A Dataset Details and Use

A.1 Persistence, Ethics, and License

The 2D version of the dataset is hosted publicly by a third party provider, FigShare for redundancy
(for which they determine persistence), https://doi.org/10.6084/m9.figshare.14745234.
The rest of the data, including all the 3D structures, is hosted by Argonne’s Leadership Computing
Center and accessible via a Globus endpoint with documentation hosted by GitHub. The authors are
confident the data will be persistent across FigShare, GitHub, ALCF, and Globus.

The authors believe this data presents a minimal ethical risk to the community at large. The proposed
dataset contains computer-generated protein-ligand structures and computed scores. Information
of this sort, albeit at a smaller scale, is widely available on the web currently, and releasing this
particular dataset would not set any new standards (in terms of a qualitative assessment of data type).
The authors believe the biggest risk of releasing this dataset would be localized to one’s interpretation
of resulting models, theories, or endeavours based on inductive reasoning from the data alone—but,
this risk is typical of any scientific dataset.

A.2 Data Generation Methods

The original data was generated by Open Eye Scientific’s FRED docking protocols, and was aggre-
gated, cleaned, and standardized with naming convetions. The code was generated with this software:
github.com/inspiremd/Model-generation.

A.3 Docking Protocol

The training and testing datasets for these experiments were generated using 31 protein receptors,
covering 9 diverse SARS-CoV-2 viral target protein conformations, that target (1) 3CLPro (main
protease, part of the non-structural protein/ NSP-3), (2) papain like protease (PLPro), (3) SARS
macrodomain (also referred to as ADP-ribosyltransferase, ADRP), (4) helicase (NSP13), (5) NSP15
(endoribonuclease), (6) RNA dependent RNA polymerase (RDRP, NSP7-8-12 complex), and (7)
methyltransferase (NSP10-16 complex). For each of these protein targets, we identified a diverse
set of binding sites along the protein interfaces using two strategies: for proteins that had already
available structures with bound ligands, we utilized the X-ray crystallography data to identify where
ligand densities are found and defined a pocket bound by a rectangular box surrounding that area;
and for proteins that did not have ligands bound to them, we used the FPocket toolkit that allowed
us to define a variety of potential binding regions (including protein interfaces) around which we
could define a rectangular box. This process allowed us to expand the potential binding sites to
include over 90 unique regions for these target proteins. We use the term target to refer to one
binding site. The protocol code can be found here: https://github.com/2019-ncovgroup/
HTDockingDatalInstructions,

A.4 Preparation of Ligand Libraries

Two ligand libraries were prepared. The first was the orderable subset of the Zinc15 database (we
refer to this as OZD) and the second was the orderable subset of the MCULE compound database
(we refer to this as ORD). The generation of the orderable subsets was primarily a manual activity
that involved finding all compounds that are either in stock or available to ship in three weeks across
a range of suppliers. Consistent SMILE strings and drug descriptors for the orderable subsets of the
Zincl5 and MCULE compound databases were generated as described by Babuji et al [2020]. Drug
descriptors for the Zinc15 and MCULE compound databases can be downloaded from the nCOV
Group Data Repository at https://2019-ncovgroup.github.io|

A.5 Docking Protocols

We used OpenEye Toolkits for docking six million (6M) small-molecules from the OZD database.
For each ligand from the database, we calculate a single Chemgauss4 score as a surrogate for binding
affinity. For each ligand in the database (provided as a SMILES string), we create an ensemble of
structures, sampled from various proteinization states (tautomers) and 3-D conformers. Typically, this
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Figure 5: (left) Effects of sample weighting strategies on the default and optimized model.

results in approximately one thousand 3-D structures for each ligand. If the ligand’s stereochemistry
is ambiguous from the provided SMILES, enantiomers are enumerated prior to conformer generation.
Each conformer is then docked to the protein target using FRED or HYBRID depending on the
availability of a bound ligand in the crystal structure of the specific target. Scores are calculated over
the best pose over the ligand ensemble using the Chemgauss4 scoring function. The scoring function
is unitless and aims to measure the fitness of a ligand pose in an active site via a numerical score.
Poses with more negative scores are more likely to be correctly docked. In order to produce a single
score for each database SMILES entry, the minimum over the ensemble is returned. The typical range
of the scoring function is between -20 and 0, though the scoring function range is unbounded.

A.6 Data Cleanliness

Failure analysis of docking runs is available in the SI of [6].

A.7 Model Hyperparameter Optimization

The CANDLE framework was used subsequently used to tune the deep neural network for future
training and screening activities. The CANDLE compliant deep neural network was tuned in two
phases. The first involved using two CANDLE hyperparameter optimization workflows - mrIMBO
and GA. Each differs in the underlying ML techniques used to optimize the hyperparameters. The
second phase involved implementing and testing new sample weighting strategies in an attempt to
weight the samples at the good end of the distribution more heavily during training. Results of the
GA and mlrMBO workflows produced a model architecture that had a 6.6% decrease in the validation
mean absolute error and a 2.8% increase in the validation R-squared metrics.

Efforts to decrease the error in the good tail of the distribution (where the docking scores are best)
focused on adding sample weights to the model while training. We investigated linear and quadratic
weighting strategies. We applied the weighting strategies to both the default model as well as the
hyperparameter optimized model. The linear strategy weights the sample proportionally with the
docking score, while the quadratic scales with the square of the docking score. These strategies
generic in that they can be applied to basically any training target value. To analyze the impact of the
weighting strategies, we computed the mean absolute error on bins of predicted scores with a bin
interval of one. These results are presented in Figure[5]

A.8 Model Scores

See table
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pocket (model) epochs loss mae r2 val_loss val_mae val_r2

3CLPro_7BQY_A_1_F 513 0.338 0.454 0.870 0.426 0.505 0.838
ADRP_6WO02_A_1_ H 599 1.020 0.782 0.786 1.326 0.876 0.724
NPRBD_6VYO_A_1 453 0.302 0.427 0.848 0.356 0.466 0.822

NPRBD_6VYO_A l _F 599 0.482 0.540 0.800 0.601 0.597 0.752
NPRBD_6VYO_BC_1_F 427 0.566 0.586 0.899 0.702 0.653 0.876
NPRBD_6VYO_CD_1_F 523 0474 0534 0.816 0.602 0.597 0.769
NPRBD_6VYO_DA_1_F 587 0.485 0.541 0.854 0.591 0.595 0.824
NSP10-16_6W61_AB_1_F 283 0.490 0.546 0.902 0.615 0.613 0.878
NSP10-16_6W61_AB_2 F 387 0.523 0.565 0.901 0.655 0.628 0.877
NSP10_6W61_B_1_F 433 0.576 0.590 0.908 0.677 0.631 0.893
Nspl13.helicase_m1_pocket2 338 0.553 0.577 0.867 0.663 0.633 0.843

Nspl3.helicase_m3_pocket2 434 0485 0.538 0.878 0.582 0.585 0.855

NSP15_6VWW_A_1 F 406 0.526 0.563 0.837 0.640 0.621 0.804
NSP15_6VWW_A_2 F 441 0.336 0.451 0.876 0.417 0.506 0.849
NSP15_6VWW_AB_1_F 599 0.234 0376 0.829 0.298 0.423 0.784
NSP15_6WOI_A_1_F 596 0473 0533 0.835 0.595 0.597 0.795
NSP15_6WO01_A_2 F 451 0.313 0.434 0.888 0.378 0.475 0.865
NSP15_6WO01_A_3_H 530 0.759 0.679 0.784 0.967 0.754 0.727
NSP15_6WO01_AB_1_F 470 0.261 0396 0.829 0.316 0.434 0.796
NSP16_6W61_A_1_H 583 1.044 0.795 0.787 1.339 0.888 0.728
PLPro_6W9C_A_2 F 512 0.343 0.458 0.858 0.427 0.508 0.825
RDRP_6M71_A_2 F 461 0.311 0.430 0.855 0.384 0.479 0.823
RDRP_6M71_A_3_F 498 0495 0.548 0.859 0.599 0.602 0.830
RDRP_6M71_A_4_F 463 0.382 0.481 0.837 0.465 0.528 0.803
RDRP_7BV1_A_1_F 394 0.312 0.433 0.853 0.378 0.477 0.823
RDRP_7BV1_A_2_F 531 0497 0.546 0.848 0.603 0.597 0.817
RDRP_7BV1_A_3_F 451 0453 0.524 0.849 0.550 0.583 0.818
RDRP_7BV1_A_4_F 420 0.385 0.481 0.873 0.476 0.536 0.844
RDRP_7BV2_A_1_F 589 0.304 0.428 0.821 0.369 0.469 0.784
RDRP_7BV2_A_2 F 422 0.441 0.516 0.839 0.562 0.581 0.798

RDRP_7BV2_A _3_F 510 0466 0.531 0.830 0.579 0.590 0.791

Table 2: Table of released model’s training details and validation scores. Released model files and
corresponding code is avilable from the project GitHub.

A.9 Modeling Feature Details
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1613 Features

Model epoch valloss val MAE val r2
V5.1-100K-flatten-2 337 0.80 0.66 0.71
V5.1-100K-random-2 336 0.80 0.66 0.71
V5.1-1M-flatten-2 484 0.60 0.59 0.81
V5.1-1M-random-2 455 0.49 0.52 0.68
1826 Features
Model epoch valloss val MAE val r2
V5.1-100K-flatten-2 313 0.97 0.74 0.85
V5.1-100K-random-2 330 0.81 0.67 0.71
V5.1-1M-flatten-2 462 0.60 0.59 0.81
V5.1-1M-random-2 456 0.52 0.54 0.67

Table 3: Impact of including Mordred 3-D descriptors in the training data for the different sampling
strategies.

Sample Selection Strategy epoch val loss val mae val r2
V5.1-100K-flatten 337 0.80 0.66 0.71
V5.1-100K-random 336 0.80 0.66 0.71
V5.1-1M-flatten 484 0.60 0.59 0.81
V5.1-1M-random 455 0.49 0.52 0.68

Difference of 1M Samples - 100K Samples

Sample Selection Strategy | A epoch A valloss A valmae A valr2
flatten 147 -0.20 -0.07 0.11
random 119 -0.31 -0.14 -0.03

Table 4: Comparison of 1M samples to 100K samples.
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