
Under review as a conference paper at ICLR 2024

APPENDIX A EXAMPLES SAMPLED BY HVS

Figure 6: We depict row-wise ten example images from the ImageNet train set along with their
sampled views with a finished, 100-epoch trained SimSiam ResNet50 model. Left: original image
with the overlaid randomly sampled crops (colored dashed rectangles). Right: All views after ap-
plying resizing and appearance augmentations. The pair that is selected adversarially by HVS is
highlighted in solid lines, eg. View 1 and View 4 in the first row.

14



Under review as a conference paper at ICLR 2024

APPENDIX B TRAINING LOSS

Figure 7: The training loss over 100 epochs. Comparing the DINO vanilla method with DINO +
HVS. The spike and drop in the loss curve of DINO is caused by freezing the last layer in the first
epoch which was proposed by the authors as a strategy to enhance downstream performance. For
HVS we can only see a drop and no spike. We believe this is because HVS exposes the model to
hard views from the beginning of training (i.e. the loss is immediately maximized).

APPENDIX C EFFECT OF MORE VIEWS ON LINEAR EVALUATION
PERFORMANCE

Figure 8: Setting the number of views too high can result in performance deterioration. This shows
that diminishing returns exist, likely because the adversary becomes too strong, resulting in a too
hard learning task.

APPENDIX D ASSESSING THE IMPORTANCE OF METRICS WITH fANOVA

To assess the importance of various metrics on the training loss, we apply fANOVA Hutter et al.
(2014) on data that we logged during training with HVS. We used 300k samples that contain the
following sampled parameters from the geometric and appearance data augmentation operations for
each view: all random resized crop parameters (height and width of the original image, coordinates
of crop corners and height and width of the crop), all Colorjitter (color distortion) strengths (bright-
ness, contrast, saturation, hue), grayscale on/off, Gaussian blurring on/off, horizontal flip on/off,

15



Under review as a conference paper at ICLR 2024

loss, and if the crop was selected or not. The metrics we chose are Intersection over Union (IoU),
Relative Distance (sample-wise normalized distance of the center points of crop pairs), color dis-
tortion distance (the Euclidean distance between all four color distortion operation parameters, i.e.
brightness, contrast, saturation, hue), and the individual color distortion parameters of the Colorjitter
operation. As can be seen in Fig. 9, the metric with the highest predictive capacity on the loss is the
IoU with an importance of 15.2% followed by brightness with 5.1%. The relative distance has an
importance of 3.3%, the colorjitter distance 2.3%, the contrast 1.6%, the saturation 1.4%, hue 0.6%,
and all parameters jointly 1.7%.

Figure 9: Application of fANOVA Hutter et al. (2014) on logged training data to determine metrics
with high predictive capacity on the train loss.

APPENDIX E ADVERSARIAL LEARNER FOR THE VIEW GENERATION

We use Spatial Transformer Network (STN) (Jaderberg et al., 2015) to allow generating views by
producing 6D transformation matrices (allowing translating, rotating, shearing, scaling, affine trans-
formations and combinations thereof) in a differentiable way since most common augmentations
are not off-the-shelf differentiable. As described, we train it alongside the actual pretrained network
using the same (inverted) objective. For our experiments we use DINO with multi-crop, i.e. 2 global
and 8 local heads. As STN we use a small CNN with a linear layer for outputting the 10*6D trans-
formation matrices. In this scenario, we use a ViT-tiny/16 with a 300 epoch pretraining on CIFAR10
with a batch size of 256. All other hyperparameters are identical to the ones reported in the DINO
paper.

Figure 10 visualizes the procedure. The STN takes the raw image input and generates a number
of transformation matrices that are applied to transform the image input into views. These views
are then passed to the DINO training pipeline. Both networks are trained jointly with the same
loss function. DINO is trained with its original contrastive objective, where the STN is trained by
inverting the gradient after the DINO during backpropagation.

As mentioned previously, the STN, without using auxiliary losses, starts zooming in and generat-
ing single-color views. To counteract this behavior, we experimented with different penalties on
the transformation matrices produced by the STN. For instance, in order to limit the zooming pat-
tern, we can use the determinants of the sub-matrices of the transformation matrix to penalize based
on the area calculated and apply a regression loss (e.g. MSE). We refer to this type of penalty as
Theta Crops Penalty (TCP). Additionally, we also restrict its parameters to stay within a sphere
with different parameters for local and global crops. Next to determinant-based penalty losses, we
also experimented with other penalty functions such as the weighted MSE between the identity and
the current transformation matrix or penalties based on histograms of the input image and gener-
ated views after applying the transformation. To avoid strong uni-dimensional scaling behavior, we

16



Under review as a conference paper at ICLR 2024

Input STN Crops Views DINO Loss
augm.

maximize

minimizePenalty

Figure 10: Illustration of adversarial learning with a Spatial Transformer Network (STN) jointly
with contrastive learning (here: DINO).

also implemented restricting scaling in a symmetric way (i.e. applied to both x and y dimensions)
and refer to this as scale-sym.. We report our best results in Table 5 which are all TCP-based.
As can be seen, no setting is able to outperform the baseline. Our best score was achieved with
translation-scale-symmetric which is very similar to random cropping. When removing the sym-
metries in scaling, the performance drops further. Removing a constraint adds one transformation
parameter and therefore one dimension. This can be seen as giving more capacity to the adversarial
learner which in turn can make the task significantly harder. Similarly, when adding rotation, the
performance drops further and in part drastically. This is on the one hand due to the penalties not
being fully able to restrict the output of the STN. On the other, the task of extracting useful infor-
mation from two differently rotated crops is even harder, and learning spatial invariance becomes to
too challenging. All in all, we experienced two modes: either the STN is too restricted, leading to
static output (i.e. independent of image content, the STN would produce constant transformation
matrices) or the STN has too much freedom, resulting in extremely difficult tasks. See Fig. 11 for
an example on the former behavior.

Figure 11: Example for static output behavior of the STN.

Mode Penalty Lin. F.T.
baseline - 86.1 92.7
translation-scale-sym. TCP 83.7 90.3
translation-scale TCP 82.8 89.7
rotation-translation TCP 56.7 -
rotation-translation-scale TCP 31.7 -
rotation-translation-scale-sym. TCP 77.6 -
affine TCP 78.3 83.5

Table 5: Linear evaluation and finetuning classification performance on CIFAR10. Top-1 accu-
racy on the validation set of CIFAR10 for our best results reported with different STN transformation
modes.

17



Under review as a conference paper at ICLR 2024

APPENDIX F ADDITIONAL RESULTS

F.1 OBJECT DETECTION AND INSTANCE SEGMENTATION

For our object detection and instance segmentation analysis experiment, we report additional results
in Table F.1 based on the AP metric. We use the C4 backbone variant (Wu et al., 2019) and finetuning
with the 1x schedule.

Method Arch. VOC07+12 Object Det. COCO Instance Segm.
APall AP50 AP75 APmask APmask50 APmask75

SimSiam RN50 52.05 78.46 56.88 27.16 45.16 28.48
+ HVS RN50 52.91 79.06 57.55 27.93 46.51 29.36

Improvement +0.86 +0.60 +0.67 +0.77 +1.35 +0.88
DINO RN50 53.66 80.86 58.60 30.25 50.35 31.78

+ HVS RN50 52.86 80.51 58.21 30.02 50.39 31.52
Improvement +0.80 -0.36 -0.39 -0.23 +0.04 -0.27

Table 6:

F.2 EASY VIEW SELECTION

To investigate the effect of a cooperative, i.e. easy pair selection, we conducted a small experiment.
Instead of selecting the pair yielding the worst loss, we inverted the objective and selected the pair
with the best loss. As expected, this led to model collapses with a linear eval. performance of 0.1%.
This result is in line with previous findings that highlight the importance of strong augmentations in
CL.

APPENDIX G HYPERPARAMETERS

G.1 EVALUATIONS ON IMAGENET

G.1.1 DINO

For DINO, we report the ViT pretraining hyperparameters in Table 7. For ResNet-50, we use the
same hyperparameters. Note, for HVS we limit the total number of comparisons to 128 across all
heads. Linear evaluation is executed for 100 epochs and we use a learning rate of 0.001, SGD opti-
mizer (AdamW (Loshchilov & Hutter, 2019) during pretraining), a batch size of 1024, a momentum
of 0.9, and no weight decay.

G.1.2 SIMSIAM

In Table 8, we report the ResNet-50 pretraining hyperparameters. Linear evaluation is executed for
90 epochs (as reported by the SimSiam authors) and we use a learning rate of 0.1, LARS optimizer
(You et al., 2017), a batch size of 4096, and no weight decay.

G.1.3 SIMCLR

We report the ResNet-50 pretraining hyperparameters for SimCLR in Table 9. Linear evaluation is
executed for 90 epochs with a learning rate 0.1, SGD optimizer, batch size of 4096 and no weight
decay.

18



Under review as a conference paper at ICLR 2024

Hyperparameter Value Hyperparameter Value
architecture vit small epochs: 100
img size 224 warmup epochs: 10
patch size 16 freeze last layer: 1
out dim 65536 lr: 0.0005
norm last layer true min lr: 1.0e-06
momentum teacher 0.996 optimizer: AdamW
use bn in head false weight decay: 0.04
teacher temp 0.04 weight decay end: 0.4
warmup teacher temp 0.04 global crops scale: 0.4, 1.0
warmup teacher temp epochs 0 global crops size: 224
fp16 true local crops number: 8
batch size 512 local crops scale 0.05, 0.4
clip grad 3.0 local crops size: 96
drop path rate 0.1

Table 7: Pretraining ImageNet hyperparameters for the runs with DINO. For 300 epochs, we use a
batch size of 1024.

Hyperparameter Value
architecture resnet50
batch size 512
blur prob 0.5
crops scale 0.2, 1.0
crop size 224
feature dimension 2048
epochs 100
fix pred lr true
lr 0.05
momentum 0.9
predictor dimension 512
weight decay 0.0001
optimizer SGD

Table 8: Pretraining ImageNet hyperparameters for the runs with SimSiam. For 300 epochs, we use
a batch size of 1024.

Hyperparameter Value
architecture resnet50
proj hidden dim 2048
out dim 128
use bn in head true
batch size 4096
optim LARS
lr 0.3
sqrt lr false
momentum 0.9
weight decay 1e-4
epochs 100
warmup epochs 10
zero init residual true

Table 9:

19



Under review as a conference paper at ICLR 2024

G.2 TRANSFER TO OTHER DATASETS AND TASKS

For linear evaluation on the transfer datasets, we simply used the same hyperparameters for linear
evaluation on ImageNet (DINO and SimSiam respectively). For finetuning DINO ViT-S/16, we used
the hyperparameters reported in Table 10 and for SimSiam ResNet-50 we used the hyperparameters
in Table 11

Hyperparameter CIFAR10 CIFAR100 Flowers102 iNat 21 Food101
lr 7.5e-6 7.5e-6 5e-5 5e-5 5e-5
weight decay 0.05 0.05 0.05 0.05 0.05
optimizer AdamW AdamW AdamW AdamW AdamW
epochs 300 300 300 100 100
batch size 512 512 512 512 512

Table 10: Finetuning hyperparameters for DINO ViT-S/16.

Hyperparameter CIFAR10 CIFAR100 Flowers102 iNat 21 Food101
lr 7.5e-6 5e-6 5e-4 7e-5 5e-6
weight decay 0.05 0.05 0.05 0.05 0.05
optimizer AdamW AdamW AdamW AdamW AdamW
epochs 300 300 300 100 100
batch size 512 512 512 512 512

Table 11: Finetuning hyperparameters for SimSiam and ResNet-50.

G.3 OBJECT DETECTION AND INSTANCE SEGMENTATION

We have used the Detectron2 library (Wu et al., 2019) for object detection and instance segmentation.
We followed the public codebase from MoCo (He et al., 2020) (like SimSiam) for all entries. Due
to limited compute resources we changed the batch size. All parameters that differ from MoCo are
reported in the Table 12. The pretrained models are finetuned end-to-end on the target datasets. All
methods are based on 100-epoch pre-training on ImageNet.

VOC07+12 Object Det. Coce Inst. Segm.
Hyperparameter Value Value
batch size 8 8
lr 0.01 0.01
steps 48000 90000

Table 12: Hyperparameters for VOC object detection and COCO instance segmentation.

APPENDIX H COMPUTATIONAL OVERHEAD OF HVS

The computational overhead factors compared to baseline are as follows: SimCLR (x1.69), SimSiam
(x1.55) and DINO (x2.15). For DINO’s 2 global and 8 local views (default), applying HVS with
nviews=2 sampled for each original view results in 4 global and 16 local views. Since considering
all combinations would yield over 77k unique comparisons (4 over 2 times 16 over 8), to remain
tractable, we limit the number of total comparisons to 128.

20



Under review as a conference paper at ICLR 2024

SimCLR SimSiam DINO iBOT

vs Vanilla x1.69 x1.55 x2.15 x1.50

Table 13: Time Overhead
Hardware/Software used: NVIDIA RTX 3080, AMD R7 5800X, 32GB RAM, Ubuntu 22.04,

PyTorch 2.0.1, CUDA 11.8

While technically there can be a memory overhead with HVS, with the number of sampled views
chosen in this paper, the backward pass of the methods that compute gradients only for the selected
view pair still consumes more memory than the selection part of HVS (even for 8 sampled views in
SimSiam). Note, that selection and the backward computation are never executed at the same time
but sequentially.

We emphasize that the time overhead factors were measured without any optimization of HVS’ effi-
ciency and, in our view, there are multiple ways to improve it. In our work, we opted for the easiest
implementation possible to showcase that selecting harder views dependent on the model learning
state can help boost performance in contrastive learning. Going forward with more compute-efficient
HVS solutions, one could think of:

• using *smaller resolution views for the view selection, as done in the multi-crop (Caron
et al., 2020) method used in DINO or

• using embeddings of views from “earlier” layers in the networks or
• using 4/8 bit low-precision for the view selection or
• using one GPU just for creating embeddings and selecting the hardest views while the

remaining GPUs are used for learning or
• switching between HVS and the standard pipepline in alternating fashion or
• bypassing forwarding of similar pairs and more

*we tested briefly for DINO ViT-S/16 and SimSiam ResNet-50 the effect of halving the image
resolutions:

• DINO ViT-S/16: 24% speed improvement (0.51 versus 0.39s per batch) with global/local
resolutions of 112² (instead of 224²) and 48² (instead of 96²)

• Simsiam RN50: x% speed improvement (x versus x) with resolution 112² (instead of
224²)

Our central arguments can be summarized as follows:

1. There are little to no diminishing returns when training longer with HVS (seen for 300
epoch trainings on ImageNet and for 4000 epochs on CIFAR100 in Fig. 5).

2. When normalizing Table 1 with respect to training time, HVS still yields slightly better
performances, even without any of the many possible efficiency improvements.

Given these arguments, we see our current investigation as an early-stage exploration that highlights
the novelty and efficacy of selecting more challenging views based on the model’s learning state for
improving contrastive and non-contrastive learning performance. Our work may lay the groundwork
for future explorations that could devise more efficient sampling methods to generate hard views and
which in turn could benefit various SSL approaches.

APPENDIX I HARD VIEW SELECTION OBJECTIVES

I.1 SIMCLR

In this section, we are going to introduce the application of HVS with the SimCLR objective. As-
sume a given set of images D, an image augmentation distribution T , a minibatch of M images
x = {xi}Mi=1 sampled uniformly from D, and two sets of randomly sampled image augmentations

21



Under review as a conference paper at ICLR 2024

A = {ti ∼ T }Mi=1 and B sampled from T . We apply A and B to each image in x resulting in xA

and xB . Both augmented sets of views are subsequently projected into an embedding space with
zA = gθ(fθ(x

A)) and zB = gθ(fθ(x
B)) where fθ represents an encoder (or backbone) and gθ a

projector network. Contrastive learning algorithms then minimize the following objective function:

L(T ,x; θ) = − log
exp(sim(zAi , z

B
i )/τ)∑

i ̸=j exp(sim(zAi , z
B
j )/τ)

(3)

where τ denotes a temperature parameter and sim a similarity function that is often chosen as cosine
similarity. Intuitively, when optimizing θ, embeddings of two augmented views of the same image
are attracted to each other while embeddings of different images are pushed further away from each
other.

To further enhance the training process, we introduce a modification to the loss function where
instead of having two sets of augmentations A and B, we now have ”N” sets of augmentations, de-
noted as A = {A1, A2, . . . , AN}. Each set Ai is sampled from the image augmentation distribution
T , and applied to each image in x, resulting in ”N” augmented sets of views xA1 ,xA2 , . . . ,xAN .

Similarly, we obtain N sets of embeddings zA1 , zA2 , . . . , zAN through the encoder and projector
networks defined as:

zAi = gθ(fθ(x
Ai)), i = 1, 2, . . . , N

We then define a new objective function that seeks to find the pair of augmented images that yield
the highest loss. The modified loss function is defined as:

Lmax(T ,x; θ) = max
k,l:k ̸=l

L(T ,x; θ)kl

where

L(T ,x; θ)kl = − log
exp(sim(zAk

k , zAl

k )/τ)∑
i ̸=j exp(sim(zAk

i , zAl
j )/τ)

and k, l ∈ {1, 2, . . . , N} and i, j ∈ {1, 2, . . . ,M}.

For each iteration, we evaluate all possible view pairs and contrast each view against every other
example in the mini-batch. Intuitively, the pair that yields the highest loss is selected, which is the
pair that at the same time minimizes the numerator and maximizes the denominator in the above
equation. In other words, the hardest pair is the one, that has the lowest similarity with another
augmented view of itself and the lowest dissimilarity with all other examples.

APPENDIX J ATTENTION MAPS

In this section, we visualize attention maps as a way to qualitatively study the potential effects and
differences of the HVS learning method and their resulting features. The provided attention maps
are from a DINO ViT-S/16 100 model, and we contrast the attention for each HVS and the baseline.
All input images are from the ImageNet-1k validation split. The color code used depicts strong
attention in yellow and weak attention in green and attentions from the HVS model are shown in the
top row and attentions from the baseline in the bottom row, respectively. To summrize this study, we
do not see apparent strong differences between HVS and the baseline. What we occasionally notice
is that the HVS models seem to capture the shape of some subtle/indistinct objects better (e.g. the
creek/river in the valley in Fig. 13, the lizard in Fig. 14, or the speaker in Fig. 15 or focus slightly
more on the context and background (Fig. 17, 18, and 19).

22



Under review as a conference paper at ICLR 2024

Figure 12:

Figure 13:

Figure 14:

23



Under review as a conference paper at ICLR 2024

Figure 15:

Figure 16:

Figure 17:

24



Under review as a conference paper at ICLR 2024

Figure 18:

Figure 19:

Figure 20:

25


	Introduction
	Related Work
	Contrastive Learning in SSL
	Optimizing for Hard Augmentations and Views in SSL

	Method
	Contrastive Learning Framework
	Hard View Selection
	Implementation and Evaluation Protocols

	Main Results
	Evaluations on ImageNet
	Transfer to Other Datasets and Tasks

	Empirical Analysis of Hard View Selection
	Q1: Which Patterns Underlying the Hard View Selection Can be Observed?
	Q2: Can a Manual Augmentation Policy be Inferred?
	Q3: What are the Effects of Empowering the Adversary?

	Conclusion
	Examples Sampled by HVS
	Training Loss
	Effect of More Views on Linear Evaluation Performance
	Assessing the Importance of Metrics with fANOVA
	Adversarial Learner for the View Generation
	Additional Results
	Object Detection and Instance Segmentation
	Easy View Selection

	Hyperparameters
	Evaluations on ImageNet
	DINO
	SimSiam
	SimCLR

	Transfer to Other Datasets and Tasks
	Object Detection and Instance Segmentation

	Computational Overhead of HVS
	Hard View Selection Objectives
	SimCLR

	Attention Maps

