of Bidirectional Trajectory Models (BTMs) by assigning one single specific
mask pattern to individual tasks, such as the RCBC mask commonly used in offline RL after the
pretraining phase. Our findings, in contrast, suggest that integrating multiple capabilities such as
short-term reward and long-term return prediction, along with forward dynamics, could significantly

†Equal contribution. *Corresponding authors. This work was done at ETH Zurich.

1

https://github.com/wkh923/m3pc

Published as a conference paper at ICLR 2025

improvements
Online Finetuning
Offline RL
Behavior Cloning

+23%
+12%

BC DT[2]ODT[9] BTM M3PC(Ours)
30

60

90 offline dataset:
walk

zero-shot:
split

(a) (b) (c)

+6%

Existing DT / BTM M3PC (Ours)

past future

Figure 1: Benefits of equipping pretrained bidirectional trajectory model with our test-time
M3PC. (a) Instead of generating actions solely based on history context, we leverage the full ca-
pacity of the masked pretrained model to predict future outcomes (e.g. states, rewards, returns) as a
test-time self-enhanced decision making approach. Such a MPC framework can be used to achieve
higher return at inference time or to reach a given goal state (in dashed square block) even unseen
during offline training. (b) Forward M3PC achieves better offline learning performances, using the
same model without any finetuning, and gains better O2O improvement when online finetuning is
allowed after offline pretrain. (c) Backward M3PC unlocks zero shot goal reaching capability. Given
a desired state, the walker agent can split its legs to a large degree without any prior experience.

enhance decision-making. These capabilities allow the agent to explicitly evaluate action candidates
and determine the optimal one, rather than merely relying on implicit mappings from expected re-
turns to policies.

Building on these insights, we introduce the M3PC framework: Enhancing Decision-Making by
using the Masked Model itself for test-time Model Predictive Control. Our framework decomposes
decision-making tasks into a series of simpler steps in a typical sample-based MPC style: sam-
pling potential actions, inferring possible future states, evaluating these actions based on predicted
outcomes, and selecting the final optimal action. We then demonstrate how a pretrained model,
equipped with our adaptation and ensemble of masks, can efficiently and effectively handle these
subtasks. Our empirical results demonstrate that, by using M3PC for final decision-making, the same
pretrained model can get substantial decision quality improvement in offline RL and goal-reaching
RL, outperforming traditional single-mask models. Furthermore, M3PC supports sample-efficient
online finetuning — a capability rarely seen in previous sequential modeling agents. By fully lever-
aging the potential of a pretrained BTM, M3PC evolves the model from a multitasking framework
into an inference phase self-enhancing, and a finetuning phase self-improving generalist agent. We
summarize our results in Figure 1 and highlight our contributions as:

• We present M3PC, a novel framework that utilizes mask ensembles to address complex decision-
making tasks, effectively leveraging the multitasking abilities of a pretrained bidirectional tra-
jectory model (BTM).

• We demonstrate that M3PC not only improves the test-time performance of the same pretrained
BTM in offline RL by 6.0%, but also enables efficient finetuning through online interactions
with environments, outperforming specialized offline-to-online (O2O) RL algorithms, such as
ODT, by 26.0%.

• We show that M3PC can be adapted for goal-reaching tasks, effectively guiding agents to spec-
ified goal states—even when these states are out-of-distribution relative to the datasets used for
pretraining.

2 RELATED WORK

Transformers for Sequential Decision Making. The Transformer (Vaswani et al., 2017) architec-
ture has been extensively applied in sequential decision-making tasks such as reinforcement learning
(RL) (Chen et al., 2021; Janner et al., 2021; Wang et al., 2022) and imitation learning (IL) (Reed
et al., 2022; Shafiullah et al., 2022; Brohan et al., 2022; Baker et al., 2022; Jia et al., 2023). Repre-
sentative work such as Decision Transformer (DT) (Chen et al., 2021) and its variants (Zheng et al.,
2022; Yamagata et al., 2023) learn a return-conditioned policy using a causal-masked Transformer.
Recent studies (Carroll et al., 2022; Liu et al., 2022; Wu et al., 2023) utilize a bidirectional Trans-
former to model trajectories, highlighting the model’s versatility enhanced by the mask prediction
training objective. These studies focus on the potential of trajectory Transformers to unify various
decision-making tasks, typically employing a unique mask pattern tailored to each specific down-

2

Published as a conference paper at ICLR 2025

stream task. Building upon these insights, our work proposes harnessing the functional versatility of
pretrained models to enhance decision-making. More specifically, we investigate whether utilizing
two or more mask patterns can lead to improved decision-making within a single downstream task.

Offline RL with Online Finetuning. Traditional off-policy RL algorithms often suffer from boot-
strapping error accumulation (Fujimoto et al., 2019; Nair et al., 2020). To mitigate these issues,
most offline RL algorithms employ regularization techniques to mitigate errors caused by out-of-
distribution actions (Fujimoto et al., 2019; Nair et al., 2020; Kumar et al., 2020; Kostrikov et al.,
2021; An et al., 2021; Kumar et al., 2019). However, finetuning an offline RL algorithm can be chal-
lenging due to its inherent conservatism and the offline-to-online data distribution shift (Nair et al.,
2020; Yu & Zhang, 2023). Many techniques such as value calibration (Nakamoto et al., 2024), bal-
anced replay (Lee et al., 2022) and policy expansion (Zhang et al., 2023) have been investigated to
improve the online sample efficiency. In parallel, some work (Chen et al., 2021; Zheng et al., 2022)
following supervised learning (SL) paradigm can naturally ensure in-distribution learning but also
suffer from poor online sample efficiency (Brandfonbrener et al., 2022). Our approach adheres to
the SL paradigm while incorporating DP-based module to improve online sample efficiency.

Model-based RL. Learning a dynamics model of the environment can be used for policy learn-
ing (Pong et al., 2018; Ha & Schmidhuber, 2018; Hafner et al., 2019) or planning (Silver et al.,
2008; Walsh et al., 2010; Zhang et al., 2019; Yu et al., 2020). Recent work has explored the feasi-
bility of MPC in online RL (Chua et al., 2018; Janner et al., 2019; Wu et al., 2022; Lowrey et al.,
2018; Hatch & Boots, 2021; Hansen et al., 2022) Similar planning methods have also been tailored
for offline RL using techniques such as behavior cloning regularization (Argenson & Dulac-Arnold,
2020) and trajectory pruning (Zhan et al., 2021; Wang et al., 2023). Instead of maintaining sep-
arate world and policy models, Trajectory Transformer (TT) (Janner et al., 2021) frames RL as a
sequential modeling problem and performs beam search planning based on return heuristics. Our
work follows a similar paradigm but leverages a bidirectional Transformer and mask autoencoding
to enable a more flexible and computationally efficient planning process.

3 PRELIMINARY

We consider the environment as a Markov Decision Process (MDP), formally defined by the tuple
M = ⟨S,A, P,R, γ, ρ0⟩. In this notation, S represents the state space, and A represents the action
space. The transition probability distribution, P (st+1 | st, at), defines the likelihood of transitioning
from state st to state st+1 given action at. The reward function, R(st, at), assigns a reward for each
action taken in a particular state. The discount factor, denoted by γ, quantifies the preference for
immediate rewards over future rewards. The maximum episode length, also referred to as the horizon
of the MDP, is denoted as H .

Additional notations are introduced to adapt RL to sequential modeling. We denote the train-
ing data distribution as T , which may be dynamic when the agent interacts with the environ-
ment. A trajectory τ , consisting of T states, actions, RTGs and rewards is represented as τ =
(s1, g1, a1, r1, · · · , sT , gT , aT , rT). Note that some other properties can also be directly or indirectly
accessed from the training data such as next-states (s′1, · · · , s′T), estimated values (v1, · · · , vT) for
state-action pairs, but we do not model these modalities on the Transformer.

4 METHOD

This section details how we leverage a bidirectional trajectory model’s versatile prediction capabili-
ties within the M3PC framework to enhance an agent’s decision-making. In a typical MPC process,
the system repeatedly solves an optimization problem to identify the best sequence of actions over
a finite horizon by evaluating the outcomes of these actions and then executing the action at the
current timestep. The following subsections describe our approach to adapting a BTM to perform
these MPC steps: First, we enable the BTM to reconstruct actions with uncertainty, allowing us
to sample from a distribution of action proposals. Next, we demonstrate how to use different mask-
ing patterns for forward or backward prediction for MDP sequence elements. These predictions
serve as references for evaluating the expected outcomes of action proposals, which we use to de-
termine the optimal action to execute. As illustrated in Figure 3, by breaking down decision-making
into these structured steps and using the BTM for versatile predictions, our M3PC framework en-

3

Published as a conference paper at ICLR 2025

...

...

...

...

...

...

...

...

Bidirectional Transformer

tokenize+ flatten

timestep embeding

modality embeding

untokenize
trajectory output

trajectory input

R₀ s₀ a₀

r₀

ER

E₀

R3 s3

R3 s3 a3r3

…

…

… …

… …

ES Ea ER ES

E₀E₀ E3E3

R₀ s₀ a₀ RT sT aTrT

+ + + + +

+ + + + +

...

...

...

...

...

...

...

...

...

...

...

...

[RP]

[ID]

[RCBC]

training-time mask pattern model I/O structure test-time capabilities

...

...

...

...

[FD]
E Embeding

Masked Token

Figure 2: Model overview. The bidirectional trajectory model is pre-trained using MAE loss that
aims to reconstruct the whole MDP trajectory taken a [Random] masked trajectory. After pre-
training, the model show multiple capabilities by applying different test-time masks. E.g., Return-
Conditioned Behaviour Clone [RCBC] Mask: Predict actions given states, expected return and
context trajectory. Reward and Return Prediction [RP] Mask: Predict intermediate rewards and
future return given states and actions. Forward Dynamics [FD] Mask: Predict future states given
current state and future actions. Inverse Dynamics [ID] Mask: Infer actions needed taken to per-
form a given state path. As a pretrained masked transformer can always reconstruct the full trajec-
tory, for those MDP-elements that are not related to the given task, e.g., the rewards during [RCBC],
we omit and mark them as gray.

hances the agent’s ability beyond simply imitating behaviors observed in offline data, e.g., achieving
higher reward incomes or diverse goals which typically fall in offline RL and goal reaching domains,
respectively.

Bidirectional Trajectory Model. We illustrate the model architecture and how it process a masked
MDP trajectory as Figure 2. To perform masked trajectory modeling, we first flatten and tokenize
the different elements of the raw trajectory sequence. This tokenization involves three components:
a modality-specific encoder that lifts elements from the raw modality space to a common represen-
tation space, along with the addition of timestep embeddings and modality-type embeddings. These
components collectively enable the Transformer to distinguish between different sequence elements.

We employ an encoder-decoder architecture with both the encoder and decoder being bidirectional
Transformers. The tokenized and flattened trajectory is fed into the Transformer encoder, where only
unmasked tokens are processed. The decoder then processes the full trajectory sequence, leveraging
values from the encoder when available or substituting a mask token when not. The decoder is
trained to reconstruct the original sequence, including the unmasked tokens.

Training-phase Mask Pattern. Inspired by previous work (Wu et al., 2023; Zeng et al., 2024), we
employ a two-step masking pattern for training. Firstly, we randomly mask a proportion of elements
in the trajectory τ . Secondly, we mask all elements to the right of a randomly chosen position. By
learning to predict the mask elements, the model is trained to handle temporal dependencies and
infer outcomes based solely on past events.

Uncertainty-Aware Action Reconstruction. To equip the agent with robust decision-making capa-
bilities beyond mere imitation, our method employs uncertainty-aware action reconstruction rather
than predicting the masked action deterministically. The primary focus of MAE lies in perfectly
reconstructing each token of the sequence, typically by optimizing a Mean Squared Error (MSE)
loss. This inherently leads to deterministic action reconstruction, which limits the agent’s ability to
account for uncertainties associated with the actions.

To address this limitation, we propose reconstructing an uncertainty-aware action distribution A by
minimizing a Negative Log Likelihood (NLL) loss J(θ) denoted by

J(θ) =
1

T
Eτ∼T

[
T∑
t=1

− logPθ(at|Masked(τ))

]
. (1)

Inspired by ODT (Zheng et al., 2022), we additionally impose a lower bound on trajectory-level
action entropy HT

θ to encourage the agent’s online exploratory behavior. The overall constraint
problem is formally defined as

4

Published as a conference paper at ICLR 2025

~

$

$
$

$

$

$

(a) (b)

…

predict
future s,r,g given a

predict s...T-1 given sT

execute at

evaluate TD(λ) utility

combine short & long-term reward

sample

future a with
uncertainty

Figure 3: Leverage the Masked Model itself for test-time Model Predictive Control. Our
pipeline utilizes BTM’s versatile inference capabilities to enhance decision making. (a) Forward
M3PC. We employ [RCBC], [FD] and [RP] masks to build an MPC pipeline for planning, predic-
tion, and action resample. (b) Backward M3PC. Given a goal state that we finally want to reach,
we first use Path Inference [PI] mask to infer the waypoint-states, followed by a Inverse Dynamic
[ID] mask to get the action sequence conditioned on those waypoints, and finally execute the first
one.

min
θ
J(θ) subject toHT

θ ≥ β, HT
θ =

1

T
Eτ∼T

[
T∑
t=1

H [Pθ(at|Masked(τ))]

]
, (2)

where H [·] denotes the Shannon entropy of the distribution, β represents the predefined target en-
tropy. To avoid explicitly handling the inequality constraint, we solve the Lagrangian dual problem
of Equation 2. Implementation details are provided in Appendix A.

Forward M3PC for Reward Maximization. A bidirectional trajectory model agent has demon-
strated zero-shot ability in offline RL tasks when equipped with an [RCBC] mask as shown in
previous work (Carroll et al., 2022; Wu et al., 2023). By predicting actions conditioned on states
and RTGs, the agent generates actions by imitating trajectories with similar RTGs in offline data.
The performance of this imitative behavior is inherently upper-bounded by the best trajectory in the
offline data.

To address this limitation, we propose refining the decision-making process by implementing an
explicit reward-maximization procedure using the forward dynamics function and the return and re-
ward prediction functions provided by the unified trajectory model. Typically, this process divides
decision-making into three substeps: generating action proposals, rolling out the future, and select-
ing action proposals based on their potential utilities. Suppose we have access to both intermediate
and long-term reward estimation for candidate action sequence at:T , represented by rt:T and gt:T ,
respectively. We define the TD(λ)-style utility U for this candidate action as follows

U = (1− λ)
T−t−1∑
n=0

λnGt:t+n + λT−tGt:T , where Gt:t+n =
n−1∑
k=0

γkrt+k + γngt+n, (3)

where the decay parameter λ determines the weights of longer horizon estimates that contribute to
the final result which can help trade off the errors from dynamics predictions and value estimates.
We construct a categorical distribution P using softmax for proposal selection:

P [i] =
exp(ξU i)∑
j exp(ξU

j)
, ∀i ∈ [1, · · · , N] , (4)

where ξ denote the softmax temperature. Notably, M3PC requires only two prediction steps for
planning at each timestep. Leveraging the bidirectional nature of Transformers and the masked au-
toencoding paradigm, M3PC can predict all future actions given current states and all future states
given future actions in parallel. This parallel prediction capability mitigates the computational cost’s
linear growth with respect to the planning horizon which is commonly observed in planning algo-
rithms such as beam search in TT (Janner et al., 2021) or CEM in TD-MPC (Hansen et al., 2022).
We detail the decision-making process for reward-maximization in Algorithm 1. Since RTG value
is a trajectory-wise Monte Carlo estimation, it becomes uninformative when datasets’ behavior poli-
cies are diverse. We can optionally extend M3PC by replacing RTG guidance with a transition-wise
value for a better heuristic. In this case, we calculate this value with a standalone value estimator
updated in a dynamic programming way proposed in IQL (Kostrikov et al., 2021).

5

Published as a conference paper at ICLR 2025

Using the ‘Utility’ metric to estimate future actions before they were taken, forward M3PC can also
adapt to an exploration strategy in the subsequent online finetuning phase, where equation 3 are
used again. During the offline-to-online process, instead of executing the expectation in categorical
distribution equation 4, the M3PC agent samples actions from the candidate set according to the
possibilities proportional to their utility. This introduces stochasticity, maintaining overall superior
actions while ensuring diversity in the experience collected during exploration, thereby balancing
the exploration and exploitation.

Algorithm 1 Forward M3PC for Reward Maximization

1: Input: Current state st, past trajectory τ<t, discount factor γ, decay parameter λ, number of
candidates N , softmax temperature ξ

2: Initialize: Proposal action set A, Utilily set U
3: Output: Selected action a
4: A ← Initialize an empty list for candidate actions
5: αt:T ← Predict uncertainty-aware action distribution sequence using [RCBC] mask as Fig. 2
6: for i = 1 to N do
7: ait:T ← Sample a candidate action sequence from distribution αt:T
8: st+1:T ← Roll out the candidate sequence with [FD] mask as Fig. 2
9: rit:T , git:T ← Simulate intermediate rewards and long-term rewards using [RP] mask as Fig.

2
10: U i ← Calculate expected utility ▷ using Equation 3
11: Append ait, Ui to A,U , respectively.
12: end for
13: P ← Construct candidate selection distribution ▷ using Equation 4
14:
15: return a←

[
Ai|i ∼ P

]
if online, else a← Ei∼P

[
Ai

]
Backward M3PC for Goal Reaching. The ability of a BTM to infer past tokens conditioned on
future events sets it apart from GPT-based models. This feature is particularly advantageous for
implementing MPC from a reverse or ”backward” perspective when the objective is to achieve a
specified goal state. Unlike the goal-reaching mask proposed in previous works (Liu et al., 2022;
Carroll et al., 2022), which masks all elements along the trajectory except the current and final states
to reconstruct the action at the current timestep, we leverage the BTM’s bidirectional conditioning
capability to inpaint a transition path that guides action selection. We refer to this method as back-
ward M3PC.

Specifically, the backward M3PC approach uses a Path Inference (PI) mask (illustrated in Figure
3(b)) to guide the model in predicting a sequence of intermediate states leading to the goal. Once
a path is established, the model employs an Inverse Dynamics (ID) mask to deduce the necessary
actions to transition between consecutive states along the predicted path. This approach eliminates
the need to generate a large number of candidates and roll out each one, which inherently demands
significant computational resources. Instead, it implicitly performs the same function as traditional
MPC by selecting the first action in a sequence that most satisfies the given goal.

5 EXPERIMENTS

Our experiments aim to answer the following questions:

Q1: Can forward M3PC enable the (same) agent to achieve higher accumulated rewards in
offline RL and subsequent online finetuning?

Q2: Can backward M3PC enable the agent to perform diverse tasks given target states?
Q3: How does each algorithmic component contribute to M3PC?
Q4: Is the pretrained model capable enough to perform M3PC in more complex environments

that demand the knowledge of interaction with external objects, e.g. manipulation?

Tasks and Datasets. To answer these questions, we utilize D4RL and RoboMimic dataset suites.
We apply three D4RL locomotion domains (Hopper, Walker2d, HalfCheetah) with two

6

Published as a conference paper at ICLR 2025

dataset types for each task: medium(m) and medium-replay(m-r), used to benchmark our
proposed forward M3PC in offline RL and O2O settings. The RoboMimic encompasses three manip-
ulation tasks (Can, Lift, Square). We utilize three official datasets (can-pair, square-mh,
lift-mg) and two customized datasets (can-lim, can-real) to evaluate M3PC’s potential
real-world application, particularly in robotic manipulation tasks. Detailed descriptions of the tasks
and datasets are provided in Appendix D.

Table 1: Offline Results on D4RL. Comparison of the average normalized return against several
baseline methods without online finetuning. M3PC-M and M3PC-Q are shortened for our method
M3PC with (M)onte-carlo return estimation and (Q)-value estimation guidance heuristics, respec-
tively. We report the mean and standard deviation of 5 seeds. The best result for each dataset is
highlighted in bold. Note that M3PC-M shares the same weights as a pretrained BTM, but con-
stantly outperforms BTM in all tasks due to the test-time enhancement brought by M3PC.

Dataset BC TD3+BC IQL DT TT BTM M3PC-M M3PC-Q

hopper-m 53.5 60.4 63.8 65.1 61.1 64.3 70.7±6.2 73.6±5.6

walker2d-m 63.2 82.7 79.9 67.6 79.0 72.5 80.9±2.5 86.4±2.6

halfcheetah-m 42.4 48.1 47.4 42.2 46.9 43.0 43.9±3.9 51.2±0.7

hopper-m-r 29.8 64.4 92.1 81.8 91.5 75.3 80.4±5.2 78.3±16.2

walker2d-m-r 21.8 85.6 73.7 82.1 82.6 76.6 78.2±10.2 92.2±2.4

halfcheetah-m-r 35.7 44.8 44.1 48.3 41.9 41.1 41.8±0.5 48.2±0.4

Total 246.4 386.0 401.0 387.1 403.0 372.8 395.9 429.8

Q1: Offline RL. We present the offline results of M3PC with Monte Carlo return estimation guid-
ance (M3PC-M) and Q-value estimation guidance (M3PC-Q) in Table 1. To evaluate the offline
RL performance of our proposed method, we compare it against the following baselines: (1) BC:
behavior cloning, which directly mimics the behaviors in the offline dataset; (2) TD3+BC (Fujimoto
& Gu, 2021): an off-policy RL method incorporating a behavior cloning regularization term; (3)
IQL (Kostrikov et al., 2021): a model-free algorithm designed to avoid bootstrapping errors by learn-
ing implicit Q-functions; (4) DT (Chen et al., 2021): a sequence-modeling model free approach that
predicts actions conditioned on expected returns; (5) TT (Janner et al., 2021): a sequence-modeling
model based approach that utilizes beam search planning and (6) BTM: which shares the same pre-
trained model as our method but applies only the [RCBC] mask for policy inference. The results
demonstrate that M3PC significantly improves reward accumulation compared to BTM, consistently
outperforming it across all datasets and domains, irrespective of the guidance heuristic used. This
indicates that M3PC’s planning phase effectively refines the action proposals generated by BTM.
Furthermore, as a generalist agent, M3PC-M performs competitively with specialized offline RL
algorithms such as TD3+BC and IQL. Notably, M3PC-Q achieves even more competitive results,
outperforming all baselines by a considerable margin.

Online Finetuning. Under the O2O setup, we compare our method against IQL and ODT (Zheng
et al., 2022), a specially designed O2O method for DT. The full online training curves of each al-
gorithm can be found in Appendix C. In Table 2, we report the performance of each algorithm
with a 200K online sample budget. To ensure a fair comparison, we use the best performance
between ODT’s original paper (Chen et al., 2021) and our result running its open-sourced im-
plementation. Our method outperforms the other two methods in all the environments except the
hopper-medium dataset. After fine-tuning, our total performance score is 31% higher than IQL
and 26% higher than ODT, with improvements over finetuning 123% more substantial than those of
ODT. We plot the normalized exploration rollout statistics of the M3PC agent and the BTM agent
in Figure 4. The results show that M3PC is more likely to collect trajectories of high quality while
maintaining some randomness to cover diverse states. Additional results are provided in Appendix
C.

Q2: Goal Reaching. To assess whether our proposed method can effectively guide an agent to
specified goal states, we evaluate it on the following three tasks: (a) Halfcheetah flipping, (b) Walker
performing splits, and (c) Hopper wiggling. Due to the limited planning horizon of our model, we
provide a sequence of consecutive subgoals to ensure that each goal-reaching task remains within

7

Published as a conference paper at ICLR 2025

Step 105

0

20

40

60

80

100

N
oi

se
 E

xp
lo

re
 R

et
ur

n
M

ea
n

1.5 2
Step 105

0

20

40

60

80

100

10.51.5 210.5

M
3P

C
 E

xp
lo

re
 R

et
ur

n
M

ea
n

Figure 4: Exploration Rollout Statistics. Results from two example runs of the Hopper task on
the medium dataset using the same offline pretrained BTM agent. One run employs Gaussian noise
for exploration, while the other utilizes M3PC. The red line represents the offline result. Compared
to naive Gaussian noise exploration, M3PC significantly improves the agent’s exploration quality by
generating more high-return trajectories while maintaining stochasticity, including some mid-level
or low-return trajectories.

Table 2: Online Finetuning Results on D4RL. Comparison of normalized returns before and after
online finetuning, as well as the improvement achieved using a 200K online sample budget. We
report the mean from five seeds. The best final result for each dataset is highlighted in bold and the
greatest improvement is highlighted in green.

Dataset IQL ODT M3PC (Ours)
offline online δ offline online δ offline online δ

hopper-m 63.8 66.8 +3.0 67.0 97.5 +30.6 73.6±5.6 93.9±15.8 +20.3
walker2d-m 79.9 80.3 +0.4 72.2 76.8 +4.6 86.4±2.6 91.9±7.8 +5.5

halfcheetah-m 47.4 47.4 +0.0 42.7 42.2 -0.6 51.2±0.7 69.3±2.1 +18.1
hopper-m-r 92.1 96.2 +4.1 86.6 88.9 +2.3 78.3±16.2 103.5±6.0 +25.2

walker2d-m-r 73.7 70.6 -3.1 68.9 76.9 +7.9 92.2±2.4 105.2±1.0 +13.0
halfcheetah-m-r 44.1 44.1 +0.0 40.0 40.4 +0.4 48.2±0.4 67.0±7.1 +18.8

Total 401.0 405.5 +4.5 377.4 422.7 +45.3 429.8 530.8 +101.0

the model’s planning horizon capacity, rather than directly providing the final desired goal state.
Details regarding subgoal selection for each task are provided in Appendix A.

These tasks deviate from the reward mechanisms typically seen in offline data but can be extrap-
olated or stitched together from offline trajectories. Our results, showcased in Figure 5, illustrate
that backward M3PC enables the agent to generalize to diverse tasks rather than merely imitating
offline experiences. This demonstrates the model’s ability to adapt to new challenges by leveraging
its knowledge of complex dynamics to achieve specific goals.

Figure 5: Demonstration for D4RL
Goal Reaching. One evaluation visu-
alization for (a) Halfcheetah flipping,
(b) Walker doing splits, and (c) Hop-
per wiggling at a predefined frequency.
These behavior are all unseen in the of-
fline dataset during pretraining, see Ap-
pendix C for more details.

Additionally, we evaluated the BTM’s goal-reaching ability using a single goal-reaching mask, sim-
ilar to previous studies (Carroll et al., 2022; Liu et al., 2022). This method involves keeping the

8

Published as a conference paper at ICLR 2025

current state and goal state unmasked while directly executing the inpainted action. However, as
detailed in Appendix C, this approach failed to consistently enable the agent to reach the goal state.
This discrepancy underscores the effectiveness of our model-based approach.

hopper-m hopper-m-r walker2d-m walker2d-m-r halfcheetah-m halfcheetah-m-r

100

80

60

40

20

0

N
or

m
al

iz
ed

 D
4R

L
Te

st
-t

im
e

R
et

ur
n BTM-S

M3PC-S
BTM
M3PC

Figure 6: Offline RL comparison between unified and specialized model. We report the nor-
malized average returns of BTM and M3PC on a unified pretrained agent compared to specified
pretrained agents, denoted by BTM-S and M3PC-S, respectively. The results represent the mean
over five seeds. The comparison suggests that the unified pretrained model leads to more efficient
representations and better performance with BTM and M3PC.

Q3: Ablation Studies. We conduct ablation studies to evaluate the contribution of individual com-
ponents to the success of our method. Specifically, we examine whether unifying the pretraining
process using a random masking technique enhances M3PC performance. To this end, we pre-
trained two separate models—a policy model and a world model—using the same training objec-
tive and model structure as the BTM. However, these models were only applied with the [RCBC]
mask and [FD] mask, respectively, during the training phase. These specialized models were then
integrated to implement MPC. Our findings, illustrated in Figure 6, indicate that two specialized
pretrained models do not improve decision quality compared to the unified pretrained BTM. More-
over, implementing MPC with separate policy and world models does not significantly enhance
decision-making compared to using only the specialized policy model. This suggests that the uni-
fied pretraining approach benefits performance, as the bidirectional Transformer cohesively captures
both policy behaviors and environmental dynamics, leading to more effective planning during MPC.

Figure 7: Ablation Study on Planning
and Uncertainty-aware Action Recon-
struction. We ablate sample-based planning,
uncertainty-aware action reconstruction, and
both components to investigate their contri-
butions to the algorithmic performance in the
online finetuning phase. We report average
results over six datasets. Mean of five seeds.
The shaded area represents the averaged per-
task standard deviation across random seeds.

We further justify some design choices in M3PC’s online finetuning phase by comparing: (a) Our
M3PC as in Algorithm 1, which combines uncertainty-aware action distribution A reconstruction
and planning-based action resampling (b) randomly sampling from A for exploration (c) the orig-
inal BTM’s method of action a reconstruction, trained with MSE loss, adding fixed action noise
N (0, σI) for exploration, maintaining the same entropy level as M3PC. (d) performing planning-
based action resample using (c)’s decisions. We present the averaged finetuning process across
D4RL datasets in Figure 7. The results highlight the effectiveness of our key contributions. Specifi-
cally, an uncertainty-aware policy for exploration is crucial for maintaining online training stability,

9

Published as a conference paper at ICLR 2025

and forward planning significantly improves sample efficiency. Figure 7 also shows that the per-
formance drops drastically when naively using the uncertainty-“unaware” original BTM for explo-
ration. Per-task training curves and additional ablation studies are provided in Appendix C.

Table 3: Offline Results on RoboMimic.
Success rate of various offline pretrained
agents in manipulation tasks. We report
the mean of 5 seeds (50 trials for simulator
and 20 trials for real world). We exclude
the BC and IQL from real-world imple-
mentation due to their poor performance
in the corresponding simulated tasks.

Dataset BC IQL DT M3PC

Can-Pair 0.64 0.34 0.94 0.98±0.01

Square-MH 0.53 0.13 0.21 0.28±0.14

Lift-MG 0.65 0.29 0.93 0.77±0.07

Can-Lim 0.25 0.27 0.46 0.54±0.16

Can-Real - - 0.50 0.70±0.10

Figure 8: Skill Generalization in Can-Pick task.
Simulated environments on the top and real-world
environments on the bottom. The columns show
the original behavior (left), behavior conditioned
on the seen goal state (mid), and behavior condi-
tioned on the unseen goal state (right).

Q4: Manipulation. In addition to the self-body motion control tasks explored in earlier experi-
ments, we shift our focus to manipulation tasks to assess whether the proposed M3PC method can be
effectively applied to robotics tasks requiring interaction with objects in the environment. We con-
ducted experiments across three simulated tasks in RoboMimic—Can, Square, and Lift—each with
varying levels of complexity. Additionally, we utilized datasets of varying quality levels, including
machine-generated (MG), mid-level human-demonstrated (MH), and paired positive-and-negative
(Pair) demonstrations. We also created a customized simulated task named Can-Lim, a variant of
the Can-Pick task, in which the dataset was adapted to a scenario where the relative pose between
the gripper and the can is unavailable. Finally, we tested our method on a real-world Can-Pick task,
referred to as Can-Real. The results are compared against several offline RL baselines, as shown in
Table 3.

To evaluate generalization capabilities, we conducted a goal-conditioned RL experiment on the Can-
Picking task with the Paired dataset. This dataset contains 50% perfect demonstrations, where the
agent successfully picks up the can and places it into the box in the right corner, and 50% negative
demonstrations, where the can is thrown off the table, resulting in no reward. As illustrated in
Figure 8, by specifying the final goal states, we can control the agent’s behavior to either complete
the original task or reproduce the throwing-away behavior. Furthermore, by specifying a final state
numerically between two observed states in the dataset, the model generates actions that enable the
agent to reach a previously unseen state—placing the can into the box adjacent to the right one.

6 DISCUSSIONS AND LIMITATIONS

We propose M3PC, a test-time MPC framework designed to enhance the inference performance
of masked Transformers pretrained under offline RL settings. M3PC offers the following benefits:
(1) Improved Decision-Making without Further Training: During inference, M3PC improves
decision-making with high computational efficiency. (2) Enhanced Finetuning Efficiency: With
an additional online interaction budget, M3PC achieves better final performance and outperforms the
previous sequential modeling O2O approach, ODT. This enhances the agent’s continuous learning
ability. (3) Generalization Ability: The framework demonstrates notable generalization capabili-
ties, generating actions that effectively drive the agent toward unseen goal states in both simulated
and real-world tasks.

While M3PC demonstrates promising results, there are areas for further investigation: (1) Han-
dling Pixel Observations: Currently, our framework is limited to environments with state-based
observations. Future work will explore methods for handling pixel observations. (2) Transformer
Scalability: Our experiments employed a fixed-structure masked trajectory Transformer. It remains
unclear whether increasing the Transformer’s capacity would lead to better test-time planning.

10

Published as a conference paper at ICLR 2025

REFERENCES

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline re-
inforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. Advances in Neural Information Processing Systems, 35:24639–24654,
2022.

David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, and Joan Bruna. When
does return-conditioned supervised learning work for offline reinforcement learning? Advances
in Neural Information Processing Systems, 35:1542–1553, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Micah Carroll, Orr Paradise, Jessy Lin, Raluca Georgescu, Mingfei Sun, David Bignell, Stephanie
Milani, Katja Hofmann, Matthew Hausknecht, Anca Dragan, et al. Uni [mask]: Unified inference
in sequential decision problems. Advances in neural information processing systems, 35:35365–
35378, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. Advances
in neural information processing systems, 31, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. arXiv preprint arXiv:2203.04955, 2022.

Nathan Hatch and Byron Boots. The value of planning for infinite-horizon model predictive control.
In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 7372–7378.
IEEE, 2021.

11

Published as a conference paper at ICLR 2025

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in neural information processing systems, 32, 2019.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Zhiwei Jia, Vineet Thumuluri, Fangchen Liu, Linghao Chen, Zhiao Huang, and Hao Su. Chain-of-
thought predictive control. arXiv preprint arXiv:2304.00776, 2023.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning, pp. 1702–1712. PMLR, 2022.

Fangchen Liu, Hao Liu, Aditya Grover, and Pieter Abbeel. Masked autoencoding for scalable and
generalizable decision making. Advances in Neural Information Processing Systems, 35:12608–
12618, 2022.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan
online, learn offline: Efficient learning and exploration via model-based control. arXiv preprint
arXiv:1811.01848, 2018.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. Advances in Neural Information Processing Systems, 36, 2024.

Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal difference models: Model-
free deep rl for model-based control. arXiv preprint arXiv:1802.09081, 2018.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior
transformers: Cloning k modes with one stone. Advances in neural information processing sys-
tems, 35:22955–22968, 2022.

David Silver, Richard S Sutton, and Martin Müller. Sample-based learning and search with perma-
nent and transient memories. In Proceedings of the 25th international conference on Machine
learning, pp. 968–975, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Thomas Walsh, Sergiu Goschin, and Michael Littman. Integrating sample-based planning and
model-based reinforcement learning. In Proceedings of the aaai conference on artificial intel-
ligence, volume 24, pp. 612–617, 2010.

12

Published as a conference paper at ICLR 2025

Kerong Wang, Hanye Zhao, Xufang Luo, Kan Ren, Weinan Zhang, and Dongsheng Li. Bootstrapped
transformer for offline reinforcement learning. Advances in Neural Information Processing Sys-
tems, 35:34748–34761, 2022.

Mianchu Wang, Rui Yang, Xi Chen, Hao Sun, Meng Fang, and Giovanni Montana. Goplan: Goal-
conditioned offline reinforcement learning by planning with learned models. arXiv preprint
arXiv:2310.20025, 2023.

Philipp Wu, Arjun Majumdar, Kevin Stone, Yixin Lin, Igor Mordatch, Pieter Abbeel, and Aravind
Rajeswaran. Masked trajectory models for prediction, representation, and control. In Interna-
tional Conference on Machine Learning, pp. 37607–37623. PMLR, 2023.

Zifan Wu, Chao Yu, Chen Chen, Jianye Hao, and Hankz Hankui Zhuo. Plan to predict: Learning
an uncertainty-foreseeing model for model-based reinforcement learning. Advances in Neural
Information Processing Systems, 35:15849–15861, 2022.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. In Inter-
national Conference on Machine Learning, pp. 38989–39007. PMLR, 2023.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Zishun Yu and Xinhua Zhang. Actor-critic alignment for offline-to-online reinforcement learning.
In International Conference on Machine Learning, pp. 40452–40474. PMLR, 2023.

Zilai Zeng, Ce Zhang, Shijie Wang, and Chen Sun. Goal-conditioned predictive coding for offline
reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

Xianyuan Zhan, Xiangyu Zhu, and Haoran Xu. Model-based offline planning with trajectory prun-
ing. arXiv preprint arXiv:2105.07351, 2021.

Haichao Zhang, We Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforce-
ment learning. arXiv preprint arXiv:2302.00935, 2023.

Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew Johnson, and Sergey Levine.
Solar: Deep structured representations for model-based reinforcement learning. In International
conference on machine learning, pp. 7444–7453. PMLR, 2019.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In international
conference on machine learning, pp. 27042–27059. PMLR, 2022.

13

Published as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS

Loss Function Construction. We consider the Lagrangian of Equation 2 given by:

L(θ, σ) = J(θ) + σ(β −HT
θ), (5)

where σ is a non-negative Lagrange multiplier. The training objective then become

max
σ≥0

min
θ
L(θ, σ). (6)

We alternately optimize θ and σ as follows:

• Optimizing θ with fixed σ, which involves:

min
θ

(
J(θ)− σHT

θ

)
, (7)

• Optimizing σ with fixed θ, formulated as:

min
σ≥0

σ
(
HT
θ − β

)
. (8)

This iterative training of θ and σ ensures compliance with the entropy constraint while optimizing
the objective function J(θ).

Transition-wise Value Estimator. We choose IQL (Kostrikov et al., 2021) algorithm to train the
value estimator because its Bellman updates do not require an explicit policy function. Typically,
IQL simultaneously learns a critic network Qψ and value network Vϕ with the losses defined by:

JQ(ψ) = E(s,a,r,s′)∼T

[
(r + γVϕ(s

′)−Qψ(s, a))
2
]
,

JV (ϕ) = E(s,a)∼T
[∣∣t− 1{Qψ(s,a)−Vϕ(s)<0}

∣∣ (Qψ(s, a)− Vϕ(s))2] (9)

, where t is a constant hyperparameter named expectile used to control the conservatism of the value
estimation. The critic network Qψ will be applied to estimate the long-term reward for a given
state-action pair in our approach. t is set to 0.7 for D4RL locomotion tasks and 0.9 for RoboMimic
manipulation tasks.

Goal State Definitions in Goal Reaching Tasks. In the goal-reaching setup for Hopper, Walker,
and HalfCheetah, we craft rough trajectories based on the specific anticipated dynamics of each
agent. For the Hopper, a sinusoidal trajectory is designed for the foot joint to induce a wiggling
motion, while the other two joints’ initial positions are maintained. In the case of the Walker, a lin-
early increasing trajectory for the thigh joint facilitates the splits, with the dynamics of other joints
extracted from the offline trajectory which correspond to a stepping behavior, providing rough guid-
ance. For the HalfCheetah, the primary flipping motion is guided by linear trajectories that set the
body height decrease and a full 180-degree rotation to simulate a flip. Complementing this, the dy-
namics of the other joints and body movements are derived from offline datasets that capture detailed
flipping steps, providing a coherent and realistic motion base. Subgoals are extracted from these tra-
jectories at specific intervals—every fifth, thirtieth, and every timestep, respectively—to guide each
model towards achieving the intended maneuvers, ensuring that while the main actions are precisely
targeted, the full spectrum of body dynamics remains realistically integrated and synchronized with
the models’ overall movements.

In the Can Pick task, we deploy specific guidance trajectories for each distinct behavior—throwing
away and moving to a nearer box. For the ”throwing-away” behavior, we directly select a suitable
trajectory from an offline dataset without any modifications, ensuring that the agent replicates a
proven effective throwing motion. For the ”moving to a nearer box” behavior, the process begins
by selecting a ”moving to correct box” trajectory from the offline dataset. To tailor this trajec-
tory to the specific task, we apply an affine transformation to adjust the horizontal positions of the
Franka robot’s end effector and the object along the trajectory. This transformation proportionally
reduces the distance the object needs to be moved, customizing the trajectory to the current scenario.
Subgoals are then extracted from these guidance trajectories at every state, providing detailed, step-
by-step targets that guide the agent’s actions towards successful task completion.

Hardware. The entire training process, including both pretraining and finetuning, is performed
on NVIDIA 3090 GPUs. During the offline pretraining phase, we train the BTM model for 140K

14

Published as a conference paper at ICLR 2025

gradient steps, which takes approximately 4 hours per dataset on a single GPU. For the finetuning
phase, we allow 1 million online exploration steps for figure plot and report the performance with 0.2
million exploration steps. The finetuning phase including exploration and evaluation in simulator
takes between 7 and 9 hours per dataset on a single GPU, while finetuning the pretrained trajectory
model itself takes half of the total time.

15

Published as a conference paper at ICLR 2025

B HYPERPARAMETERS

Table 4: Hyperparameters.

Hyperparameter Offline Online
Training
Nonlinearity GELU GELU
Batch size 2048 512
Trajectory-segment length 8 8
Dropout 0.10 0.10
Learning rate 0.0001 0.0001
Weight decay 0.005 0.005
Target entropy β -3 -3
Scheduler cosine decay -
Warmup steps 40000 -
Training steps 140000 -

Evaluation
Context length 4 4

Bidirectional Transformer
of Encoder Layers 2 2
of Decoder Layers 1 1
Heads 4 4
Embedding Dim 512 512

Mode Decoding Head
Number of Layers 2 2
Embedding Dim 512 512

Reward Maximization
Decay Parameter λ 0.6 0.6
Candidate Number N 625 625
Softmax temperature ξ 1.0 1.0

16

Published as a conference paper at ICLR 2025

C ADDITIONAL RESULTS

Online Finetuning Results. We report the per-task online training curves over 1 million online
samples for our method and our reproductions of baseline methods in Figure 9, ablations in Figure
10.

BTMODTM³PC IQL

Figure 9: D4RL Benchmark Comparison. Per-task Online Training Curves for M3PC and baseline
methods. Mean of 5 seeds. The shaded area represents the standard deviation across seeds.

We furthermore compete M3PC with some stronger, specialized O2O baseline methods with the
100k online sample budget practice: (1) AWAC (Nair et al., 2020), a representative O2O approach
utilizing advantage-weighted actor-critic; (2) ODT (Zheng et al., 2022), a unified sequential mod-
eling framework for offline RL and online finetuning; (3) OFF2ON Lee et al. (2022), a CQL-based
pessimistic Q-ensemble method that incorporates a balanced replay to encourage near on-policy
samples from the offline dataset; and (4) PEX (Kostrikov et al., 2021), an IQL-based algorithm fo-
cused on policy expansion. We evaluate the baselines on the D4RL locomotion datasets, with the
results summarized in Table 5. The results demonstrate that M3PC achieves performance compara-
ble to SOTA specialized O2O methods such as OFF2ON and PEX.

17

Published as a conference paper at ICLR 2025

Dataset AWAC ODT OFF2ON PEX M3PC

hopper-m 57.8 → 55.1 73.4 → 67.0 97.5 → 80.2 56.5 → 87.5 73.6 → 81.3
walker2d-m 35.9 → 72.1 72.0 → 72.2 66.2 → 72.4 80.1 → 92.3 86.4 → 74.9
halfCheetah-m 43.0 → 42.4 42.7 → 42.1 39.3 → 59.6 50.8 → 60.9 51.2 → 64.0
hopper-mr 37.7 → 60.1 60.4 → 78.5 28.2 → 79.5 31.5 → 97.1 78.3 → 78.6
walker2d-mr 24.5 → 79.8 44.2 → 71.8 17.7 → 89.2 80.1 → 92.3 92.2 → 98.8
halfCheetah-mr 40.5 → 41.2 32.4 → 39.7 42.1 → 60.0 45.5 → 51.3 48.2 → 62.7

Average 39.9 → 58.5 54.2 → 61.9 48.5 → 73.5 57.4 → 80.2 71.7 → 76.8

Table 5: O2O Baseline Comparison Results. Comparison of normalized returns before and after
online finetuning with a 100K online sample budget. We report the mean of four seeds.

 ~ w/o planing ~ a + w/o planing ~ w/ planing (ours) ~ a + w/ planing

Figure 10: Ablation Studies for Algorithmic Components Contribution. Mean of 5 seeds.The
shaded area represents the standard deviation across seeds.

Inference Time. We have introduced M3PC’s computational efficiency due to the parallel predic-
tion nature of the mask autoencoding paradigm in the methodology section. For completeness, we
report the inference time of M3PC’s planning overhead with respect to a range of planning horizons
(1 to 8) in Fig. 11. We additionally include two methods for references: (1) TT (Janner et al.,
2021), a sequential modeling approach that employs beam search for test-time planning; (2) TD-
MPC (Hansen et al., 2022), a representative model-based RL method combining MPC and temporal
difference learning. All inference times were benchmarked on a single NVIDIA RTX 3090 GPU.

18

Published as a conference paper at ICLR 2025

Note that we used the original implementations of the baseline methods, so the number of parame-
ters is not aligned across approaches. Results demonstrate that M3PC is much more computational
efficient compared to the sequential modeling approach TT. Furthermore, as the planning horizon
increases, M3PC even outperforms TD-MPC, despite the latter being a more lightweight model.

Figure 11: Inference Time Comparison. M3PC
is much more computational efficient compared to
sequential modeling approach TT and even out-
perform lightweight model TD-MPC as planning
horizon increases.

Ablation Study on Decay Parameter. Decay parameter λ play a significant role in balanc-
ing the weight of instant rewards and long-term value. We provide the training curves for λ ∈
{0.0, 0.1, 0.3, 0.5, 0.7, 0.9}. Figure 12 indicates our approach is not sensitive to the choice for λ
since each choice outperforms the baseline (randomly sampling action from A for exploration) by a
large margin, and has minor difference in learning speed (fine-tuning improvements happen slower
when λ = 0.1 and long step stability (performance drops after 800k online steps when λ = 0.9. We
choose λ = 0.6 in all the experiments as an intermediate choice for balancing converge speed and
online training stability.

Figure 12: Ablation Study for λ Choices. Normalized score as a function of λ choice with 0.1m,
0.5m, 1.0m online steps. The red star represents our default choice (0.6) while the grey line denotes
baseline results (explore w/o planning). Mean of 3 seeds.

Ablation Study on Entropy Constraint. We also report the effects of entropy constraint we im-
posed in Equation 2. The results of offline results M3PC-M, M3PC-Q and online finetuning results
M3PC-online are summarized in Table 6. Empirical results show that entropy constraint does not
have substantial influences on offline results but significantly boost the online sample efficiency.

Datasets M3PC-M M3PC-Q M3PC-online
w/o w w/o w w/o w

hopper-m 84.3±7.3 70.7±6.2 81.6±3.5 73.6±5.6 94.9±11.7 93.9±15.8

halfcheetah-m 43.8±0.6 43.9±3.9 50.0±0.3 51.2±0.7 71.5±3.6 69.3±2.1

walker2d-m 79.9±1.4 80.9±2.5 80.7±7.2 86.4±2.6 68.3±25.0 91.9±7.8

hopper-mr 75.1±11.3 80.4±5.2 76.8±27.2 78.3±16.2 88.7±26.9 103.5±6.0

walker2d-mr 78.5±16.0 78.2±10.2 94.0±0.8 92.2±2.4 108.1±3.5 105.2±1.0

halfcheetah-mr 40.0±1.0 41.8±0.5 48.0±0.8 48.2±0.4 70.2±2.8 67.0±7.1

Average 66.9 66.0 71.8 71.6 83.6 88.5

Table 6: Ablation Study on Entropy Constraint. Comparison of M3PC-M, M3PC-Q, and online
results w or w/o entropy constraint across D4RL datasets.

19

Published as a conference paper at ICLR 2025

Goal Reaching Results. We show more results in goal reaching tasks here. To demonstrate the
extent to which our unseen goal is out of the distribution, we show together the PCA dimension-
reduced results for all states in the offline dataset on which the model was pretrained, and the states
in the trajectory of reaching the given goal. As in Fig.13, The different tasks have different out-
of-distribution cases: For the walker-split task, the agent starts with a seen state and finally reach
to a state never seen before (the angle of the hip-joint). For the cheetah-flip task, the initial state
and goal state are both seen in the offline dataset, the normal state usually corresponds to better
rewards, while the flip-over state hardly leads to any reward, as the original task in the dataset is run
fast. However, conditioned on the state given, the agent finds many unseen intermediate states to
finally transit to a flip-over state. For the Hopper-Wiggle task, the agent strings together a series of
near-in-distribution states to form a loop of wiggling action, which is not seen in the dataset.

Figure 13: Visualization of states in different tasks after 2-dim PCA mapping.

Additionally, we show the goal states we take as input in order to reach the final behavior, and how
well BTM with a single Goal Reaching mask and backward M3PC can follow those states. We only
plot the most representative dimension in the state vector for each task, respectively. E.g., Angle of
the front tip (dim[1]) of cheetah, and angle of the thigh joint (dim[2]) of walker and angle of the top
(dim[1]) of hopper. As in Fig.14, with only a single mask, the agent can hardly achieve the goal,
and the overall behavior resembles the behavior cloning result from the pretrain dataset. However,
with backward M3PC, the agent can successfully follow the kinematics guidance, although some do
not exactly satisfy the dynamics. Moreover, we show that the same pretrained model with backward
M3PC can reach wiggling behavior of different frequencies in hopper environment, with proper goal
states.

20

Published as a conference paper at ICLR 2025

Goal state Naive Goal-reaching (single mask) Goal-reaching with M³PC

Cheetah-Filp Walker-Split

Hopper-wiggle frequency=2

Hopper-wiggle frequency=6

Hopper-wiggle frequency=0

Figure 14: Comparison between Backward M3PC and a single Mask in Goal-Reaching Tasks.
We present the goal states and resulting states after policy execution across three goal-reaching tasks,
focusing on a single key dimension. The single Mask fails to guide the agent toward the goal states
when the given current-goal state pairs are out of distribution.

21

Published as a conference paper at ICLR 2025

D TASKS AND DATASETS

The dataset utilization checklist is shown in Table 7.

Figure 15: Tasks Setup. (a) Locomotion tasks in D4RL: halfcheetah, hopper, walker2d (from left
to right); (b) Manipulation tasks in RoboMimic: lift, can, square (from left to right), (c) Left view
and front view of real-world manipulation task setup.

D4RL. We consider three representative D4RL locomotion domains (Hopper, Walker, and
HalfCheetah). Each domain contains two datasets (medium, medium-replay) which have
different data compositions. The medium datasets contain 1M samples collected by a partially-
trained SAC (Haarnoja et al., 2018) agent. The medium-replay dataset consists of recording all
samples in the replay buffer observed during training until the agent reaches the ”medium” level.
We use both these two types of datasets in offline RL and O2O RL.

RoboMimic. RoboMimic includes a suite of manipulation task datasets designed for the Franka
Panda robot, focusing on three specific tasks: Can, Square, and Lift. The dataset for pretrain-
ing encompasses four distinct categories: (1) Multi-Human (MH), consisting of six sets with each
containing 50 demonstrations by different pairs of demonstrators; (2) Machine Generated (MG),
generated by a Soft Actor-Critic (SAC) agent at various stages of its training, providing a spectrum
of behaviors from early exploratory to more refined tactics; and (3) Paired, where a single expe-
rienced operator recorded two demonstrations for each of 100 initializations of the Can task—one
demonstrating correct placement and the other tossing the object outside. We detailed the state space
and action space definition for each environment in Robomimic below, including our customized en-
vironments can-limit and can-real.

The Action Space and State Space for Manipulation. The action space for each timestep is a
7-dimensional vector per arm, where the first six coordinates represent control signals in the op-
erational space control (OSC) space, and the last coordinate controls the opening and closing of
the gripper fingers. The observation space includes a 7-dimensional vector for the absolute end ef-
fector position quaternion and a 2-dimensional vector for the left and right finger relative poses of
the gripper in addition to task-specified object observations. In the ”Lift” task, object observations
include a 10-dimensional vector consisting of the absolute cube position and quaternion (7-dim),
and the cube position relative to the robot end effector (3-dim). In the ”Can” task, the object ob-
servations are a 14-dimensional vector, including the absolute can position and quaternion (7-dim),
and the can’s position and quaternion relative to the robot end effector (7-dim). For the ”Square”
task, object observations also form a 14-dimensional vector with the absolute square nut position
and quaternion (7-dim) and their relative positions and quaternions (7-dim) to the robot end effec-
tor. In the ”Can-Limit” task, the object observations include only the absolute can position (3-dim),
excluding relative position knowledge to align with goal-reaching tasks where precise relative poses
are unnecessary. In the ”Can-real” task, which is a real-world environment similar to Can-Limit, ob-
ject position is detected using two vertically placed depth cameras, with actions output at 20 Hz, and

22

Published as a conference paper at ICLR 2025

robot joint torques adjusted at 500 Hz to achieve the desired Cartesian poses based on the operational
space controller.

Table 7: Dataset Utilization. We outline the dataset utilization for each experiment part here, a
checkmark means the corresponding dataset is use for pretraining.

Dataset Offline RL Goal Reaching RL Online Finetuning

hopper-medium-v2 ✓ ✓ ✓
hopper-medium-replay-v2 ✓ ✓
walker2d-medium-v2 ✓ ✓ ✓
walker2d-medium-replay-v2 ✓ ✓
halfcheetah-medium-v2 ✓ ✓
halfcheetah-medium-replay-v2 ✓ ✓ ✓

Can-Pair ✓
Square-MH ✓
Lift-MG ✓
Can-Lim ✓ ✓
Can-Real ✓ ✓

23

	Introduction
	Related Work
	Preliminary
	Method
	Experiments
	Discussions and Limitations
	Implementation Details
	Hyperparameters
	Additional Results
	Tasks and Datasets

