
A Reduction to Abstract Reachability

In this section, we detail the construction of the abstract graph Gφ from a SPECTRL specification φ.
Given two sets of finite trajectories Z1,Z2 ⊆ Zf , let us denote by Z1 ◦ Z2 the concatenation of the
two sets—i.e.,

Z1 ◦ Z2 =

{
ζ ∈ Zf

∣∣∣∣ ∃i < t . ζ0:i ∈ Z1

∧ ζ(i+1):t ∈ Z2

}
.

In addition to the abstract graph G = (U,E, u0, F, β,Zsafe) we also construct a set of safe terminal
trajectories Zterm =

⋃
u∈F Zuterm where Zuterm ⊆ Zf is the set of terminal trajectories for the final

vertex u ∈ F . Now, we define what it means for a finite trajectory ζ to satisfy the pair (G,Zterm).

Definition A.1. A finite trajectory ζ = s0
a0−→ s1

a1−→ · · · at−1−−−→ st inM satisfies the pair (G,Zterm)
(denoted ζ |= (G,Zterm)) if there is a sequence of indices 0 = i0 ≤ i1 < · · · < ik ≤ t and a path
ρ = u0 → u1 → · · · → uk in G such that

• uk ∈ F ,

• for all j ∈ {0, . . . , k}, we have sij ∈ β(uj),

• for all j < k, letting ej = uj → uj+1, we have ζij :ij+1
∈ Zejsafe, and

• ζik:t ∈ Zukterm.

We now outline the inductive construction of the pair (Gφ,Zterm,φ) from a specification φ such that
any finite trajectory ζ ∈ Zf satisfies φ if and only if ζ satisfies (Gφ,Zterm,φ).

Objectives (φ = achieve b). The abstract graph is Gφ = (U,E, u0, F, β,Zsafe) where

• U = {u0, ub} with β(u0) = S and β(ub) = Sb = {s | s |= b},
• E = {u0 → ub},
• F = {ub} and,

• Z(u0,ub)
safe = Zubterm = Zf .

Constraints (φ = φ1 ensuring b). Let the abstract graph for φ1 be Gφ1 =
(U1, E1, u

1
0, F1, β1,Zsafe,1) and the terminal trajectories be Zterm,1. Then, the abstract graph for

φ is Gφ = (U,E, u0, F, β,Zsafe) where

• U = U1, u0 = u1
0, E = E1 and F = F1.

• β(u) = β1(u) ∩ Sb for all u ∈ U \ {u0} where Sb = {s | s |= b}, and β(u0) = S.
• Zesafe = Zesafe,1 ∩ Zb for all e ∈ E where

Zb = {ζ ∈ Zf | ∀i . si |= b}.

• Zuterm = Zuterm,1 ∩ Zb for all u ∈ F .

Sequencing (φ = φ1;φ2). Let the abstract graph for φi be Gφi = (Ui, Ei, u
i
0, Fi, βi,Zsafe,i) and

the terminal trajectories be Zterm,i for i ∈ {1, 2}. The abstract graph Gφ = (U,E, u0, F, β,Zsafe) is
constructed as follows.

• U = U1 t U2 \ {u2
0}.

• E = E1 t E′2 t E1→2 where

E′2 = {u→ u′ ∈ E2 | u 6= u2
0} and

E1→2 = {u1 → u2 | u1 ∈ F1 & u2
0 → u2 ∈ E2}.

• u0 = u1
0 and F = F2.

• β(u) = βi(u) for all u ∈ Ui and i ∈ {1, 2}.
• The safe trajectories are given by

1

– Zesafe = Zesafe,1 for all e ∈ E1,
– Zesafe = Zesafe,2 for all e ∈ E′2 and,

– Zu1→u2

safe = Zu1

term,1 ◦ Z
u2
0→u

2

safe,2 for all u1 → u2 ∈ E1→2.

• Zuterm = Zuterm,2 for all u ∈ F .

Choice (φ = φ1 or φ2). Let the abstract graph for φi be Gφi = (Ui, Ei, u
i
0, Fi, βi,Zsafe,i) and the

terminal trajectories be Zterm,i for i ∈ {1, 2}. The abstract graph for φ is Gφ = (U,E, u0, F, β,Zsafe)
where:

• U =
(
U1 \ {u1

0}
)
t
(
U2 \ {u2

0}
)
t {u0}.

• E = E′1 t E′2 t E0 where

E′i = {u→ u′ ∈ Ei | u 6= ui0} and

E0 = {u0 → ui | i ∈ {1, 2} & ui0 → ui ∈ Ei}.

• F = F1 t F2.

• β(u) = βi(u) for all u ∈ Ui, i ∈ {1, 2} and β(u0) = S.

• The safe trajectories are given by

– Zesafe = Zesafe,i for all e ∈ E′i and i ∈ {1, 2},

– Zu0→ui
safe = Zu

i
0→u

i

safe,i for all u0 → ui ∈ E0 with ui ∈ Ui.

• Zuterm = Zuterm,i for all u ∈ Fi and i ∈ {1, 2}.

The constructed pair (Gφ,Zterm,φ) has the following important properties.

Lemma A.2. For any SPECTRL specification φ, the following hold.

• For any finite trajectory ζ ∈ Zf , ζ |= φ if and only if ζ |= (Gφ,Zterm,φ).

• For any final vertex u of Gφ and any state s ∈ β(u), the length-1 trajectory ζ = s is
contained in Zuterm,φ.

Proof. Follows from the above construction by structural induction on φ.

Proof of Theorem 3.4. Let ζ = s0
a0−→ s1

a1−→ · · · be an infinite trajectory. First we show that ζ |= φ
if and only if ζ |= Gφ.

(=⇒) Suppose ζ |= φ. Then, there is a t ≥ 0 such that ζ0:t |= φ. From Lemma A.2, we get that
ζ0:t |= (Gφ,Zterm,φ) which implies that ζ |= Gφ.

(⇐=) Suppose ζ |= Gφ. Then, let 0 = i0 ≤ i1 < · · · < ik be a sequence of indices realizing
a path u0 → · · · → uk to a final vertex uk in Gφ. Since sik ∈ β(uk), from Lemma A.2 we have
ζik:ik ∈ Z

uk
term,φ and hence ζ0:ik |= (Gφ,Zterm,φ). From Lemma A.2 we conclude that ζ0:ik |= φ and

therefore ζ |= φ.

Next, it follows by a straightforward induction on φ that the number of vertices in Gφ is at most
|φ|+ 1 where |φ| is the number of operators (achieve, ensuring, ;, or) in φ.

B Shaped Rewards for Learning Policies

To improve learning, we use shaped rewards for learning each edge policy πe. To enable reward
shaping, we assume that the atomic predicates additionally have a quantitative semantics—i.e., each
atomic predicate p ∈ P0 is associated with a function JpKq : S → R. To ensure compatibility with
the Boolean semantics, we assume that

JpK(s) =
(
JpKq(s) > 0

)
. (1)

2

For example, given a state s ∈ S, the atomic predicate

Jreach sKq(s
′) = 1− ‖s′ − s‖

indicates whether the system is in a state near s w.r.t. some norm ‖ · ‖. In addition, we can
extend the quantitative semantics to predicates b ∈ P by recursively defining Jb1 ∧ b2Kq(s) =

min{Jb1Kq(s), Jb2Kq(s)} and Jb1 ∨ b2Kq(s) = max{Jb1Kq(s), Jb2Kq(s)}. These definitions are a
standard extension of Boolean logic to real values. In particular, they preserve (1)—i.e., b |= s if and
only if JbKq(s) > 0.

In addition to quantitative semantics, we make use of the following property to define shaped rewards.
Lemma B.1. The abstract graph Gφ = (U,E, u0, F, β,Zsafe) of a specification φ satisfies the
following:

• For every non-initial vertex u ∈ U \ {u0}, there is a predicate b ∈ P such that β(u) =
Sb = {s | s |= b}.

• For every e ∈ E, either Zesafe = Zb = {ζ ∈ Z | ∀i . si |= b} for some b ∈ P or
Zesafe = Zb1 ◦ Zb2 for some b1, b2 ∈ P .

Proof sketch. We prove a stronger property that, in addition to the above, requires that for any
e = u0 → u ∈ E, Zesafe = Zb for some b ∈ P and for any final vertex u, Zuterm,φ = Zb for some
b ∈ P . This stronger property follows from a straightforward induction on φ.

Next, we describe the shaped rewards we use to learn an edge e = u → u′ in Gφ, which have the
form

Rstep(s, a, s′) = Rreach(s, a, s′) +Rsafe(s, a, s
′).

Intuitively, the first term encodes a reward for reaching β(u′), and the second term encodes a reward
for maintaining safety. By Lemma B.1, β(u′) = Sb for some b ∈ P . Then, we define

Rreach(s, a, s′) = JbKq(s
′).

The safety reward is defined by

Rsafe(s, a, s
′) =


min{0, JbKq(s′)} if Zesafe = Zb
min{0, Jb ∨ b′Kq(s′)} if Zesafe = Zb ◦ Zb′ ∧ ψb
min{0, Jb′Kq(s′)} if Zesafe = Zb ◦ Zb′ ∧ ¬ψb.

Here, ψb is internal state keeping track of whether b has held so far—i.e., ψb ← ψb ∧ JbK(s) at state
s. Intuitively, the first case is the simpler case, which checks if every state in the trajectory satisfies b,
and the latter two cases handle a sequence where b should hold for the first part of the trajectory, and
b′ should hold for the remainder.

C Proof of Theorem 4.2

Proof. Let the abstract graph be G = (U,E, u0, F, β,Zsafe). Let us first define what it means for a
rollout to achieve a path in G.

Definition C.1. We say that an infinite trajectory ζ achieves the path ρ (denoted ζ |= ρ) if ζ |= Gρ
where Gρ = (Uρ, Eρ, u0, {uk}, β ↓ ρ,Zsafe ↓ρ) with Uρ = {uj | 0 ≤ j ≤ k}, Eρ = {uj →
uj+1 | 0 ≤ j < k} and β ↓ ρ and Zsafe ↓ρ are β and Zsafe restricted to the vertices and the edges
of Gρ, respectively.

From the definition it is clear that for any infinite trajectory ζ, if ζ |= ρ then ζ |= G and therefore

Pr
ζ∼Dπρ

[ζ |= G] ≥ Pr
ζ∼Dπρ

[ζ |= ρ]. (2)

Let us now define a slightly stronger notion of achieving an edge.

3

Definition C.2. An infinite trajectory ζ = s0 → s1 → · · · is said to greedily achieve the path ρ
(denoted ζ |=g ρ) if there is a sequence of indices 0 = i0 ≤ i1 < · · · < ik such that for all j < k,

• ζij :∞ |= ej = uj → uj+1 and,

• ij+1 = i(ζij :∞, ej),

where ζij :∞ = sij → sij+1 → · · · .

That is, ζ |=g ρ if a partition of ζ realizing ρ can be be constructed greedily by picking ij+1 to be
the smallest index i ≥ ij (strictly bigger if j > 0) such that si ∈ β(uj+1) and ζij :i ∈ Z

ej
safe. Since

ζ |=g ρ implies ζ |= ρ, we have

Pr
ζ∼Dπρ

[ζ |= ρ] ≥ Pr
ζ∼Dπρ

[ζ |=g ρ]. (3)

Let ρj:k denote the j-th suffix of ρ. We can decompose the probability Prζ∼Dπρ [ζ |=g ρ] as follows.

Pr
ζ∼Dπρ

[ζ |=g ρ] = Pr
ζ∼Dπρ

[ζ |= e0 ∧ ζi(ζ,e0):∞ |=g ρ1:k]

= Pr
ζ∼Dπe0

[ζ |= e0] · Pr
ζ∼Dπρ

[ζi(ζ,e0):∞ |=g ρ1:k | ζ |= e0]

= P (e0;πe0 , η0) · Pr
s0∼ηρ0:1 ,ζ∼Dπρ1:k ,s0

[ζ |=g ρ1:k]

where the last equality followed from the definition of ηρ0:1 and the Markov property ofM. Applying
the above decomposition recursively, we get

Pr
ζ∼Dπρ

[ζ |=g ρ] =

k−1∏
j=0

P (ej ;πej , ηρ0:j)

= exp(log(

k−1∏
j=0

P (ej ;πej , ηρ0:j)))

= exp(−(−
k−1∑
j=0

logP (ej ;πej , ηρ0:j)))

= exp(−c(ρ)).

Therefore, from Equations 2 and 3, we get the required bound.

D Experimental Methodology

Our tool learns the low-level NN policies for edges using an off-the-shelf RL algorithm. For the
Rooms and Fetch environments, we learn policies using ARS [32] and TD3 [14] with shaped rewards,
respectively.

For each specification on an environment, we first construct its abstract graph. In DIRL, each
edge policy πe is trained using k episodes of interactions with the environment. For the purpose of
generating a learning curve, we run DIRL for each specification with several values of k. For each k
value, we plot the sum total of the samples taken to train all edge policies against the probability with
which the computed policy reaches a final subgoal region.

For a fair comparison with the baselines, if each episode for learning an edge policy in DIRL is
run for m steps, we run the episodes of the baselines for m · d+ c steps, where d is the maximum
path length to reach a final vertex in the abstract graph of the specification and c > 0 is a buffer.
Intuitively, this approach ensures that all tools get a similar number of steps in each episode to learn
the specification.

4

(a) 16-Rooms (All doors open) (b) 16-Rooms (Some doors open)

Figure 5: 16-Rooms Environments. Blue square indicates the initial room. Red squares represent
obstacles. (a) illustrates the segments in the specifications.

E Case Study: Rooms Environment

We consider environments with several interconnected rooms. The rooms are separated by thick walls
and are connected through bi-directional doors.

The environments are a 9-Rooms environment, (Figure 1), a 16-Rooms environment with all doors
open (Figure 5a), and 16-Rooms environment with some doors open (Figure 5b). The red blocks
indicate obstacles. A robot can pass through those rooms by moving around the red blocks. The
robot is initially placed randomly in the center of the room with the blue box (bottom-left corner).

Rooms are identified by the tuple (r, c) denoting the room in the r-th row and c-th column. We use
the convention that the bottom-left corner is room (0,0). Predicate reach (r, c) is interpreted as
reaching the center of the (r, c)-th room and predicate avoid (r, c) is interpreted as avoiding the
center of the (r, c)-th room. For clarity, we omit the word achieve from specifications of the form
achieve b denoting such a specification using just the predicate b.

E.1 9-Rooms Environment

Specifications.

1. φ1 := reach (2, 0); reach (0, 0)

Go to the top-left corner and then return to the bottom-left corner (initial room); red blocks
not considered obstacles.
This specification is difficult for standard RL algorithms that do not store whether the first
sub-task has been achieved. In these cases, a stateless policy will not be able to determine
whether to move upwards or downwards. In contrast, DIRL (as well as SPECTRL and RM
based approaches) augment the state space to automatically keep track of which sub-tasks
have been achieved so far.

2. φ2 := reach (2, 0) or reach (0, 2)

Either go to the top-left corner or to the bottom-right corner (obstacles are not considered).

3. φ3 := φ2; reach (2, 2)

After completing φ2, go to the top-right corner (obstacles not considered).
This specification combines two choices of similar difficulty yet only one is favorable to
fulfilling the specification since the direct path to the top-right corner from the bottom-right
one is obstructed by walls.

4. φ4 := reach (2, 0) ensuring avoid (1, 0)

Reach the top-left (while considering the obstacles).

5. φ5 := φ4 or reach (0, 2); reach (2, 2)

Either go to the top-left corner or bottom-right corner enroute to the top-right corner (while
considering the obstacles).
This specification is similar to φ3 except that the choices are of unequal difficulty due to the
placement of the red obstacle. In this case, the non-greedy choice is favorable for completing
the task.

5

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
×106

0.2
0.0
0.2
0.4
0.6
0.8
1.0 SPECTRL

TLTL
QRM
QRM+CR
HRM
HRM+CR
DiRL (Ours)

(a) Specification φ1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
×106

0.2
0.0
0.2
0.4
0.6
0.8
1.0

SPECTRL
TLTL
QRM
QRM+CR
HRM
HRM+CR
DiRL (Ours)

(b) Specification φ2

0.0 0.5 1.0 1.5 2.0 2.5
×106

0.2

0.0

0.2

0.4

0.6

0.8

1.0 SPECTRL
TLTL
QRM
QRM+CR
HRM
HRM+CR
R-AVI
DiRL (Ours)

(c) Specification φ3

0.0 0.2 0.4 0.6 0.8 1.0 1.2
×106

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

SPECTRL
TLTL
QRM
QRM+CR
HRM
HRM+CR
R-AVI
DiRL (Ours)

(d) Specification φ4

0.0 0.5 1.0 1.5 2.0 2.5
×106

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2 SPECTRL

TLTL
QRM
QRM+CR
HRM
HRM+CR
R-AVI
DiRL (Ours)

(e) Specification φ5

Figure 6: Learning curves for 9-Rooms environment with different specifications. x-axis denotes
the number of samples (steps) and y-axis denotes the estimated probability of success. Results are
averaged over 10 runs with error bars indicating ± standard deviation.

Hyperparameters. The edge policies are learned using ARS [32] (version V2-t) with neural network
policies and the following hyperparameters.

• Step-size α = 0.3.
• Standard deviation of exploration noise ν = 0.05.
• Number of directions sampled per iteration is 30.
• Number of top performing directions to use b = 15.

To plot the learning curve, we use values of

k ∈ {3000, 6000, 12000, 18000, 24000, 30000}

where each episode consists of m = 20 steps.

Results. The learning curves for these specifications are shown in Figure 6. While most tools perform
reasonably well on specifications φ2 (Figure 6b) and φ4 (Figure 6d), the baselines are unable to learn
to satisfy φ3 (Figure 6c) and φ5 (Figure 6e) except for R-AVI which learns to satisfy φ3 as well.

E.2 16-Rooms Environment

Specifications. We describe the five specifications used for the 16-rooms environment, which are
designed to increase in difficulty. First, we define a segment as the following specification: Given the
current location of the agent, the goal is to reach a room diagonally opposite to it by visiting at least
one of the rooms at the remaining two corners of the rectangle formed by the current room and the
goal room—e.g., in the 9-Rooms environment, to visit S3 from the initial room, the agent must visit
either S1 or S2 first.

Then, we design specifications of varying sizes by sequencing several segments one after the other. In
the first segment, the agent’s current location is the initial room. In subsequent segments, the current
location is the goal room of the previous segment. In addition, the agent must always avoid the
obstacles in the environment. We create five such specifications, one half-segment and specifications
up to four segments (φ1 to φ5), as illustrated in Figure 5a and described below:

1. φ1 corresponds to the half-segment enroute (2,2) from (0,0). Thus φ1 is a choice between
(0,2) and (2,0).

2. φ2 is the first segment that goes from (0,0) to (2,2)

6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
×106

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

SPECTRL
TLTL
QRM
QRM+CR
HRM
HRM+CR
DiRL (Ours)

(a) Half-segment spec. φ1,
|Gφ1 | = 2.

0 1 2 3 4
×106

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

SPECTRL
TLTL
QRM
QRM+CR
HRM
HRM+CR
R-AVI
DiRL (Ours)

(b) 1-segment spec. φ2, |Gφ2 | =
4.

0 2 4 6 8
×106

0.2
0.0
0.2
0.4
0.6
0.8
1.0

SPECTRL
TLTL
QRM
QRM+CR
HRM
HRM+CR
R-AVI
DiRL (Ours)

(c) 2-segment spec. φ3, |Gφ3 | =
8.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
×107

0.0

0.2

0.4

0.6

0.8

1.0

SPECTRL
TLTL
QRM
QRM+CR
HRM
HRM+CR
R-AVI
DiRL (Ours)

(d) 3-segment spec. φ4, |Gφ4 | =
12.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
×107

0.0

0.2

0.4

0.6

0.8

1.0 SPECTRL
QRM
QRM+CR
HRM
HRM+CR
R-AVI
DiRL (Ours)

(e) 4-segment spec. φ5, |Gφ5 | =
16.

2 4 6 8 10 12 14 16
Edges in abstract graph

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

nu
m

be
r o

f s
am

pl
es

×106

z = 0.8
z = 0.6
z = 0.4

(f) Sample Complexity

Figure 7: (a)-(e) Learning curves for 16-Rooms environment with some blocked doors (Figure 5b)
with different specifications increasing in complexity from (a) to (e). x-axis denotes the number of
samples (steps) and y-axis denotes the estimated probability of success. Results are averaged over 10
runs with error bars indicating ± standard deviation. (f) shows the average number of samples (steps)
needed to achieve a success probability ≥ z (y-axis) as a function of the size of the abstract graph
|Gφ|.

3. φ3 augments φ2 with a second segment to (3,1).
4. φ4 augments φ3 with a segment to (1,3)
5. φ5 augments φ4 with a segment to (0,1)

We denote by |Gφ| the number of edges in the abstract graph corresponding to the specification φ.

Hyperparameters. We use the same hyperparameters of ARS as the ones used for the 9-Rooms
environment. We run experiments for

k ∈ {6000, 12000, 24000, 48000, 60000, 72000}.

Results. The learning curves for the environment with all open doors and the constrained environment
with some open doors are shown in Figure 3 and Figure 7, respectively.

F Case Study: Fetch Environment

The fetch robotic arm from OpenAI Gym is visualized in Figure 8. Let us denote by sr =
(sxr , s

y
r , s

z
r) ∈ R3 the position of the gripper, so ∈ R3 the relative position of the object (black

block) w.r.t. the gripper, sg ∈ R3 the goal location (red sphere) and sw ∈ R the width of the gripper.
Let c denote the width of the object and zε = (0, 0, ε+ c) for ε > 0. Then, we define the following
predicates.

• NearObj holds true in states in which the gripper is wide open, aligned with the object and
is slightly above the object:

NearObj(s) =
(
‖so + zε‖22 + (sw − 2c)2 < δ1

)
• HoldingObj holds true in states in which the gripper is close to the object and its width is

close to the object’s width:

HoldingObj(s) =
(
‖so‖22 + (sw − c)2 < δ2

)
7

Figure 8: Fetch robotic arm.

• LiftedObj holds true in states in which the object is above the surface level of the table:

LiftedObj(s) =
(
szr + szo > δ3

)
• ObjAt[g] holds true in states in which the object is close to g:

ObjAt[g](s) =
(
‖sr + so − g‖22 < δ4

)
Then the specifications we use are the following.5

• PickAndPlace: φ1 = NearObj; HoldingObj; LiftedObj; ObjAt[sg].

• PickAndPlaceStatic: NearObj; HoldingObj; LiftedObj; ObjAt[g1] where g1 is a fixed goal.

• PickAndPlaceChoice:
(
NearObj; HoldingObj; LiftedObj

)
;
(
(ObjAt[g1]; ObjAt[g2]) or

(ObjAt[g3]; ObjAt[g4])
)
.

Hyperparameters. We use TD3 [14] for learning edge policies with the following hyperparameters.

• Discount γ = 0.95.
• Adam optimizer; actor learning rate 0.0001; critic learning rate 0.001.
• Soft update targets τ = 0.005.
• Replay buffer of size 200000.
• 100 training steps performed every 100 environment steps.
• A minibatch of 256 steps used per training step.
• Exploration using gaussian noise with σ = 0.15.

We run experiments for k ∈ {1000, 2000, 4000} and each episode consists of m = 40 steps.

5We denote achieve b using just the predicate b.

8

	Reduction to Abstract Reachability
	Shaped Rewards for Learning Policies
	Proof of Theorem 4.2
	Experimental Methodology
	Case Study: Rooms Environment
	9-Rooms Environment
	16-Rooms Environment

	Case Study: Fetch Environment

