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1 Additional Materials

Cooperative Communication. Cooperative communication formalizes a single problem com-
prised of interactions between two processes: teaching and learning. The teacher and learner have
beliefs about hypotheses, which are represented as probability distributions. The process of teaching
is to select data that move the learner’s beliefs from some initial state, to a final desired state. The
process of learning is then, given the data selected by the teacher, infer the beliefs of the teacher. The
teacher’s selection and learner’s inference incur costs. The agents minimize the cost to achieve their
goals. Communication is successful when the learner’s belief, given the teacher’s data, is moved to
the target distribution.

Formally, denote the common ground between agents: the shared priors on H and D by P(h) and
P(d), the shared initial matrix over D andH by M of size |D| × |H|. In general, up to normalization,
M is simply a non-negative matrix which also specifies the consistency between data and hypotheses1

In cooperative communication, a learner’s goal is to minimize the cost of transforming the observed
data distribution P(D) to the shared prior over hypotheses P(H). A learner’s cost matrix CL =
(CL

ij)|M|×|H| is defined as CL
ij = − logM . A learning plan is a joint distribution L = (Lij), where

Lij = PL(di, hj) represents the probability of the learner inferring hj given di. It is proved in [Wang
et al., 2019] that:

Proposition S.1. Optimal cooperative communication plans, L, is the EOT plan with cost CL and
marginals being η = P(d) and θ = P(h).

2 Proofs

Proposition 1. The UOT problem with cost matrix C, marginals θ, η and parameters ϵ = (ϵP , ϵη, ϵθ)
generates the same UOT plan as the UOT problem with tC, θ, η, tϵ = (tϵP , tϵη, tϵθ) for any
t ∈ (0,∞).

Proof. Consider that the UOT problem solution is

P ϵ(C, η, θ) = argmin
P∈(R≥0)n×m

{⟨C,P ⟩ − ϵPH(P ) + ϵηKL(P1|η) + ϵθKL(PT1|θ)}. (1)

1Data, di, are consistent with a hypothesis, hj , when Mij > 0.
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Algorithm 1 Unbalanced Sinkhorn Scaling

input: C, θ, η, ϵ = (ϵP , ϵη, ϵθ), N stopping condition ω

initialize: K = exp(−ϵPC), v(0) = 1m

while k < N and not ω do
u(k) ← ( η

Kv(k−1) )
ϵη

ϵη+ϵP , v(k) ← ( θ
KTu(k) )

ϵθ
ϵθ+ϵP

end while
output: M = diag(u)Kdiag(v)

where the objective function is linear on C and ϵ.

P tϵ(tC, η, θ) = argmin
P∈(R≥0)n×m

{⟨tC, P ⟩ − tϵPH(P ) + tϵηKL(P1|η) + tϵθKL(PT1|θ)}

= argmin
P∈(R≥0)n×m

t · {⟨C,P ⟩ − ϵPH(P ) + ϵηKL(P1|η) + ϵθKL(PT1|θ)}

= P ϵ(C, η, θ). (2)

Proposition 2. The UOT plan P in Equation 1, as a function of ϵ, is continuous in (0,∞)× [0,∞)2.
Furthermore, P is differentiable with respect to ϵ in the interior.

Proof. For simplicity, in this proof, for a vector v, we use both vi and v(i) to represent a component
of v.

By definition, the UOT plan P minimizes the objective function Ω(P ; ϵ) = ⟨C,P ⟩ − ϵPH(P ) +
ϵηKL(P1|η) + ϵθKL(PT1|θ). Since Ω is a strict convex function on P , there is only one minimal
P . So the UOT plan P is the solution to∇PΩ = 0. From a direct calculation,

(∇PΩ)ij = Cij + ϵP lnPij + ϵη(ln(

m∑
k=1

Pik)− ln η(i)) + ϵθ(ln(

n∑
k=1

Pkj)− ln θ(j))

and
(∇2

PΩ)ijkl =
ϵP δikδjl

Pij
+

ϵηδik∑m
t=1 Pit

+
ϵθδjl∑n
t=1 Ptj

.

As we assume that Pij > 0 for all i, j, all the terms above are well-defined. Besides, ∇PΩ is C1 on
η, θ and ϵ. Therefore, we can show P ϵ(C, η, θ) is continuous not only on ϵ but also on η and θ after
checking Hessian. From implicit function theorem, if we show the above Hessian is invertible for
ϵP > 0, then the results of the proposition are true. Equivalently, it suffices to show that detH ̸= 0
where matrix H is the flattened∇2

PΩ by mapping (i, j, k, l) 7→ (im+ j, km+ l).

Invertibility of H . Let r be the vector of reciprocals of row sums of P , i.e., ri = 1/
(∑

j Pij

)
,

and similarly, let c be the vector of reciprocals of column sums of P , i.e., cj = 1/ (
∑

i Pij). Then

(∇2
PΩ)ijkl =

ϵP δikδjl
Pij

+ ϵηδikri + ϵθδjlcj .

Let ϕ be the map (i, j) 7→ (im+ j), then ϕ induces a reshaping of P to a vector of size mn, denoted
by Pϕ. When there is no ambiguity, we may omit the ϕ superscript.

Further define pϕ as a vector of dimension mn where pϕk = ϵP /P
ϕ
k . By definition, Hϕ =

ϵP (diag(p
ϕ)) + ϵη1m ⊗ (diag(r)) + ϵθ(diag(c)) ⊗ 1n where 1k is the k × k matrix of ones,

and A ⊗ B is Kronecker product (tensor product of matrices). Decompose H = D + G where
D = ϵP (diag(p

ϕ)) and G = ϵη1m ⊗ (diag(r)) + ϵθ(diag(c))⊗ 1n.

From now on, we may use P -row, P -column to represent i, j style indices, and G-row, G-column
or simply row/column to represent those of G, or the ones in range [1,mn]. D is diagonal, and
detG = 0. Furthermore,
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(∗) any row or column of G with index k can be represented by an entry position
(i, j) of P by inverse of ϕ, and any rows of indices k1, k2, k3, k4 corresponding to
(i1, j1), (i1, j2), (i2, j1), (i2, j2) (i.e., determined as intersections of two P -rows and two
P -columns) is linearly dependent: G(k1,_) +G(k4,_) −G(k2,_) −G(k3,_) = 0, we denote
this property as (∗).

Structure of detH: Let D = diag(p1, p2, . . . , pmn), then detH is a polynomial on pk’s with
constant term 0. Each term in detH is of form f(I)

(∏
k/∈I pk

)
for each subset I ⊆ {1, 2, . . . ,mn},

and the coefficient f(I) = detG(I,I) where G(I,I) is the submatrix with lines of indices not in I,
i.e., the entries of G(I,I) are of the form Gij with i ∈ I and j ∈ I.

Next we show that f(I) is nonnegative for all I, then with pk > 0 for all k, we can conclude
that detH > 0. Since I ⊆ {1, 2, . . . ,mn}, ϕ−1(I) ⊆ {1, 2, . . . , n} × {1, 2, . . . ,m}, and ϕ is a
bijection, we may not distinguish I from ϕ−1(I), in order to make the statement neater.

1. [Operation-(∗) on I]: We want to investigate the operations on I producing a subset J such
that f(I) = f(J ). By the properties of determinant, (∗) induces one operation: when I con-
taining 4 integer pairs which can form the vertices of a rectangle, f(I) = 0. Moreover, for any
k1, k2, k3, k4 such indices in (∗), we can generate row G(k4,_) by G(k4,_) = G(k2,_)+G(k3,_)−G(k1,_),
then if {k1, k2, k3} ⊆ I, we can build G(k4,_) on any G(ki,_), thus the determinant detGrow

(I,I) =

±detG(I,I) (positive for k2 and k3, negative for k1 ). Similarly, if we follow the same operation
on columns, we have detGcol

(I,I) = ±detG(I,I). And when doing both, detGcol·row
(I,I) = detG(I,I).

Therefore, we know that if k1, k2, k3 ∈ I, and J = {k4} ∪ I\{ki} for any i = 1, 2, 3, then
f(I) = f(J ). Such operations changing I to J is denoted by operation-∗. In short, an operation-∗
moves an end of a small “L-shaped” set of 3 pairs along a P -row or a P -column, producing another
L-shaped set of 3 pairs.

2. [Regularized form of I, and decomposition of nondegenerate regularized form I♯ into L-shaped
subsets]: Once I or any J equivalent to I via operations-∗ contains 4 pairs satisfying condition (∗),
f(I) = 0, then we call I degenerate. In decomposing I, when we find it degenerate, we stop since
f(I) is known.

We decompose I as set of pairs inductively in the following way before stopping. Start with any
(i, j) ∈ I, we look for pairs of form (i, l) and (k, j) in I, adding them into the subset A(i,j)

containing (i, j). Then check the degeneracy, by looking for whether I contains a point (k, l) with
(i, l), (j, k) ∈ A(i,j), whenever I is degenerate, we stop since f(I) = 0. Next we enlarge A(i,j) by
changing the set I to a regularized form using operation-∗’s. For each (k, l) with (i, l) ∈ A(i,j), then
(k, j) can be constructed on (k, l) via an operation-∗ with (i, j) and (i, l). Thus we modify I into
J = (i, l) ∪ I\(k, l) that f(I) = f(J ), and adding (i, l) into set A(i,j). Similar process can be
done for those (k, l) ∈ I with (k, j) ∈ A(i,j).

After regularizing I and enlarging A(i,j) to maximum about (i, j), we get a regularized form J of
I, with f(I) = f(J ), and a component A(i,j) of L-shape. The set of J \A(i,j) has no elements of
form (k, l) with (i, l) ∈ A(i,j) or (k, j) ∈ A(i,j), as they are already moved to A(i,j) by operation-
∗. Therefore, J \A(i,j) is supported on a rectangular region by deleting all P -rows (k, _)’s and
P -columns (_, l)’s where k, l’s occur in A(i,j).

Repeating the L-shaped component construction above for J \A(i,j), we can transform I into a
regularized form (not unique or standard) I♯ and we have a decomposition I♯ =

⋃
A(it,jt) into

L-shaped components, which do not intersect with each other. The name “regularized form” is
given to the transformed set with a L-shaped decomposition, and since only operation-∗ is applied,
f(I) = f(I♯).
3. [Properties between the L-shaped subsets:] For each I which we did not conclude f(I) = 0 in the
last step, we get I♯ and a decomposition I♯ =

⋃
t∈T At into L-shaped subsets.

The construction of components At induces such a property: for two distinct components At there
is no elements (i, j) ∈ At and (k, l) ∈ As, in normal words, the At occupies certain P -rows and
P -columns which is distinct from those of As.

For (i, j) and (k, l) with i ̸= k and j ̸= l, Gim+j,km+l = 0 from the formula that Gim+j,km+l =
ϵηriδik + ϵθcjδjl. Therefore, the decomposition I♯ =

⋃
t∈T At induces a decomposition of matrix
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G(I♯,I♯) into blockwise diagonal matrix
GA1,A1 0 . . . 0

0 GA2,A2 . . . 0
...

. . .
...

0 0 . . . GAt,At

 (3)

So for a decomposition I♯ =
⋃

t∈T At, we have f(I♯) =
∏

t∈T f(At).

4. [f(A) for an L-shaped component]: The last part is to show f(A) > 0 for all L-shaped components.
Recall that Gim+j,km+l = ϵηriδik + ϵθcjδjl, so for A an L-shaped component with s P -rows and t
P -columns, G(A,A) in general is of form

G(A,A) =



r1 + c1 . . . r1 r1 0 . . . 0
...

. . .
...

...
...

. . .
...

r1 . . . r1 + ct−1 r1 0 . . . 0
r1 . . . r1 r1 + ct ct . . . ct
0 . . . 0 ct ct + r2 . . . ct
...

. . .
...

...
...

. . .
...

0 . . . 0 ct ct . . . ct + rs


(4)

Recall the formula det
[

E B
C D

]
= det(E) det(D − CE−1B) and the matrix determinant lemma

det(diag(c) + r11T ) = (1 + r1T diag(c)−11) det(diag(c)) =
∏

ci(1 +
∑

(r/ci)).

If s = 1 or t = 1, the determinant of G(A,A) can be calculated directly by the matrix determinant
lemma above.

If s > 1 and t > 1, we cut Eq. (4) into 4 blocks
[

E B
C D

]
where E contains the upper left t× t

part, B is zero but the last row, C is zero but the last column, D is a matrix in a similar form as E.

According to the characters of B,C stated above, it can be found that CE−1B =
c2t1E

−1
t,t 1

T which is an s × s-matrix. The entry E−1
t,t = detE(1:t−1,1:t−1)/ detE where

E(1:t−1,1:t−1) is the matrix E without the last row and last column, moreover, E−1
t,t =(∏t−1

1 ci(1 +
∑t−1

1 (r1/ci))
)
/
(∏t

1 ci(1 +
∑t

1(r1/ci))
)
=

1 +
∑t−1

1 (r1/ci)

ct(1 +
∑t

1(r1/ci))
< 1/ct. There-

fore, CE−1B = λ11T with λ < ct and D − CE−1B = diag(r2:s) + (ct − λ)11T , whose
determinant is positive according to the matrix determinant lemma.

As a consequence, detG(A,A) > 0 for each L-shaped components A. So combining the discussions
in [1-4], we have detH = det(D +G) > 0.

Then the implicit function theorem implies the differentiability of P ϵ on ϵ.

Proposition 3. For any finite sP , sη, sθ ≥ 0, the limit of P ϵ exists as ϵ approaches to (∞, sη, sθ).
In fact, limϵ→(∞,sη,sθ) P

ϵ
ij = 1 for all i, j (Limit 1). Moreover, P ϵ converges to the solution to

min⟨C,P ⟩ − sPH(P ) + sθKL(PT1|θ), with constraint P1 = η, (5)

as ϵ→ (sP ,∞, sθ) (Limit 2). Similarly, P ϵ converges to the solution to

min⟨C,P ⟩ − sPH(P ) + sηKL(P1|η), with constraint PT1 = θ, (6)

as ϵ → (sP , sη,∞) (Limit 3). And in the case when ϵ → (sP ,∞,∞), the matrix P ϵ converges to
the EOT solution (Limit 4):

min⟨C,P ⟩ − sPH(P ), with constraints PT1 = θ and P1 = η. (7)

When ϵ→ (∞,∞, sθ), (∞, sη,∞) or (∞,∞,∞), the limit does not exist, but the directional limits
can be calculated..
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Proof. Recall that H(P ) = −
∑

ij(Pij lnPij − Pij), (∇PH)ij = − lnPij , and H(P ) is strictly
concave, therefore H has a unique maximum mn at Pij = 1, denoted by 1. Similarly, KL(a|b) =∑

i(ai(ln ai − ln bi)− ai + bi), ∇aKL(a|b)i = ln ai − ln bi, KL is strictly convex, therefore KL
has a minimum 0 at ai = bi for all i.

Limit 1. Shown by contradiction: When ϵ→ (∞, sη, sθ), suppose the limit limϵ→(∞,sη,sθ) P
ϵ
ij for

some (i, j) does not exist, or is not 1. Thus there is e > 0 that, for any δ > 0 and N > 0, there
exists a parameter ϵ1 = (ϵP , ϵη, ϵθ) such that ϵP > N , |ϵη − sη| < δ and |ϵθ − sθ| < δ, satisfying
|P ϵ

ij − 1| > e.

However, for any 0 < e < 1/2, let δ = 1, let E = (1+e) ln(1+e)−(1+e)+1 > 0, minΩ(P ; ϵ) ≤
Ω(1; ϵ) < C for some G > 0 where (1)ij = 1 for all (i, j), and any ϵ ∈ {(ϵP , ϵη, ϵθ) : sη/2 < ϵη <
3sη/2, sθ/2 < ϵθ < 3sθ/2, }. So there is a N > 0 such that NE > G + maxij Cij + mn + L
where L = − inf{ϵηKL(P1|η) + ϵθKL(P t1|θ)}, meaning those P with |Pij − 1| > e for some
(i, j) is not minimizing Ω.

The contradiction indicates that limϵ→(∞,sη,sθ) P
ϵ
ij = 1 for all i, j.

Limit 2 & 3: The situation of ϵθ →∞ and ϵη →∞ are similar, so we only prove for ϵθ →∞ case.
Let P̂ denote the solution to Eq. (6).

Let P̂ be the solution to the optimization with constraints. We first show that
limϵ→(sP ,sη,∞)

∑n
k=1 P

ϵ
kj = θj .

This is similar to limit 1. Suppose the limit either does not exist or is not θj , then there exists an e > 0
such that for any N > 0, δ > 0, there exists ϵθ > N , |ϵη − sη| < δ and |ϵP − sP | < δ, such that∣∣∣∣∣

n∑
k=1

P ϵ
kj − θj

∣∣∣∣∣ > e (8)

for some j. Thus KL((P ϵ)T1|θ) > E for some E > 0. Consider that ⟨C,P ⟩ ≥ 0, H(P ) ≥ −mn
and KL(P1|η) ≥ 0 are lower bounded, we can take sufficiently large N such that the P ϵ satisfying
Eq. (8) satisfy Ω(P ϵ; ϵ) > Ω(P̂ ; ϵ), making P ϵ fail to optimize Ω(·; ϵ), which is a contradiction.
Thus we have limϵ→(sP ,sη,∞)

∑n
k=1 P

ϵ
kj = θj .

For each ϵ = (ϵP , ϵη, ϵθ), let θϵ denote the (P ϵ)T1, then for any ϵ, the solution P ϵ is also the solution
to

min
P
⟨C,P ⟩+ ϵPH(P ) + ϵηKL(P1|η), with constraint PT1 = θϵ. (9)

Denote Φ(P, ϵP , ϵη) := ⟨C,P ⟩+ ϵPH(P ) + ϵηKL(P1|η) When ϵP ∈ (0,∞), the new objective
function Φ(P, ϵP , ϵη) is continuous on P and ϵP ,ϵη, and each minimization problem gets a unique
solution since the objective function is strictly convex. Therefore, the limit limϵ→(sP ,sη,∞)P ϵ = P̂ .
We show this via contradiction:

Suppose the opposite, there exists some ξ > 0 such that ||P ϵ − P̂ ||2 > ξ for ϵ arbitrarily close to
(sP , sη,∞). Let

α := inf
PT e=θ,||P−P̂ ||2>ξ

Φ(P, sP , sη)− Φ(P̂ , sP , sη),

α > 0 since the minimum P̂ is unique and the objective is strictly convex. The sets PT e = θϵ is
compact since it is closed and bounded, so there exists bounds b = (b1, b2, b3) for ϵ = (ϵP , ϵη, ϵθ)
such that in the bound where |ϵP − sP | < b1, |ϵη − sη| < b2 and ϵθ > b3, maxΦ(P, sP , sη) −
Φ(P ♯, ϵP , ϵη) < α/3 for P with PT e = θ and P ♯ its Euclidean projection to {PT e = θϵ}, and
maxΦ(P, ϵP , ϵη)− Φ(P ♭, sP , sη) < α/3 for P with PT e = θϵ and P ♭ its Euclidean projection to
{PT e = θ}.
Let ϵ be a parameter in the above bound b to (sP , sη,∞), where P = argminPT e=θϵΦ(P, ϵP , ϵη) is
ξ far from P̂ . Then Φ(P, ϵP , ϵη) > Φ(P ♭, sP , sη)−α/3 > Φ(P̂ , sP , sη)+2/3α > Φ(P̂ ♯, ϵP , ϵη)+

α/3 > Φ(P̂ ♯, ϵP , ϵη), which is a contradiction to the assumption that P is the argmin.

Limit 4: Similar to the previous two limits, we can say that limϵ→(sP ,∞,∞)

∑n
k=1 P

ϵ
kj = θj and

limϵ→(sP ,∞,∞)

∑m
k=1 P

ϵ
ik = ηi. Then the problem becomes the EOT problem, which has a unique

solution.
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Boundaries at ϵη = 0 or ϵθ = 0: It is simple to check the continuity when ϵη → 0 or ϵθ → 0. From
Prop. 2, the continuity and differentiability hold for ϵη → 0 or ϵθ → 0 when ϵP > 0.

Nonexistence of the limits when ϵP , ϵη →∞, and directional limits: Let a sequence ϵ1, ϵ2, . . .
where ϵi = (ϵiP , ϵ

i
η, ϵ

i
θ) satisfy lim ϵiP = lim ϵiη = ∞ and lim(ϵiη/ϵ

i
P ) = t, then the limit P of P ϵ

satisfy Pij = t(ln cj − lnn)/(t+ 1), since the limit minimizes the following objective function

H(P ) + tKL(P1|η).

The reason is, as
∑

ηi = 1, H(P ) and KL(P1|η) cannot vanish for the same P , thus the minima of
objective function approaches to infinity, therefore the finite terms ⟨C,P ⟩ and ϵθKL(PT1|θ) tend to
have no effect on the minimal point P as ϵP , ϵη increases to infinity.

A direct consequence of the above discussion is, when t changes, the limits P of those sequences
changes, which indicates that the limit of P ϵ as ϵ→ (∞,∞, sθ) fails to exist. And similar situation
happens when ϵ→ (∞, sη,∞)

Nonexistence of the limits when ϵP , ϵη, ϵθ →∞, and directional limits : Similar to the discus-
sions above, let the sequence ϵ1, ϵ2, . . . where ϵi = (ϵiP , ϵ

i
η, ϵ

i
θ) satisfy limi→∞ ϵi = (∞,∞,∞).

Further let lim(ϵiη/ϵ
i
P ) = u, lim(ϵiθ/ϵ

i
P ) = w, then P ϵi converges to the solution to the problem

H(P ) + uKL(P1|η) + wKL(PT 1|θ),

which could be considered as another UOT problem with cost function constantly 0.

Corollary 4. Consider a UOT problem with cost C = − logP(d|h), marginals θ = P(h), η ∈ P(D).
The optimal UOT plan P (1,ϵη,ϵθ) converges to the posterior P(h|d) as ϵη → 0 and ϵθ →∞. Bayesian
inference is a special case of GBT with ϵ = (1, 0,∞).

Proof. As direct application of Limit 3 of Proposition 3, we only need to show that the optimal plan
P (1,0,∞) is propositional to the posterior P(h|d).

P (1,0,∞) = argmin
P∈U(θ)

K(P ) := argmin
P∈U(θ)

{⟨C,P ⟩ −H(P )}. (10)

where U(θ) = {P ∈M(D ×H)|PT1 = θ}.

Let λ ∈ R+m, consider the corresponding Lagrangian problem:

L(P,λ) := ⟨C,P ⟩ −H(P ) + ⟨λ, (PT1− θ)⟩

Partial derivatives ∂Pij = 0 and ∂λjL = 0 result the following system of equations:

logPij − logP(di|hj) + λj = 0
∑
i

Pij − P(hj) = 0 (11)

Calculation shows that the solution to Equation 11 is Pij =
P(di|hj)P(hj)∑

i P(di|hj)
= P(di|hj)P(hj) ∝

P(hj |di). Hence the proof is completed.

Corollary 5. Consider a UOT problem with θ ∈ P(H), η = P(d). The optimal UOT plan P (ϵP ,∞,0)

converges to η ⊗ 1 as ϵP →∞. Frequentist Inference is a special case of GBT with ϵ = (∞,∞, 0).

Proof. As direct application of Proposition 3, we only need to show that P (∞,∞,0) = η ⊗ 1. Notice
that the limit problem

P ϵ(C, η, θ) = argmin
P∈(R≥0)n×m

{⟨C,P ⟩ − ϵPH(P ) + ϵηKL(P1|η) + ϵθKL(PT1|θ)}. (12)

6



as ϵ→ (∞,∞, 0) along ϵP -up direction is equivalent to

P (∞,∞,0) = argmin
P∈(R≥0)n×m

H(P ), with constraint P1 = η (13)

Hence P (∞,∞,0) = η ⊗ 1.

Corollary 6. Let cost C = − logM , marginals θ = P(h) and η = P(d). The optimal UOT plan
P (1,ϵη,ϵθ) converges to the optimal plan L as ϵη → ∞ and ϵθ → ∞. Cooperative Inference is a
special case of GBT with ϵ = (1,∞,∞), which is exactly entropic Optimal Transport [Cuturi, 2013].

Proof. According to proposition 1, L = P (1,∞,∞), and the convergence result is a direct application
of Limit 4 of Proposition 3

Corollary 7. Consider a UOT problem with cost C = − logP(d, h), m = n, and marginals θ = η
are uniform. The optimal UOT plan P (ϵP ,ϵη,ϵθ) approaches to a diagonal matrix as ϵη, ϵθ →∞ and
ϵP → 0. In particular, discriminative learner is a special case of GBT with ϵ = (0,∞,∞), which is
exactly classical Optimal Transport [Villani, 2008].

Proof. Limit 4 of Proposition 3 implies the convergence of P (ϵP ,ϵη,ϵθ) → P (0,∞,∞) as ϵη, ϵθ →
∞ and ϵP → 0. When m = n, P (0,∞,∞) is a permutation matrix is the result of Wang et al.
[2020b][Proposition 8].

Proposition 8. In GBT with ϵθ =∞, cost C and current belief θ. The learner updates θ with UOT
plan in the same way as applying Bayes rule with likelihood from P ϵ(C, η, θ), and prior θ.

Proof. From the GBT algorithm (Algorithm 1 in the main text), for a general data point di chosen,
the GBT takes the vector normalization of some row P ϵ, i.e., θ′ = P ϵ

(i,_)/(
∑

j P
ϵ
ij).

On the other hand, when we apply Bayes rule to P ϵ, prior is θ = P(h), likelihood P(d|h) is the
column normalization of P ϵ, satisfying P(di|hj) = P ϵ

ij/(
∑

i P
ϵ
ij) = P ϵ

ij/θj . The last equality is
because θ(i) =

∑
j P

ϵ
ij when ϵθ = ∞. So the posterior P(h|di) is the vector normalization of

P(di|h)P(h), by P(di|hj)P(hj) = P ϵ
ij/θj ∗ θj = P ϵ

ij . Therefore, P(hj |di) = θ′(hj).

Now, we introduce some notations will be used in the following proofs.

Notations. Denote the set of all possible belief by ∆ = P(H). Distribution of Θk is denoted by µk.
We only consider the case where no two hypotheses are the same inH. Hence we make the following
assumption that columns of exp(−ϵPC) are not differ by a multiplicative scalar, i.e. columns of C
are not differ by an additive scalar.
Lemma S.2. For ϵ = (ϵP ,∞,∞), ϵP ∈ (0,∞), given cost C with initial belief θ0 ∈ P(H) and
fixed teaching and learning distribution ηk = η ∈ P(D) for all k, then the belief random variables
(Θk)k∈N have the same expectation on h: EΘk

[θ(h)] = θ0(h).

Proof. We start the proof by showing EΘk
[θ(h)] = EΘk−1

[θ(h)] for k ≥ 1. Notice that given cost C
and data marginal η, an observed data d ∈ D and UOT planning uniquely determines a map from a
learner’s initial belief θk−1 to one’s posterior belief θk. Denote this map by Td : θk−1 7→ θk. Let the
distribution of Θk−1 over P(H) be µk−1, denote its support by Sk−1. Then the following holds:

EΘk
[θ(hj)] =

∑
θ∈Sk−1

µk−1(θ)
∑
di∈D

ηiTdi(θ)(hj) =
∑

θ∈Sk−1

µk−1(θ)
∑
di∈D

ηi
Mk(i, j)

ηi

=
∑

θ∈Sk−1

µk−1(θ)
∑
di∈D

Mk(i, j) =
∑

θ∈Sk−1

µk−1(θ)θ(h
j) = EΘk−1

[θ(h)]

Hence EΘk
[θ(h)] = EΘk−1

[θ(h)] = · · · = EΘ0
[θ(h)] = θ0(h).
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Theorem 10 (PS). Consider a learning problem with initial belief θ0 ∈ P(H), and the true hypothesis
h∗ defined by η ∈ P(D). If the learner’s data distribution ηk = η, then belief random variables
(Θk)k∈N converge to the random variable Y in probability, where Y =

∑
h∈H θ0(h)δh and Y is

supported on {δh}h∈H with P(Y = δh) = θ0(h) for ϵη = ϵθ =∞ and ϵP ∈ (0,∞).

Proof. Step 1: First, we show the following claim inspired the proof proposition 5.1 in Wang et al.
[2020a]

Claim: limk→∞ µk(∆ϵ) = 0, for any ϵ > 0, where ∆ϵ := {θ ∈ ∆ : θ(h) ≤ 1− ϵ,∀h ∈ H}.
Assume the claim does not hold, then there exists α > 0 and a subsequence (µki

)i∈N such that
µki

(∆ϵ) > α for all i.

Let the center of ∆ be u, we define L(µ) := Eµf(θ), where f(θ) = ∥θ−u∥22, (f may also be chosen
as entropy H(θ)). Then L(µk+1) = Eµk

(Ed∼ηf(Td(θ))).

Notice that f is strictly convex, by Jensen’s inequality,

Ed∼ηf(Td(θ))
(a)

≥ f(Ed∼ηTd(θ))
(b)
= f(θ) (14)

Here (b) holds because:

Ed∼ηTd(θ)
(c)
=

∑
di∈D

ηi · (Mk(i, _)/ηi) =
∑
di∈D

Mk(i, _)
(d)
= θ (15)

(c), (d) hold since Mk has marginals η, θ.

Moreover, equality holds in (a) if and only if Td(θ) = θ for all d ∈ D. Thus rows of Mk are the
same up to a scalar. This implies either (1) only one column of Mk is none zero, thus Θk ≡ δh for
some h or (2)Mk has at least two columns are differed by a scalar.

In the case of (1), if θ0 ̸= δh, Θk ≡ δh is contradict to Lemma 8. Otherwise, Y = δh, the result
holds. In the case of (2), according to Wang et al. [2019], Mk is cross-ratio equivalent to exp(−ϵPC),
hence exp(−ϵPC) has two columns differ by a multiplicative scalar, contradict to the assumption.

Thus for any θ ∈ ∆ϵ, Ed∼ηf(Td(θ)) > f(θ). Therefore L(µk+1) > L(µk) for any k.

Moreover, notice that ∆ϵ is compact, there is a lower bound β > 0, such that Ed∼ηf(Td(θ))−f(θ) >
β for all θ ∈ ∆ϵ. Therefore:

L(µki+1) = Eθki+1∈∆ϵ
(Ed∼ηf(Td(θ))) + Eθki+1∈∆\∆ϵ

(Ed∼ηf(Td(θ)))

> Eθki
∈∆ϵ

(f(θ)) + Eθki
∈∆\∆ϵ

(f(θ)) + α ∗ β
= L(µki

) + α ∗ β.
(16)

Thus L(µki+s) > L(µki
) + s ∗ α ∗ β → ∞ as s → ∞. On the other hand, by definition, f(θ) is

bounded above by the diameter of ∆ under l2 norm, so L(µ) is also bounded above. Contradiction!
Therefore, the Claim holds.

Step 2. We show limk→∞ P(Θk ∈ ∆h
1−ϵ) = limk→∞ µk(∆

h
1−ϵ) = θ0(h), for all h ∈ H where

∆h
1−ϵ := {θ ∈ ∆ : θ(h) > 1− ϵ}.

For a fixed h ∈ H, we have:

θ0(h)
(a)
= EΘk

(θ(h))
(b)
= Eθk∈∆h

1−ϵ
(θ(hj)) + Eθk∈∆u

1−ϵ
(θ(h)) + Eθk∈∆ϵ(θ(h))

(c)

≤ µk(∆
h
1−ϵ) · 1 + µk(∆

u
1−ϵ) · ϵ+ µk(∆ϵ) · 1

= µk(∆
h
1−ϵ) + ϵ+ µk(∆ϵ)

where ∆u
1−ϵ denotes the union of all the other corners of ∆, i.e. ∆u

1−ϵ := ∪h′∈H\h∆
h′

1−ϵ. Here (a) is
direct application of Lemma 8; (b) holds since ∆ = ∆h

1−ϵ ∪∆u
1−ϵ ∪∆ϵ. (c) holds because in general
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θ(hj) < 1, and θ(hj) < ϵ for any θ ∈ ∆u
1−ϵ. Therefore, 0 ≤ θ0(h)−µk(∆

h
1−ϵ) ≤ ϵ+µk(∆ϵ)→ ϵ as

k →∞ hold for any choice of ϵ. Pick a sequence of ϵ→ 0, we have that limk→∞ µk(∆
h
1−ϵ) = θ0(h).

Hence combining results from Step 1 and Step 2, we have shown Θk converges to Y in probability:
P(|Θk − Y | > ϵ) ≤ µk(∆ϵ) +

∑
h∈H(θ0(h) − µk(∆

h
1−ϵ)) → 0 as k → ∞. Hence the proof is

completed.

Corollary 11. Given a fixed data sequence di sampled from η, if θk converges to δhj , then the j-th
column of Mk converges to η.

Proof. For ϵ > 0, there exists N > 0 such that θk(hj) > 1−ϵ for any k > N . So
∑

j′ ̸=j Mk(i, j
′) <

ϵ for any di ∈ D, on the other hand
∑

j′ Mk(i, j
′) = ηi. This implies that ηi − ϵ < Mk(i, j) < ηi,

so Mk(i, j)→ ηi as ϵ→ 0. Therefore the j-th column of Mk converges to η.

Proposition 12. Consider a learning problem with cost C, initial belief θ0 ∈ P(H), the true
hypothesis h∗ defined by η ∈ P(D). If the learner updates the estimation ηk with observed data
(sampled from η) as stated above, then belief random variables (Θk)k∈N satisfies that for any s > 0,
limk→∞

∑
h∈H P(Θ(h) > 1− s) = 1. As a consequence, Mk as the transport plan has a dominant

column (hj) with total weights > 1− s, and |(Mk)ij − ηk(i)| < s. In fact, as long as the sequence
of ηk as random variables converges to η in probability, the above proposition holds.

Proof. The proof is similar to Step 1 of Theorem 10. The major difference is that data are sampled
from η in each step, whereas the learner only has an estimation ηk at round k. Therefore, under
current condition, equality (b) of Eq 14 need to be modified as following:

Ed∼ηTd(θk) =
∑
di∈D

ηi · (Mk(i, _)/ηik) =
∑
di∈D

Mk(i, _) · η
i

ηik
= θk ⊙ vk. (17)

where vk = ( η
i

ηi
k

) is a vector of the size of the data set D, and ⊙ represents element-wise product.
Hence Ed∼ηf(Td(θk)) = f(θk ⊙ vk) holds for all θk ∈ ∆. Since ηk → η as k → ∞. For any

α∗β > 0, there exists N > 0 such that for k > N , |1− ηi

ηi
k

| <
√

α∗β
2n . Hence: |f(θk⊙vk)−f(θk)| ≤

α∗β
2 . Then corresponding to Eq 16, for ki > N , we have:

L(µki+1) = Eθki+1∈∆ϵ(Ed∼ηf(Td(θ))) + Eθki+1∈∆\∆ϵ
(Ed∼ηf(Td(θ)))

> Eθki
∈∆ϵ

(f(θk ⊙ vk)) + Eθki
∈∆\∆ϵ

(f(θk ⊙ vk)) + α ∗ β

> Eθki
∈∆ϵ(f(θk)) + Eθki

∈∆\∆ϵ
(f(θk))−

α ∗ β
2

+ α ∗ β

= L(µki
) +

α ∗ β
2

.

Hence the contradiction on the upper bound of L(µki+1) still holds, which shows the claim that:
limk→∞ µk(∆ϵ) = 0. So limk→∞

∑
h∈H P(Θ(h) > 1− s) = 1. The proof for the second part of

the proposition follows exactly as Corollary 11.

Proposition 14. For ϵ = (ϵP , ϵη, 0) with ϵP ∈ (0,∞), as ηk → η almost surely, the sequence
Θk of posteriors as a sequence of random variables converges in probability to variable Θ, where
P(Θ = vi) = η(i) and vi = P(i,_)/

(∑m
j=1 Pij

)
and P = P ϵ(C, η, θ). Therefore, for any s > 0,

limk→∞
∑

h∈H P(|Θk(h)− 1| < s) = 0 for generic (for all but in a closed subset) cost C and η, θ.

Proof. First, ϵθ = 0 means that P ϵ(C, η, θ) is independent of θ. Therefore, Mk = P ϵ(C, ηk, θ)
and has a limit P ϵ(C, η, θ), regardless of the concrete posterior θk. From construction of GBT, the
posterior Θk is determined by P(Θk = wi

k) = η(i) where wi
k = (Mk)(i,_)/

∑m
j=1(Mk)ij . Given

the coupling (Θk,Θ) by setting only P(Θk = wi
k,Θ = vi) = η(i) for each i, we may calculate

P(|Θk −Θ| < s) converge to 1 as Mk converge to P ϵ(C, η, θ).
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For generic C, η, θ, the probability of P ϵ(C, η, θ) having a row with only one nonzero entry is 0.

Remark: As ηk → η almost surely, for any e > 0, there exists N > 0, such that, when k > N , the
probability of having ηk e-close to η is 1. Thus in almost all episodes, with generic C, η, θ, when e is
small enough, for any ||η′ − η|| < e (using p−∞ norm, same for below), the row-normalized (to
1n) UOT plans

max
i
||P ϵ

r (C, η
′, θ)(i,_) − P ϵ

r (C, η
′, θ)(i,_)|| <

1

4
min
i,j
||P ϵ

r (C, η, θ)(i,_) − P ϵ
r (C, η, θ)(j,_)||

where P ϵ
r is the row normalization of P ϵ.

Therefore, for such e, we may find an N > 0 such that for any k, k′ > N , P ϵ
r (C, ηk, θ) ̸=

P ϵ
r (C, η

′
k, θ). However, for generic η, say, no entry of η is 0, ||θk − θ′k|| < when k, k′ > N and

dk ̸= dk′ . Thus the posterior sequence of almost every episode fails to converge.

The original statement of the following Proposition is problematic, we changed the statement
accordingly.

Proposition 16. For a Bayesian learner, the posterior sequence {Θk} converges almost surely to δh
where h = argminh′∈H KL(η|M(_,h′)) and M = e−C/ϵP , η = 1

p

∑p−1
k=0 ηk.

Proof. Based on the proof of Prop. 9, the behavior of the posterior sequence is determined by teaching
data governed by the Central Limit Theorem.

We calculate log (Θk(h
′)/Θk(h)) for any h′ ̸= h. With a tuple (d0, d1, . . . , dk) of data points

sampled from η⃗ periodically,

log (θk(h
′)/θk(h)) =

k∑
s=0

(
log(M(ds,h′))− log(M(ds,h))

)
=

∑
d∈D

λd(log(M(d,h′))− log(M(d,h))

= t
(
KL(λ|M(_,h′))−KL(λ|M(_,h))

)
. (18)

where λ is the empirical distribution of the data points (d0, d1, . . . , dk).

According to the central limit theorem, the teacher following η⃗ produces a sequence with associated
empirical distribution η almost surely. Thus the posterior sequence converges to δh with h of the
greatest KL-divergence.

Proposition 17. For ϵ in the interior of the cube, for (PS) problem, the sequence {Θ⃗t} (random vari-
ables overP(H)p) form a time-homogeneous Markov chain. For (RS) problem, {(Θ⃗t,

1
pt

∑p−1
k=0 tηk)},

the random variable sequence producing samples {(θ⃗t, 1
pt

∑pt−1
k=0 δdk

)}, forms a Markov chain.

Proof. Define Φt = (Θ⃗t,
1
pt

∑p−1
k=0 tηk), whose sample is ϕt = (θ⃗t, λt) where θ⃗t =

(θ(t−1)p, θ(t−1)p+1, . . . , θtp−1) and λt is the empirical (statistical) distribution of the set of taught
data points {d0, d1, . . . , dtp−1}.
Since in (PS) problem, θk is determined by θk−1, a fixed η and dk−1, via the UOT solution. Thus,
Θk depends on Θk−1 only. So, Θ⃗t depends only on Θ⃗t−1, showing that Θ⃗t is time-homogeneous
Markovian.

For (RS) problem, λt is determined by λt−1 and the sample (d(t−1)p, d(t−1)p+1, . . . , dtp−1) from η⃗,
and θ⃗t is determined by θ⃗t−1 (in fact, just the last element θ(t−1)p−1) and λt−1. Therefore, we get
the Markovianess.
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3 Additional Simulations

Interpolation between learning models can be investigated properly under GBT. Human learners
appear to be capable of moving between different learning models gradually. Consider an individual
at a carnival who is playing a game. At each of 10 trials, a bit of information is provided, but
the available reward decreases. The individual has a pool of tickets with which they can bet on
the outcome at each trial. The question is how the individual should update their beliefs in order
to maximize their rewards. On the first trial, their belief update, in order to accurately reflect the
evidence, should follow Bayes rule. However, for the last trial, one should focus bets on the most
probable outcome in order to maximize chances for rewards, that is, their beliefs should be optimized
for discriminating among the possible outcomes. GBT offers a coherent way of interpolating between
these two approaches to provide candidate strategies on the intermediate steps. Such situations
are common where there is an explicit constraint on the time horizon after which point no further
evidence can be obtained, and there are incentives to act early, rather than to wait until evidence has
fully accumulated; for example, identifying dangerous situations (tiger or not? poisonous or not?).

We now demonstrate how continuity of GBT (section 3.1) allows one to gradually interpolate between
Bayesian and discriminative learning over steps (rather than a sharp switch).

3.1 Simulation Setup

Suppose a learner who observes data sampled from a true hypothesis P(d|h∗), and needs to make a
conclusion on whether h∗ is one of the hypotheses inH within a fixed number N of observations.

Here we compare a baseline learner who utilizes Bayesian inference (ϵ = (1, 0,∞)) on the first
N − 1 observations, and switch to discriminative learning (ϵ = (0,∞,∞)) on the last observation,
against learners who interpolate from Bayesian to discriminative learning gradually along a sequence
of models on curves in GBT. Two curves along with intermediate models are shown red and orange
in Figure 1.

We take a random sampled M of shape 4× 4 as an example,

M =

 0.225779 0.014886 0.433787 0.050735
0.613779 0.322347 0.172658 0.109262
0.069799 0.620178 0.29083 0.243635
0.090643 0.042588 0.102725 0.596368

 .

Thus |H| = |D| = 4. Set N = 10 and start from uniform θ = (0.25, 0.25, 0.25, 0.25).

Simulation details: We perform 40000 trials in total. For each trial s (or say each episode), we
uniformly sample Xs ∈ P(H), and let the true hypothesis h∗ be a normalized (thus a distribution)
column of M , uniformly sampled from the 4 columns. While teaching the episode, in each round,
we sample a hypothesis h ∈ H following Xs, then sample a data d following the column of M
corresponding to d. During inference, we set ηk by counting the frequency of each d ∈ D (starting
from 1 to avoid 0 in ηk) and then normalize, as stated in (RS) model in Sec. 3.

Figure 1: Baseline (sharp change) and two paths we follow on the parameter space of GBT.
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3.2 Results

Following paths shown in Fig. 1, for baseline (blue, left), path 1 (orange, middle), and path 2 (red,
right), the distribution of maximal component of each posterior at round 10 are shown in histograms
of 30, and the entropy of these posteriors are plotted in the lower three figures.

Conclusiveness (minimal l1 distance between posterior and a 1-hot vector) and posterior entropy are
plotted as histograms. The results show that the smoother path may lead to a more conclusive posterior.
Numerical results: Conclusiveness of Blue: mean 0.9406, standard deviation 0.1300. Conclusiveness
of Orange: mean 0.9964, standard deviation 0.0327. Conclusiveness of Red: mean 0.9834, standard
deviation 0.0676. Furthermore, compared with a sudden jump, gradual interpolations have lower
entropy. Numerical results: entropy of Blue: mean 0.1261, standard deviation 0.2435, entropy of
Orange: mean 0.0079, standard deviation 0.0629; entropy of Red: mean 0.0388, standard deviation
0.1336.

Thus learning tends to be more conclusive along these paths. Here conclusiveness means that the
ability of getting a conclusion (one component of the posterior eventually becoming dominant).
Furthermore, the entropy distributions shown in the lower figures also illustrate this point, as compare
to baseline, gradual interpolations have lower entropy.

It is necessary to consider that, the two paths and interpolations are chosen for demonstration purpose,
by no means they are optimal. However, we believe GBT is capable of facilitating exploration of
such optimization.

Figure 2: Results. Upper: distribution of maximal component of posterior. Lower: Entropy distribution of
posteriors. Left: baseline. Middle: along path 1. Right, along path 2.

3.3 Sequential GBT: Dynamic

There are some more data from simulation, all with M of size 3× 3, exploring the effects of varying
ϵ and choosing different M .

We first investigate the behavior when ϵ = (1, ϵη, ϵθ) where ϵη, ϵθ ∈ [0,∞). We choose a grid
(10−2, 10−1, . . . , 109)2 and measure asymptotic diverging distance 1

p

∑tp−1
k=(t−1)p ||E[Θk]−E[Θ⃗t]||2

at each point in the grid, where M and the circular teaching path is shown in Fig. 3 (a), and the result
is shown in (b). The “asymptotic” value is the average of last 5 periods in the 15 period simulations
where t = 15, period p = 20 and total steps k = 300 in each episode (empirically, the last 5 periods
are usually stable enough to represent the asymptotic situation). The mean of 10240 episodes are
taken to estimate the expectation of Θk and ⃗Thetat. We see a higher contribution of ϵθ than ϵη in
controlling the posteriors’ converging either to a point or to an attractive curve.

Next, we choose a set of M randomly, and set the teacher teaching along a circle of period 20. We are
interested in the relation between the matrix and the area ratio (posterior loop divided by the teaching
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Figure 3: Influence of ϵ on the average distance between stable posterior and the Euclidean barycenter of each
posterior period. (a) The setup, M and the teaching path. (b). the result. With the asymptotic average diverging
distance of each period represented by colors of each cell, and the parameter ϵ represented by positions, it can
be seen from the figure that when ϵθ is large, the average posterior tends to converge and fail to detect the
periodicity of teacher. The most sensitive ϵ occurs when ϵθ ≈ 10.

Figure 4: The same figure as in Fig. 3 (b), with a finer grid (1, 2, 4, 8, . . . , 128)2. The setup of M and the
teacher stays the same as in Fig. 3 (a)

loop). In Fig. 5, the area ratio roughly follows a linear relation to the area of the 3 columns of M
(equivalently, a constant times det(M)). A linear regression with the R value 0.997 shows that the
slope is 0.318 and the intercept is 0.005.
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