A Summary of the Appendix

In the appendix, we provide the detailed proof of the Theorem [I] (Sec. [B), a review of WL tests
(Sec. , the detailed algorithmic format of our instantiation of AD-GCL (Sec. , the summary
of datasets (Sec. [E), more regularization hyperparameter analysis (Sec. [F)), detailed experimental
settings and complete evaluation results (Sec. [G)), computing resources (Sec.[J]) and discussion on
broader impacts (Sec]l).

B Proof of Theorem[l

We repeat Theorem|I] as follows.

Theorem 2. Suppose the encoder f is implemented by a GNN as powerful as the 1-WL test. Suppose
G is a countable space and thus G' is a countable space. Then, the optimal solution (f*,T*) to
AD-GCL satisfies, letting T (G') = Eq~p, [T*(G)|G = G'),

1 I(f*(t*(G)): G| Y) < minper [(#/(G'): G') — I(#*(G"); Y), where t*(G) ~ T*(G), (G') ~
THG, (') ~ T'(G"), (G,Y) ~ Pgxy and (G',Y) ~ Pgryy.

2. I(f(G);Y) = I(f*(#"(G");Y) = I(t™(G');Y), where t*(G) ~ T*(G), t"(G") ~ T™(G),
(G, Y) ~]P)gxy and (G/,Y) ~ Pg/xy.

Proof. Because G and G’ are countable, Py and Py are defined over countable sets and thus discrete
distribution. Later we may call a function z(-) can distinguish two graphs G, Gs if 2(G1) # 2(G3).

Moreover, for notational simplicity, we consider the following definition. Because f* is as powerful
as the 1-WL test. Then, for any two graphs G1,G2 € G, G1 = Ga, f*(G1) = f*(G2). We may
define a mapping over G’, also denoted by f* which simply satisfies f*(G’) := f*(G), where
G2G',andG e Gand G' € G'.

We first prove the statement 1, i.e., the upper bound. We have the following inequality: Recall that
T™(G") = Eg~pg [T(G)|G = G'] and t"*(G") ~ T™(G").

It(G); G = It (G); (G',Y)) — It (G); Y|G’)]
(@ (@)
= () Y) + (@) G'Y)
S I @ (@) Y + I (@) Y) (10)

where (a) is because t'*(G’) Lg/ Y, (D) is because the data processing inequality [[80]. Moreover,
because f* could be as powerful as the 1-WL test and thus could be injective in G’ a.e. with respect
to the measure Pg/. Then, for any GDA T'(-) and T"(G') = Eq~p, [T(G)|G = G'],

I(t(G); G = I(f*(t'(G"); f7(GN) = I(f*((@)); (@), (11)
where t'(G') ~ T'(G"), t(G) ~ T(G). Here, the second equality is because f*(G) = f*(G’) and
T'(G') = Ea~pg [T(G)|G = G).

Since T* = arg mingc I(f(t*(G)); f(G)) where t*(G) ~ T*(G) and Eq[T1} we have

I(t"™(G'); G') = argmin I (t'(G"); G"), where t' (G') ~ T'(G") = Ec~p, [T(G)|G = G']. (12)
TeT

Again, because by definition f* = arg max; I(f(G); f(t*(G))) and f* could be as powerful as the 1-
WL test, its counterpart defined over G, i.e., f*, must be injective over G’ N Supp(Eg~p_, [T"(G")])
a.e. with respect to the measure Pg/ to achieve such mutual information maximization. Here,

Supp() defines the set where p has non-zero measure. Because of the definition of 77*(G’) =
Egrg [1(G)C = G,

G' N Supp(Ecr g, [T7(G")]) = G" N Supp(Ere [T7(G))).-

15

Therefore, f* is a.e. injective over G’ N Supp(Eg~p, [T (G)]) and thus
I(f (@) @'Y = 1(f((G): G'Y), (13)

Moreover, as f* cannot cannot distinguish more graphs in G than G’ as the power of f* is limited by
1-WL test, thus,

I(f*(t (@) G'[Y) = I(f*(t"(G)); GIY). (14)

Plugging Eqs[T2|[T3|[T4]into Eq[I0} we achieve
I(f*(t"(G)); GlY) < argmin I(t'(G'); G') — I(t"*(G");Y)
TeT

where t'(G') ~ T'(G") = Eqgp, [T(G)|G = G'] and t"*(G') ~ T (G") = Egnpg [T*(G)|G =
G'], which gives us the statement 1, which is the upper bound.

We next prove the statement 2, i.e., the lower bound. Recall (T, f*) is the optimal solution to Eq@
and ¢*(-) denotes samples from 7 (+).

Again, because f* = argmax,I(f(G); f(t*(G))), f* must be injective on G’ N
Supp(Eg~p,, [T"(G")]) a.e. with respect to the measure Pg/. Given t™*(G"), t"*(G') — f*(t"*(G"))
is an injective deterministic mapping. Therefore, for any random variable (),
(1 (6);Q) = I(E*(G"); Q), where G' ~ Pgi, 1*(G') ~ T™(G).
Of course, we may set) = Y. So,
I(f*(t"(G"):Y) = I(t"(G');Y), where (G",Y) ~ Pgruy,t™(G') ~T™(G"). (1)
Eecause of the data processing inequality [80] and 7"*(G’) = Eqp, [T*(G)|G = G'], we further
ave
I(f*(t(G)Y) 2 I(f*(t"(G");Y), (16)
where (G',Y) ~Pgixy, (G,Y) ~Pguy, t'’*(G') ~ T™*(G"),t*(G) ~ T*(G).
Further because of the data processing inequality [80],
I(fH(G)Y) =2 I(f*(#7(G));Y). (17)

Combining Eqs[T5] [T6] [T7} we have
I(f(G)Y) 2 I(f*(t"(G));Y) = I(f*(t"(G"));Y) = I(t"(G');Y),

which concludes the proof of the lower bound.

C A Brief Review of the Weisfeiler-Lehman (WL) Test

Two graphs G; and G4 are called to be isomorphic if there is a mapping between the nodes of the
graphs such that their adjacencies are preserved. For a general class of graphs, without the knowledge
of the mapping, determining if G; and G are indeed isomorphic is challenging and there has been
no known polynomial time algorithms utill now [81]]. The best algorithm till now has complexity

20(ogm)* where n is the size of the graphs of interest [82].

The family of Weisfeiler-Lehman tests [51]] (specifically the 1-WL test) offers a very efficient way
perform graph isomorphism testing by generating canonical forms of graphs. Specifically, the 1-WL
test follows an iterative color refinement algorithm. Let, graph G = (V,E) andletC : V — C
denote a coloring function that assigns each vertex v € V a color C,,. Nodes with different features
are associated with different colors. These colors constitute the initial colors Cy of the algorithm i.e.
Co,» = C, for every vertex v € V. Now, for each vertex v and each iteration , the algorithm creates
a new set of colors from the color C;_ ,, and the colors C;_1 ,, of every vertex u that is adjacent to v.
This multi-set of colors is then mapped to a new color (say using a unique hash). Basically, the color
refinement follows

Civ + Hash(C; 1,0, {Ci—1 ujuen;, }) (18)

16

where the above Hash function is an injective mapping. This iteration goes on until when the list of
colors stabilises, i.e. at some iteration /N, no new colors are created. The final set of colors serves as
the the canonical form of a graph.

Intuitively, if the canonical forms obtained by 1-WL test for two graphs are different, then the graphs
are surely not isomorphic. But, it is possible for two non-isomorphic graphs to share a the same
1-WL canonical form. Though the 1-WL test can test most of the non-isomorphic graphs, it will fail
in some corner cases. For example, it cannot distinguish regular graphs with the same node degrees
and of the same sizes.

As GNNGs share the same iterative procedure as the 1-WL test by comparing Eq. [I8|and Eq. [T} GNNs
are proved to be at most as powerful as the 1-WL test to distinguish isormorphic graphs [14}/15].
However, GNNs with proper design may achieve the power of the 1-WL test [14] and thus the
assumption in Theorem|I]is reasonable.

D The Training Algorithm for the Instantiation of AD-GCL

Algorithm [T] describes the self-supervised training algorithm for AD-GCL with learnable edge-
dropping GDA. Note that augmenter T4 (-) with parameters ® is implemented as a GNN followed by
an MLP to obtain the Bernoulli weights w..

E Summary of Datasets

A wide variety of datasets from different domains for a range of graph property prediction tasks
are used for our experiments. Here, we summarize and point out the specific experiment setting for
which they are used.

* Table] shows the datasets for chemical molecular property prediction which are from Open
Graph Benchmark (OGB) [52] and ZINC-10K [74]. These are used in the unsupervised
learning setting for both classification and regression tasks. We are the first one to consider-
ing using regression tasks and the corresponding datasets in the evaluation of self-supervised
GNN.

e Table|5lshows the datasets which contain biochemical and social networks. These are taken
from the TU Benchmark Datasets [[73]]. We use them for graph classification tasks in both
unsupervised and semi-supervised learning settings.

* Table [6] shows the datasets consisting of biological interactions and chemical molecules
from [|17]]. These datasets are used for graph classification in the transfer learning setting.

F Complete Results on Regularization Analysis

The main hyper-parameter for our method AD-GCL is the regularization strength A.,. De-
tailed sensitivity analysis is provided in Figures [3| [5] and [} For the method AD-GCL-OPT,
we tune Ay, over the validation set among {0.1,0.3,0.5,1.0,2.0,5.0,10.0}. For the ablation
study, i.e. NAD-GCL-OPT the random edge drop ratio is tuned over the validation set among
{0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}.

F.1 Optimal regularization strength values

Table shows the optimal A on the validation set that are used to report test performance in Tables
(both TOP and BOTTOM).

F.2 Effects of regularization on regression tasks

Subplots in the topmost row of Figure |5| shows the validation performance for different Ar,’s in
AD-GCL and random edge drop ratios in NAD-GCL for regression tasks. These observations show an
interesting phenomenon that is different from what we observe in classification tasks: for AD-GCL,
small A, (which in-turn lead to large expected edge drop ratio) results in better performance. A

17

1

e ® N A R W N

_ e e
N = o

-
w

14

15

16

17
18
19
20

21

Algorithm 1: Training Learnable Edge-Dropping GDA under AD-GCL principle.
Input: Data {G,, ~G |m=1,2...M};
Encoder fo(-); Augmenter To(+); Projection Head gy (+); Cosine Similarity sim(-)
Hyper-Params : Edge-Dropping Regularization Strength \.; learning rates o, 8
Output: Trained Encoder fo(+)

begin
for number of training epochs do
for sampled minibatch {G,, = (V,,, E,) :n=1,2... N} do
forn =11t N do
hl,n = f@(Gn)
210 = gw(hin)
t(Gn) ~ T<I>(Gn)
set p., Ve € E,, from ¢(G,,)
Ry = ZeeEn pe/|En‘
hon = fo(t(Gn));
Z1n = glIl(hQ,n)
end
define £, = —log =Sl
/* calculate NCE loss for minibatch */
L= % Zr]yzl Ln
/* calculate regularization term for minibatch */
R=% Y0 Ra
/* update augmenter params via gradient ascent */
O D+ aVe(L — Mg *R)
/* update enocder & projection head
params via gradient descent */
O+ 0 —LFVe(L); T+ T—p3Vy(L)
end
end
return Encoder fo(-)
end

similar trend can be observed even for NAD-GCL, where large random edge drop ratios results in
better performance. However, AD-GCL is still uniformly better that NAD-GCL in that regard. We
reason that, regression tasks (different from classification tasks) are more sensitive to node level
information rather than structural fingerprints and thus, the edge dropping GDA family might not be
the most apt GDA family. Modelling different learnable GDA families is left for future work and
these observations motivate such steps.

F.3 Effects of regularization on edge-drop ratio as complete results in Figure [3setting.

Figure {4f shows how different regularization strengths () affects the expected edge drop ratio for
multiple datasets. These results further provides us evidence that indeed, A, and the expected edge
drop ratio are inversely related in accordance with our design objective and thus provides us with a
way of controlling the space of augmentations for our learnable edge dropping GDA.

Figure[6] shows the complete validation set performance for different edge drop ratios. AD-GCL is
compared to a non-adversarial random edge dropping GCL (NAD-GCL). We choose A.g’s that result

18

°
®

°
@

°
b

°

Expected edge drop ratio

!""eh

ogbg-mollipo

Ffr/

ogbg-molfreesolv ZINC-10K

~

o

°
©

o
>

°
S

°

Expected edge drop ratio

ogbg-molbace

), G

ogbg-molclintox

~

ogbg-moltox21 ogbg-molsider

—

[

o
B3

7

°
@

°
S

e

Expected edge drop ratio

REDDIT-BINARY

REDDIT-MULTI-5K

IMDB-BINARY IMDB-MULTI

-

mo

°
®

°
>

°

Expected edge drop ratio
2

°

NCIL

PROTEINS

(

i

MUTAG

°

0 10

2 4 6 8
Reg. Strength (Areg)

2 4 6 8
Reg. Strength (Areg)

10

°
s

2 a4 6 8 2 4 6 8
Reg. Strength (Areg) Reg. Strength (Areg)

Figure 4: A v.s. expected edge drop ratio Eg[>_ we/|E|] (measured at saddle point of Eq.

14 ogbg-molesol ogbg-mollipo 5.0 0.94 ZINC-10K
3 —e— AD-GCL (ours) 0.98 —e— AD-GCL (ours) —e— AD-GCL (ours)
N\ ~— NAD-GCL ~—— NAD-GCL 0.8 ~—— NAD-GCL
w13 w w W
& %096 G4s A Y
= = = - A <
z z x \ z07
$12 §o094a $ / 2
] . 3 540 3
2 2092] 5 chad
K 5.0 L B N E = —
11 |~ K 3,51 ogbg-molfreesolv -0 0 05
o 0.90 » —e— AD-GCL (ours) p :
. — NAD-GCL 20
& 0.4 e
0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

Edge drop ratio

Edge drop ratio

Edge drop ratio Edge drop ratio

Figure 5: Validation performance for graph regression v.s. edge drop ratio. Comparing AD-GCL and GCL

with non-adversarial random edge dropping. The markers on

Note here that lower validation metric is better.

AD-GCL’s performance curves show the Ar, used.

ogbg-moltox21 0.63 ogbg-molsider
0.75 T 09450 078 —e— AD-GCL (ours) —e— AD-GCL (ours)
%) 50 2 %) X %} *‘__'7 NAD-GCL] = NAD-GCL
2070 o3 2 2005 03 | 2 5o 2062
g gos g 077 05 03 g 5.0
ogbg-molbace ogbg-molclintox N
065 —— AD-GCL(ours) | % —— AD-GCL (ours) | Z 0.76 . % 0.61
2 — NAD-GCL so07 — NAD-GCL 2 D 2 S oo 0B
go% / 2 go7s Soe0] | - : o>
2 X 4 2 g 2o, >
Soss o Soe{ | gou 5 SN
NI N JE— .
- 059
050 05 0.73
0.86 REDDITBINARY 0732 IMDB-BINARY 0.740
—— AD-GCL (ours) | 0-560 —e ADGCL(ours) | 0.735
2085 — NAD-GCL > 20.730 — NAD-GCL
g gosss 50 3 g 2o g0.730
3 0.8a] S 3 0.550 - 30728 : 3
g . l() h REDDIT-MULTI-5K 2 : / 5 ¥ 0.725
T A < 0.545] — AD-GCL(ours) g = 50\ = X
§os3 § %% waooa : 50726 O A P | gorog
K} \ B o540 p== | 8 N / k}
=082 . 03 2 = 207241 =0.715 \o
g ~/ | Sos3s * s s coLLaB —
081 1 0.722 07101 —o— AD-GCL (ours) N
0530 0.705] —— NADGCL
0710
Nei 0.76 PROTEINS 0.93 MUTAG 0775 oD
0.705 —s— AD-GCL (ours) —e— AD-GCL (ours) : —e— AD-GCL (ours) —e— AD-GCL (ours)
> — NAD-GCL > — NAD-GCL > — NAD-GCL > — NAD-GCL
H 8 H 8
5 0.700 5 £o.7s 5092 M $0.770 %3
g K /.005 g y g 20 %°) g 5.005
< N\ X < / < <
0.695 ~ Y N
§ h §074 § 0.1 N §0765
£0.690 K] s K] \\) anam
3 S073 3 30760 e,/
> 0.685 = = 0.90 e
0.680 072 0755
000 025 050 075 000 025 050 075 000 025 050 075 000 025 050 075

Figure 6: Validation performance for graph classification v.s. edge drop ratio. Comparing AD-GCL and GCL
with non-adversarial random edge dropping. The markers on AD-GCL'’s performance curves show the A, used.
Note here that higher validation metric is better.

19

Name #Graphs Avg #Nodes Avg #Edges #Tasks Task Type Metric

ogbg-molesol 1,128 133 13.7 1 Regression RMSE
ogbg-mollipo 4,200 27.0 29.5 1 Regression RMSE
ogbg-molfreesolv 642 8.7 8.4 1 Regression RMSE
ogbg-molbace 1,513 34.1 36.9 1 Binary Class. ROC-AUC
ogbg-molbbbp 2,039 24.1 26.0 1 Binary Class. ROC-AUC
ogbg-molclintox 1,477 26.2 27.9 2 Binary Class. ROC-AUC
ogbg-moltox21 7,831 18.6 19.3 12 Binary Class. ROC-AUC
ogbg-molsider 1,427 33.6 354 27 Binary Class. ROC-AUC
ZINC-10K 12,000 23.16 49.83 1 Regression MAE

Table 4: Summary of chemical molecular properties datasets used for unsupervised learning experi-
ments. Datasets obtained from OGB [52] and [74]

Dataset #Graphs Avg. #Nodes Avg. #Edges #Classes
Biochemical Molecules
NCI1 4,110 29.87 32.30 2
PROTEINS 1,113 39.06 72.82 2
MUTAG 188 17.93 19.79 2
DD 1,178 284.32 715.66 2
Social Networks
COLLAB 5,000 74.5 2457.78 3
REDDIT-BINARY 2,000 429.6 497.75 2
REDDIT-MULTI-5SK 4,999 508.8 594.87 5
IMDB-BINARY 1,000 19.8 96.53 2
IMDB-MULTI 1,500 13.0 65.94 3

Table 5: Summary of biochemical and social networks from TU Benchmark Dataset [[73]] used for
unsupervised and semi-supervised learning experiments. The evaluation metric for all these datasets
is Accuracy.

in an expected edge drop ratio (measured at saddle point of Eq.[8)) value to match the random drop
ratio used for NAD-GCL.

Figure[7] further provides additional plots of the training dynamics of expected edge drop ratio for
different A\, values.

Dataset Utilization #Graphs Avg. #Nodes Avg. Degree

Protein-Protein Interaction Networks

PPI-306K Pre-Training 306,925 39.82 729.62
PPI Finetuning 88,000 49.35 890.77
Chemical Molecules
ZINC-2M Pre-Training 2,000,000 26.62 57.72
BBBP Finetuning 2,039 24.06 51.90
Tox21 Finetuning 7,831 18.57 38.58
SIDER Finetuning 1,427 33.64 70.71
ClinTox Finetuning 1,477 26.15 55.76
BACE Finetuning 1,513 34.08 73.71
HIV Finetuning 41,127 25.51 54.93
MUV Finetuning 93,087 24.23 52.55
ToxCast Finetuning 8,576 18.78 38.52

Table 6: Summary of biological interaction and chemical molecule datasets from [17]]. Used for
graph classification in transfer learning experiments. The evaluation metric is ROC-AUC.

20

ogbg-molesol ogbg-mollipo ogbg-molfreesolv ZINC-10K ogbg-molbace ogbg-molbbbp ogbg-molclintox ogbg-moltox21 ogbg-molsider

AD-GCL-OPT 0.4 0.1 0.3 0.8 10.0 10.0 5.0 10.0 5.0
COLLAB RDT-B RDT-MSK IMDB-B IMDB-M NCI1 PROTEINS MUTAG DD
AD-GCL-OPT 5.0 5.0 10.0 2.0 10.0 5.0 1.0 10.0 10.0

Table 7: Optimal Az for AD-GCL on validation set that are used for reporting test performance in
Tables|[T] (TOP) and (BOTTOM).

ogbg-mollipo ZINC-10K
—— Aeg =03 —— Aeg =03
Areg = 5.0 Areg = 5.0

ogbg-molesol
— Ay =03
Areg = 5.0

o

e
®

o
o

ogbg-molfreesoly
— Aeg =03
Areg = 5.0

o
=

Expected edge drop ratio
o
~

e
°

0 10 0

2 30
Train Epochs

ogbg-molbace ogbg-moltox21 M
—— Aeg =03 —— Aeg =03
Areg = 5.0 Areg = 5.0
ogbg-molclintox ogbg-molsider

— Aeg =03 — Ay =03
Areg = 5.0 Areg = 5.0

40 50 0 10 40 50 0 10 40 50 0 10 40 50

20 30 20 30 20 30
Train Epochs Train Epochs Train Epochs

o

e
®

o
o

o
=

Expected edge drop ratio
°
N

e
o

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Train Epochs Train Epochs Train Epochs Train Epochs
1.0
REDDIT-BINARY REDDIT-MULTI-5K IMDB-BINARY IMDB-MULTI
0.8 — A =03 —— ey =03 — Areg =03 —— Mg =03

Areg = 5.0 Areg = 5.0 Areg = 5.0

e
o

o
=

Expected edge drop ratio
°
N

e
°

0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
Train Epochs Train Epochs Train Epochs Train Epochs
1.0
o NCI1 PROTEINS MUTAG DD
Cos8 —— Areg=0.3 —— Aeg =03 — Ay =03 —— Mg =03
s Areg = 5.0 Areg = 5.0 Areg = 5.0 Areg = 5.0
T 0.6
o
g
g M W %\/\’\/ \\/\WW\’\/\/\
°
2
So2
o
o]
0.0
0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
Train Epochs Train Epochs Train Epochs Train Epochs

Figure 7: Training dynamics of expected edge drop ratio for A.

G Experimental Settings and Complete Evaluation Results

In this section, we provide the detailed experimental settings and additional experimental evaluation
results for unsupervised, transfer and semi-supervised learning experiments we conducted (Section[5).
In addition we also provide details of the motivating experiment (Figure [2]in main text).

G.1 Motivating Experiment (Figure 2)

The aim of this experiment is to show that having GNNs that can maximize mutual information
between the input graph and its representation is insufficient to guarantee their performance in the
downstream tasks, because redundant information may still maximize mutual information but may
degenerate the performance. To show this phenomenon, we perform two case studies: (1) a GNN is
trained following the vanilla GCL (InfoMax) objective and (2) a GNN is trained following the vanilla
GCL (InfoMax) objective while simultaneously a linear classifier that tasks the graph representations
output by the GNN encoder is trained with random labels. These two GNNs have exactly the same
architectures, hyperparametes and initialization. Specifically, the GNN architecture is GIN [72], with
embedding dimension of 32, 5 layers with no skip connections and a dropout of 0.0.

Both GNN encoders are trained as above. In the first step of the evaluation, we want to test whether
these GNNs keep mutual information maximization. For all graphs in the ogbg-molbace dataset,
either one of the GNN provides a set of graph representations. For each GNN, we compare all its

21

output graph representations. We find that, the output representations of every two graphs have
difference that is greater than a digit accuracy. This implies that either one of the GNN keeps
an one-to-one correspondance between the graphs in the dataset and their representations, which
guarantees mutual information maximization.

We further compare these two GNNs encoders in the downstream task by using true labels. We
impose two linear classifiers on the output representations of the above two GNN encoders to predict
the true labels. The two linear classifiers have exactly the same architecture, hyperparametes and
initialization. Specifically, a simple logistic classifier implemented using sklearn [83] is used with
L2 regularization. The L2 strength is tuned using validation set. For the dataset ogbg-molbace, we
follow the default train/val/test splits that are given by the original authors of OGB [52]. Note that,
during the evaluation stage, the GNN encoders are fixed while the linear classifiers get trained. The
evaluation performance is the curves as illustrated in Figure [2]

G.2 Unsupervised Learning

Evaluation protocol. In this setting, all methods are first trained with the corresponding self-
supervised objective and then evaluated with a linear classifier/regressor. We follow [62] and adopt a
linear evaluation protocol. Specifically, once the encoder provides representations, a Ridge regressor
(+ L2) and Logistic (+ L2) classifier is trained on top and evaluated for regression and classification
tasks respectively. Both methods are implemented using sklearn [83]] and uses LBFGS [84] or
LibLinear [85] solvers . Finally, the lone hyper-parameter of the downstream linear model i.e. L2
regularization strength is grid searched among {0.001, 0.01, 0.1, 1,10, 100, 1000} on the validation
set for every single representation evaluation.

For the Open Graph Benchmark Datasets (ogbg-mol*), we directly use the processed data in Pytorch
Geometric format which is available online [’} The processed data includes train/val/test that follow a
scaffolding split. More details are present in the OGB paper [52]]. Additionally, we make use of the
evaluators written by authors for standardizing the evaluation. The evaluation metric varies depending
on the task at hand. For regression tasks it is RMSE (root mean square error) and for classification it
is ROC-AUC (%).

For the ZINC-10K dataset [[74], we use the processed data in Pytorch Geometric format that is made
available onlineﬂ by the authors. We use the same train/val/test splits that are provided. We follow
the authors and adopt MAE (mean absolute error) as the test metric.

For the TU Datasets [[73]], we obtain the data from Pytorch Geometric Library E] and follow the
conventional 10-Fold evaluation. Following standard protocol, we adopt Accuracy (%) as the test
metric.

All our experiments are performed 10 times with different random seeds and we report mean and
standard deviation of the corresponding test metric for each dataset.

Other hyper-parameters. The encoder used for ours and baselines is GIN [72]]. The encoder is
fixed and not tuned while performing self-supervised learning (i.e. embedding dimension, number
of layers, pooling type) for all the methods to keep the comparison fair. The reasoning is that any
performance difference we witness should only be attributed to the self-supervised objective and not
to the encoder design. Details of encoder for specific datasets.

* OBG - emb dim = 300, num gnn layers = 5, pooling = add, skip connections = None,
dropout = 0.5, batch size = 32

e ZINC-10K - emb dim = 100, num gnn layers = 5, pooling = add, skip connections = None,
dropout = 0.5, batch size = 64

e TU Datasets - emb dim = 32, num gnn layers = 5, pooling = add, skip connections = None,
dropout = 0.5, batch size = 32

The optimization of AD-GCL is performed using Adam and the learning rates for the encoder and
the augmenter in AD-GCL are tuned among {0.01,0.005, 0.001}. We find that asymmetric learning

*https://ogb.stanford.edu/docs/graphprop/
*https://github. com/graphdeeplearning/benchmarking-gnns/tree/master/data
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html

22

https://ogb.stanford.edu/docs/graphprop/
https://github.com/graphdeeplearning/benchmarking-gnns/tree/master/data
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html

rates for encoder and augmenter tend to make the training non-stable. Thus, for stability we adopt a
learning rate of 0.001 for all the datasets and experiments. The number of training epochs are chosen
among {20, 50, 80, 100, 150} using the validation set.

G.2.1 Unsupervised learning with non linear downstream classifier

NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B
RU-GIN 6540+ 0.17 7273 £0.51 75.674+029 8739+1.09 6529+0.16 76.86+0.25 4848 +0.28 69.37+0.37
InfoGraph 7620+ 1.06 7444 £0.31 72854178 89.01£1.13 70.65+1.13 8250+ 142 5346+1.03 73.03+0.87
GraphCL 7787+ 041 7439+045 78.62+040 86.80+134 7136+1.15 89.534+0.84 5599+0.28 71.14+0.44

AD-GCL-FIX 7577 £0.50 75.04 £0.48 75384+ 041 88.62+127 74.79+0.41* 92.06 £ 0.42* 56.24 +£0.39 71.49+0.98
AD-GCL-OPT 7586 £0.62 75.04 =048 7573 +0.51 88.62+ 127 74.89+0.90* 9235+ 0.42* 56.24+£0.39 71.49+0.98

Table 8: Unsupervised Learning results on TU Datasets using a non-linear SVM classifier as done in
GraphCL [24]]. Averaged Accuracy (%) + std. over 10 runs. This is different from the linear classifier
used to show results in Tables E] (TOP) and (BOTTOM).

In our evaluation, we also observe several further benefits of using a downstream linear model in
practice, would like to list them here. First, linear classifiers are much faster to train/converge in
practice, especially for the large-scaled datasets or large embedding dimensions, which is good for
practical usage. We observe that non-linear SVM classifiers induce a rather slow convergence, when
applying to those several OGB datasets where the embedding dimensions are 300 (Table [T] bottom).
Second, compared to the linear model, the non-liner SVM may introduce additional hyper-parameters
which not only need further effort to be tuned but also weaken the effect of the self-training procedure
on the downstream performance.

G.3 Transfer Learning

Evaluation protocol. We follow the same evaluation protocol as done in [17]]. In this setting,
self-supervised methods are trained on the pre-train dataset and later used to be test regarding
transferability. In the testing procedure, the models are fine-tuned on multiple datasets and evaluated
by the labels of these datasets. We adopt the GIN encoder used in [17]] with the same settings for fair
comparison. All reported values for baseline methods are taken directly from [[17] and [24]]. For the
fine-tuning, the encoder has an additional linear graph prediction layer on top which is used to map
the representations to the task labels. This is trained end-to-end using gradient descent (Adam).

Hyper-parameters. Due to the large pre-train dataset size and multiple fine-tune datasets finding
optimal), for each of them can become time consuming. Instead we use a fixed A = 5.0 as it
provides reasonable performance. The learning rate is also fixed to 0.001 and is symmetric for both
the encoder and augmenter during self-supervision on the pre-train dataset. The number of training
epochs for pre-training is chosen among {20, 50, 80, 100} based on the validation performance on
the fine-tune datasets. The same learning setting for fine-tuning is used by following [24].

G.4 Semi-supervised Learning

Evaluation protocol. We follow the protocol as mentioned in [24f]. In this setting, the self-
supervised methods are pre-trained and later fine-tuned with 10% true label supervision on the same
dataset. The representations generated by the methods are finally evaluated using 10-fold evaluation.
All reported values for baseline methods are taken directly from [24]. For fine-tuning, the encoder
has an additional linear graph prediction layer on top which is used to map the representations to the
task labels. This is trained end-to-end by using gradient descent (Adam).

Hyper-parameters. For the pre-training our model, a fixed Ay = 5.0 and learning rate of 0.001

for both encoder and augmenter is used. The epochs are selected among {20, 50, 80, 100} and finally
for fine-tuning with 10% label supervision, default parameters from [24] are used.

H Comparison of AD-GCL and JOAO

We first clarify the different mechanisms that JOAO [[70] and AD-GCL adopt. JOAO selects augmen-
tation families from a pool A = NodeDrop, Subgraph,EdgePert, AttrMask,Identical and defines a

23

Dataset NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B

JOAO 78.07£0.47 74.55+0.41 77.32+0.54 87.35+1.02 69.50+0.36 85.29£1.35 55.74+0.63 70.21+3.08
JOAOV2 78.36x0.53 74.07x1.10 77.40%1.15 87.67+0.79 69.33+0.34 86.42+1.45 56.03x0.27 70.83%0.25
AD-GCL-FIX 75.77+0.50 75.04+0.48 75.38+0.41 88.62+1.27 74.79+0.41 92.06+0.42 56.24+0.39 71.49+0.98

Table 9: Unsupervised learning showing Averaged Accuracy (%) + std. with a non linear SVM
downstream classifier and same standard setup as used in [[70]. The results for JOAO and JOAOv2
are taken from [70].

Dataset NCII PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B
JOAOV2 (FIX-gamma=0.1) 72.99+0.75 71.25+#0.85 66.91+1.75 85.20£1.64 70.40+2.21 78.35%1.38 45.57+2.86 71.60+0.86
AD-GCL-FIX 69.67+0.51 73.59+0.65 74.49+0.52 89.25+1.45 73.32+0.61 85.52+0.79 53.00+0.82 71.57%1.01

Table 10: Unsupervised learning showing Averaged Accuracy (%) + std. with a linear downstream
classifier. JOAOV?2 results using linear evaluation is obtained by us using code provided by the
authors.

uniform prior on them for their inner optimization over all possible augmentation family pairs. (See
Section 3.2 and See Eq. 7,8 in [70]]). An important distinction is that JOAO still adopts uniformly
random augmentations and the inner optimization only searches over different pairs of uniform
augmentations. Whereas, AD-GCL adopts non-uniformly random augmentations, which essentially
corresponds to a much larger search space.

Complexity wise, JOAO is more expensive than AD-GCL as, they utilize projected gradient descent
to fully optimize the inner optimization step over all possible augmentations .A. This is a factor k
more expensive than AD-GCL. The factor k in JOAO is currently |A|? = 42 = 16. This makes it slow
to train while still having a restricted search space compared to AD-GCL which on the other hand is
both faster and looks at a larger search space for a given augmentation family. In our experiments on
a single GPU, JOAO took 3.2 hrs for training on COLLAB whereas AD-GCL only took 14.4 mins
(0.24 hrs).

Moreover, we derive the min-max principle in a more principled way by illustrating its connection to
graph information bottleneck (Theorem[I)), which explains the fundamental reason and benefits of
optimizing graph augmentation strategies.

H.1 Experimental Comparison

We provide comparison between JOAO and AD-GCL in unsupervised learning setting with the
standard non-linear downstream classifier setting in Table[9] This is done following [70] for fair
comparison. Now, we provide the comparison between JOAO and AD-GCL using a linear evaluation
protocol for unsupervised setting in Table[I0] Specifically, a linear SVM head is used for evaluating
the representations learned by the 2 methods for the downstream task. The regularization hyper-
parameter of the linear svm is grid-searched among 0.001, 0.01,0.1,1,10,100,1000. We re-run
the code provided by authors of JOAO (available at https://github. com/Shen-Lab/GraphCL_
Automated) with the default parameters for 5 times each with different seeds. The only change done
is to the embedding evaluation code to include linear svm as the final prediction head. For all the TU
datasets used here, standard 10-Fold evaluation is used to report classification accuracy (%).

The results in the above table further indicate that AD-GCL performs better than JOAO in 6 of the
8 TU benchmark datasets. The gap in performance is even more clear compared to the non-linear
evaluation setting as shown previously in Table[0] Again, we reiterate that the improved performance
gains are due to AD-GCL’s search of non-uniformly random augmentations.

More comparison on transfer learning and semi-supervised learning is put in Table [IT]and Table[TT]
respectively, where the experimental settings follow Sec.[5] For transfer learning, AD-GCL outper-
forms JOAO in 7 among 9 datasets, JOAOvV2 in 5 among 9 datasets. For semi-supervised learning,
AD-GCL outperforms both of them in all 6 datasets.

24

https://github.com/Shen-Lab/GraphCL_Automated
https://github.com/Shen-Lab/GraphCL_Automated

Fine-Tune Dataset BBBP Tox21 SIDER ClinTox BACE HIV MUV ToxCast PPI

JOAO 70.22+0.98 74.98+0.29 59.97+0.79 81.32+2.49 77.34+0.48 76.73x1.23 71.66+1.43 62.94+0.48 64.43x1.38
JOAOV2 71.39£0.92 74.274£0.62 60.49+0.74 80.97+1.64 75.49+127 77.51x1.17 73.67+1.00 63.16£0.45 63.94+1.59
AD-GCL-FIX 70.01x1.07 76.54+0.82 63.28+0.79 79.78+3.52 78.51+£0.80 78.28+0.97 72.30+1.61 63.07£0.72 68.83+1.26

Table 11: Transfer learning results showing mean ROC-AUC -t std. Pre-Training done using ZINC
2M (used for first 8 fine-tune datasets) and PPI-306K (for the last PPI fine-tune dataset). The results
for JOAO and JOAOV?2 are taken from [70]. The experimental setting follows [70].

Dataset NCI1 PROTEINS DD COLLAB RDT-B RDT-M5K
JOAO 74.48+0.27 72132092 75.69+£0.67 75.30+0.32 88.14+0.25 52.83+0.54
JOAOV2 74.86+0.39 73.31+£0.48 75.81£0.73 75.53+0.18 88.79+0.65 52.71+0.28

AD-GCL-FIX 75.18+0.31 73.96+0.47 77.91+£0.73 75.82+0.26 90.10+0.15 53.49+0.28

Table 12: Semi-supervised Learning with 10% label rate showing 10-Fold Accuracy (%). The results
for JOAO and JOAOV?2 are taken from [70]. The experimental setting follows [70].

I Limitations and Broader Impact

We stress on the fact that self-supervised methods come with a fundamental set of limitations as
they don’t have access to the downstream task information. Specifically for contrastive learning, the
design of contrastive pairs (done through augmentations) plays a major role as it guides the encooder
to selectively capture certain invariances with the hope that it can be beneficial to downstream
tasks. Biases could creep in during the design of such augmentations that can be detrimental to the
downstream tasks and risk learning of sub-optimal or non-robust representations of input data. Our
work helps to alleviate some of the issues of hand designed augmentation techniques and provides
a novel principle that can aid in the design of learnable augmentations. It also motivates further
research into the understanding the inherent biases of family of augmentations and how they affect
the downstream tasks. Finally, self-supervised graph representation learning has a lot of implications
in terms of either fairness, robustness or privacy for the various fields that have been increasing
adopting these methods.

J Compute Resources

All our experiments are performed on a compute cluster managed by Slurm Workload Manager. Each
node has access to a mix of multiple Nvidia GeForce GTX 1080 Ti (12GB), GeForce GTX TITAN X
(12GB) and TITAN Xp (12GB) GPU cards.

25

	Summary of the Appendix
	Proof of Theorem 1
	A Brief Review of the Weisfeiler-Lehman (WL) Test
	The Training Algorithm for the Instantiation of AD-GCL
	Summary of Datasets
	Complete Results on Regularization Analysis
	Optimal regularization strength values
	Effects of regularization on regression tasks
	Effects of regularization on edge-drop ratio as complete results in Figure 3 setting.

	Experimental Settings and Complete Evaluation Results
	Motivating Experiment (Figure 2)
	Unsupervised Learning
	Unsupervised learning with non linear downstream classifier

	Transfer Learning
	Semi-supervised Learning

	Comparison of AD-GCL and JOAO
	Experimental Comparison

	Limitations and Broader Impact
	Compute Resources

