Under review as a conference paper at ICLR 2022

MESHINVERSION: 3D TEXTURED MESH
RECONSTRUCTION WITH GENERATIVE PRIOR
— SUPPLEMENTARY MATERIAL —

Anonymous authors
Paper under double-blind review

1 ADDITIONAL DETAILS FOR PRE-TRAINING

We follow the same architectures for the generator and the UV space discriminator as described
in|Pavllo et al.|(2020) for pre-training. ConvMesh baseline (Pavllo et al.,|2020) uses a convolutional
generator GG with two branches, to generate deformation map S € R*?*32 and texture map T €
R512x512 i the UV space from a latent code z € R%4. The UV space discriminator consists of two
sub-discriminators, for discriminating the deformation map and texture map respectively. In addition,
we introduce an image space discriminator to further enforce the realism of the synthesized texture
and shape, following the architecture of PatchGAN (Isola et al.,2017). We render the synthesized
textured mesh to images with a differentiable renderer (Chen et al., 2019) following the Jatavallabhula
et al.|(2019) implementation.

Preparation of the UV space pseudo ground truths, which are processed from the training images and
used for UV space discrimination, requires to first train a reconstruction network similarly to training
CMR. With this purpose, it is overfitted to the training set for shape estimation, and not desirable for
3D reconstruction. Specifically, the resulting network generally gives blurry textures, and the shape
estimation does not generalize very well to unseen images. Quantitatively, the encoder/decoder gives
ToU of 0.671 in contrast to MeshInversion with IoU of 0.708. With the trained auto-encoder, pseudo
ground truths for the deformation maps can be extracted, and pseudo ground truths for the texture
maps are prepared by a form of inverse rendering, more details of which can be found in [Pavllo et al.
(2020).

For the objective function L¢ in the main paper, we let A\, = 1 and A\; = 0.04. We pre-train
ConvMesh following a class conditional setting on four Nvidia V100 GPUs for 600 epochs, with
a batch size of 128. The generator is updated once every three iterations with a learning rate of
1 x 10~* whereas the discriminators are updated concurrently twice every three iterations with a
learning rate of 4 x 10~%. We use the same settings for CUB and PASCAL3D+.

Thanks to the discriminator in the image space, our pre-training results are better than the baseline
with a clear margin, as shown in Tab. m

Table 1: Pre-training results on CUB comparing ConvMesh baseline and ours with the image space
discrimination. The Full FID is computed on generated meshes and generated textures; the Texture
FID is computed on the generated texture and mesh estimated using the differentiable renderer; the
Mesh FID is computed on the pseudo ground truth texture with predicted mesh. We report FID with
truncated o = 0.25.

Full | Texture | Mesh
ConvMesh baseline 33.63 28.68 19.49
Ours w/ 2D domain discrimination | 28.29 27.16 18.70

2 ADDITIONAL DETAILS FOR INVERSION

We report the hyperparameters used in the GAN inversion stage. For the proposed Chamfer Texture
loss, we let e, = 0.98, ¢, = 1, and o = 1. For the weights of various losses, we let A\cr = 1,
Acm = 3, Asmooth = 0.00005, and A, = 0.05. We adapt a multi-stage inversion with different

Under review as a conference paper at ICLR 2022

Table 2: Ablation study. Our proposed Chamfer texture losses Lor—p and Lor— ¢ and Chamfer
mask loss Loy are effective to address the misalignment and quantization challenges induced by
rendering.

Mask loss Texture loss IoU1 FID; | FIDigl FIDi5 |
IoUloss L1 + perceptual loss 0.588 62.3 60.6 76.3

L1 loss 0.705 71.2 97.3 108.4
L2 loss (MSE) 0.708 75.2 108.1 117.2
Loy perceptual loss 0.701 498 52.3 69.5

contextual loss 0.699 65.2 72.5 81.1

L1 + perceptual loss 0.707 47.1 50.8 66.7

L1 loss Ler—p+Ler—y 0582 517 53.2 64.4
IoUloss Lor—p+ Lor—y 0.605 512 50.8 62.0
Lom Ler—p 0.708 479 454 63.7
Lo Ler—p+Ler—y 0708 38.6 38.6 56.6

learning rates, with learning rates of the latent code [1 x 1071,5 x 1072,1 x 1072,5 x 107%] and
iterations [50, 50, 50, 50]. We use the Adam optimizer (Kingma & Bal [2014) with §; = 0 and
Bo = 0.99.

3 ADDITIONAL DETAILS FOR USER STUDY

We conduct a user preference study on CUB to evaluate our method. This user preference study
involves 40 users, 30 objects, and five methods (four baselines and ours). The 40 users are invited from
several different backgrounds, including finance, business, life science, and information technology.
We randomly choose 30 objects from the testing split, and ensure the following varieties are contained
in the selection: complex and a wide range of texture, with highly articulated shapes, and in the
presence of occlusion, etc. The reconstructed 3D objects are rendered from three different viewpoints
to make sure that the entire object is observable by the user. For each input image, we give users
unlimited time to select the method that gives the most faithful and realistic result in terms of three
separate criteria: texture quality, shape quality, and overall textured shape reconstruction.

4 EXTENDED ABLATION STUDY

We provide a more comprehensive ablation studies on mask and texture losses for our MeshlInversion
framework in Tab. [2| This table includes the ablation study of the main paper, and also includes a
version of our method without neither the Chamfer mask loss nor the Chamfer texture loss, and a
version with only pixel-level Chamfer texture loss.

While we base our experiments mainly on silhouette ground truths and cameras estimated by structure-
from-motion (SfM), we also validate the robustness of our method under relaxed conditions with
less perfect camera poses and masks. Note that the silhouette mask can be estimated by off-the-shelf
instance segmentation methods; the involvement of a pre-trained GAN in our framework simplifies
the task and allows us to train a camera pose estimator individually. Since instance segmentation and
camera pose estimation are not the focus of this study, we evaluate under camera poses predicted by
an off-the-shelf camera pose estimator from |Kanazawa et al.| (2018)), and under masks predicted by
PointRend Kirillov et al.|(2020), which is pre-trained on COCO (Lin et al., 2014) without fine-tuning.
The predicted cameras by CMR gives 6.03 degree of azimuth error and 4.33 degree of elevation
error. The predicted masks by PointRend give an IoU of 0.886. The results show that our method
is reasonably robust to inaccurately predicted camera poses and invariant to masks predicted
by off-the-shelf instance segmentation methods.

We report exact values of 2D mask distances and 3D Chamfer distances The are plotted in Fig.

Under review as a conference paper at ICLR 2022

Table 3: Robustness study of MeshInversion under predicted camera pose predictions and segmenta-
tion masks. The results show that our method is reasonably robust to inaccurately predicted camera
poses and invariant to masks predicted by off-the-shelf instance segmentation methods.

Condition IoU 1 FID; | FIDyg | FID12 |
Predicted cameras by CMR 0.703 43.1 44.1 59.9
Predicted masks by PointRend 0.710 379 389 56.7
Cameras by SfM and ground-truth masks 0.708 38.6 38.6 56.6

2D Loss to 3D Chamfer Distance Ratio

L1/CD e==CM/CD ===|oU/CD

1.8 70
1.6 60
1.4 <o
1.2 .0
1.0 30
0.8 50
0.6 10
0.4 0.0
CM/CD 1x106 1x105 1x104 1x10% 1x102 1x10" loU / CD

Figure 1: We plot 2D distance to 3D CD ratios between a randomly generated shape by pre-trained
ConvMesh and its variation. x-axis is the step size which corresponds to the degree of variation. Note
that we take L1 form for 3D Chamfer distance and Chamfer mask loss. Therefore, a varying ratio
across shape variation implies inaccuracy in the 2D losses, due to discretization during rasterization.
We report exact values of the distances in Tab.]

5 ANALYSIS OF VARIOUS MASK LOSSES

In this section, we quantitatively analyze the accuracy of various mask losses by measuring the
distance between two 3D shapes at different degrees of shape variations. Specifically, we utilize
the pre-trained ConvMesh to randomly generate 100 3D shapes. For each shape O;, we introduce a
variation of the shape by deviating its latent code z; by a step size n at a random direction, giving the
deviated shape O}. We then measure the “ground truth” distance between O; and O} in the 3D space
using Chamfer distance, and compute the distances in the 2D space using IoU loss, L1 loss, and
Chamfer mask loss respectively. Note that we take the L1 form for Chamfer distance and Chamfer
mask loss. Therefore, all these L1-like 2D distances should ideally be linearly correlated to the 3D
Chamfer distance.

We report the average 2D distances and 3D ground truth distance in Tab. 4] and We tabulate these
distances in and plot the mask losses to 3D Chamfer distance ratio in Fig.[Ijunder different step size
values from 1 x 1076 all the way to 1 x 10~!, where a larger step size corresponds to a larger shape
variation, i.e., larger distance between two shapes.

As a result of quantization during the rasterization process, we can obverse from Fig. [T| that both IoU
loss and L1 loss have a varying ratio to the ground truth distance at small shape variations. This is
particularly harmful to a well-trained ConvMesh, as can be seen from Tab. [d] a small perturbation
in the latent space usually corresponds to a slight variation in the 3D shape, in which discretization-
induced loss error might be detrimental for geometric learning. In contrast, Chamfer mask loss
intercepts the rasterization process to retain information, giving a consistent ratio with respect to the
3D Chamfer distance throughout a wide range of shape variations.

Under review as a conference paper at ICLR 2022

Table 4: We report exact values of 2D mask distances and 3D Chamfer distances between a randomly
generated shape by pre-trained ConvMesh and its variation. Step size corresponds to the degree of
variation. We take L1 form for 3D Chamfer distance and Chamfer mask loss. The 2D distance to 3D
CD ratios are plotted in Fig. [T]

step size n|loU mask loss|L1 mask loss|Chamfer mask loss|3D Chamfer distance
1.0E-06 6.1E-07 1.5E-07 8.0E-08 9.5E-08
1.0E-05 9.9E-07 1.5E-07 1.6E-07 1.9E-07
1.0E-04 4.3E-06 7.6E-07 1.2E-06 1.4E-06
1.0E-03 4.7E-05 8.7E-06 1.2E-05 1.4E-05
1.0E-02 4.6E-04 0.9E-04 1.2E-04 1.4E-04
1.0E-01 4.8E-03 0.9E-03 1.2E-03 1.4E-03

Table 5: Quantitative results on CUB for test-time optimization (TTO) of baseline methods. With TTO,
existing baselines overall achieve a higher fidelity, but our method still remains highly competitive
with a clear margin.

ToU T FIDl \L FID12 \l, FIDlO \L
CMR baseline|0.703| 140.9 | 176.2 | 180.1
CMR + TTO |0.720| 122.5 | 153.26 | 159.5
UMR baseline|0.734| 40.0 | 72.8 86.9
UMR + TTO |0.742| 38.7 | 78.9 | 90.2
ours 0.708| 38.6 | 38.6 | 56.6

6 COMPARISON WITH TEST-TIME OPTIMIZATION OF BASELINES

As our proposed method is essentially test-time optimization of a pre-trained GAN, we also conduct
test-time optimization of pre-trained auto-encoders on top of baseline methods for a fair comparison.
Similar to GAN inversion, a relatively compact latent space is desirable for efficient optimization
during the test time. Both CMR and UMR have a latent code with a dimension of 200. In contrast,
U-CMR has a latent code with a dimension of 4096, whereas SMR does not follow an auto-encoder
architecture, but directly encodes 3D attributes from the image with the associated mask. Therefore,
SMR and U-CMR are infeasible to be adapted for test-time optimization.

We adapt CMR and UMR as follows during the test time: The latent code is first obtained with a
single forward pass. We then fine-tune the embedded feature extracted from the image encoder by
minimizing the mask loss and texture loss by comparing against the mask and the image respectively,
where the network weights remain fixed. The choices of loss functions and their weights follow
those during the training time. For an equal comparison, we fine-tune with the same Adam optimizer
and for the same number of iterations, 200, for each testing instance. Since MeshlInversion uses
randomly initialized latent code whereas the forward pass by the image encoder already provides a
good initialization, we use a smaller learning rate, 1 X 10~4,

As the results are shown in Tab.[3] test-time optimization overall gives a higher fidelity for baseline
methods, but our method remains superior by a clear margin. Interestingly, UMR with test-time
optimization achieves limited improvement in terms of IoU and single-view FID at the cost of
worsening novel-view FID. This fair comparison further shows the superiority of generative prior
captured through adversarial training over that captured in the auto-encoder.

7 ADDITIONAL QUALITATIVE RESULTS

We provide more single-view illustrative examples for birds in Fig.[2]and Fig.[3] and more multi-view
results for birds in Fig.[d] and for cars in Fig.[5] These extensive examples demonstrate show the
good quality of our 3D reconstructions.

Under review as a conference paper at ICLR 2022

REFERENCES

Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith, Jaakko Lehtinen, Alec Jacobson, and Sanja
Fidler. Learning to predict 3d objects with an interpolation-based differentiable renderer. Advances
in Neural Information Processing Systems, 32:9609-9619, 2019.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1125-1134, 2017.

Krishna Murthy Jatavallabhula, Edward Smith, Jean-Francois Lafleche, Clement Fuji Tsang, Artem
Rozantsev, Wenzheng Chen, Tommy Xiang, Rev Lebaredian, and Sanja Fidler. Kaolin: A pytorch
library for accelerating 3d deep learning research. arXiv:1911.05063, 2019.

Angjoo Kanazawa, Shubham Tulsiani, Alexei A Efros, and Jitendra Malik. Learning category-
specific mesh reconstruction from image collections. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 371-386, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Girshick. PointRend: Image segmenta-
tion as rendering. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 9799-9808, 2020.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollér, and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In European
conference on computer vision, pp. 740-755. Springer, 2014.

Dario Pavllo, Graham Spinks, Thomas Hofmann, Marie-Francine Moens, and Aurelien Lucchi.
Convolutional generation of textured 3d meshes. arXiv preprint arXiv:2006.07660, 2020.

Under review as a conference paper at ICLR 2022

Input CMR U-CMR UMR SMR Ours

Figure 2: Additional qualitative results on CUB.

Under review as a conference paper at ICLR 2022

Figure 3: Additional qualitative results on CUB (continued).

Under review as a conference paper at ICLR 2022

Novel-view images

~N 0 2 20

Texture Novel-views meshes

RN,

Novel-view images

N1 470

Texture Novel-views meshes

ARV

Novel-view images

Y VY ¥Y

Texture Novel-views meshes

Y Y

Novel-view images

Inputs

Texture Novel-views meshes

Figure 4: More novel-view qualitative results for CUB. We present both rendered images and meshes
from different views, and the texture map as well. Our method achieves realistic 3D reconstruction
even for challenging articulations, e.g., birds with open wings. Note that the meshes rendered in
Microsoft Powerpoint is perspective, whereas the images rendered with our differentiable renderer is
weak perspective.

Under review as a conference paper at ICLR 2022

Novel-view images

L~ T T - B

Texture

Novel-views meshes

Novel-view images

=) = S

Novel-views meshes

L_foi—-ﬂ .

Novel-view images

- N g, ~mva. -
D@y yoea =y s A

Texture

Novel-views meshes

(I e LA

Novel-view images

Novel-views meshes

Figure 5: More novel view results for PASCAL3D+ Car.

	Additional Details for Pre-training
	Additional Details for Inversion
	Additional Details for User Study
	Extended Ablation Study
	Analysis of Various Mask Losses
	Comparison with Test-time Optimization of Baselines
	Additional Qualitative Results

