
Appendix

Table of Contents
A Symbols 15

B Preliminaries 16

C Discussion about the concurrent work [32, Corollary 3.3] 17

D Proof for Section 3 17
D.1 Proof for Lemma 3.1 . 18
D.2 Proof for Lemma 3.2 . 21
D.3 Proof for LSI sequence for noisy mini-batch gradient descent 23
D.4 Equivalence Between Lemma 3.2 (Ours) And The Bound in Feldman et al. [18] . 24
D.5 Proof for Theorem 3.3 . 25
D.6 Explanations for the privacy bound derived from Balle et al. [5] in Figure 1 . . . 28
D.7 Revisiting noisy GD: A tighter bound than [15, Corollary 1] 28

E Proof for Section 4 31
E.1 Proof for Theorem 4.2 . 31
E.2 Proof for Theorem 4.3 . 33

F Proofs and Explanations for Section 5 34
F.1 Pseudocode for DP-SGD under notations in this paper 34
F.2 Proof for ensuring strong convexity . 34
F.3 Proof for ensuring smoothness . 35
F.4 Proof for ensuring finite gradient sensitivity . 37

14

A Symbols
Algorithms and Definitions

Symbol Meaning Where

x A data vector Algorithm 1

n Size of a dataset Algorithm 1

b Size of a mini-batch Algorithm 1

K Total number of epochs in a learning algorithm Algorithm 1

Id Identity matrix with d rows and d columns Algorithm 1

✓ Model parameters Algorithm 1

`(✓,x) A loss function of ✓ parameterized by x Algorithm 1

D,D0 Neighboring datasets that differ in at most one record Appendix B

Sg `2-sensitivity of total gradient g(✓;D) =
P
x2D
r`(✓;x)

with regard to neighboring datasets. More specifically,
Sg = maxD,D0,✓kg(✓, D)� g(✓, D0)k2

Algorithm 1

N (µ,� · Id) Gaussian distribution over Rd with mean µ and covari-
ance matrix � · Id

Algorithm 1

⌘ Stepsize for each iterative update in the learning algo-
rithm

Algorithm 1

{0, 1, . . . , n} The set of all integers between 0 and n Algorithm 1

xi Data point i of dataset D, with indexing starting at 1 Algorithm 1

✓jk, B
j
k The parameters or generated mini-batch after k epochs

and j iterations of a learning algorithm, with indexing
starting at 0

Algorithm 1

↵ Rényi DP order Appendix B

(", �) Differential Privacy parameters Appendix B

(↵, ") Rényi Differential Privacy parameters Appendix B

c A log-Sobolev inequality constant Appendix B

� The strong convexity parameter for a loss function Section 3

� The smoothness parameter for a loss function Section 3

15

Probability and Information Theory

Symbol Meaning Where

µ A distribution over Rd with density µ(✓) Section 3

p(✓) A probability density function over ✓ 2 Rd Section 2

f#(µ) The push forward distribution of µ under mapping f on
the same domain

Section 3

µ ⇤ ⌫ The convolution of two distributions µ and ⌫ Section 3

R↵(µk⌫) Rényi divergence between distributions µ and ⌫ Appendix B

E✓⇠µ[f(✓)] Expectation of f(✓) with respect to µ(✓) Appendix B

KL(µk⌫) Kullback-Leibler divergence between distributions µ
and ⌫

Appendix D

Calculus and Linear Algebra

Symbol Meaning

t A real scalar

btc The largest integer that is smaller than or equal than a real number t

Ai,j Element i, j of matrix A
dy

dx
Derivative of y with respect to x

@y

@x
,rxy Partial derivative of y with respect to x

r2
xy Laplacian of y with respect to x

rxy Gradient of y with respect to x

x · y Inner products between real vectors x and y

x `2 norm of a vector x

A⌦B Tensor product between two real matrices A and B

xT Transpose of a real vector or matrix x

f � g Composition of the functions or mappings f and g

A � B The matrix B �A is semi-positive definite.

B Preliminaries

Definition B.1 (Differential Privacy [16, 17]). A randomized algorithm A is (", �)-differentially
private if for any neighboring datasets D,D0, and for all possible event S in the output space of A,

P (A(D) 2 S)  e" · P (A(D0) 2 S) + � (14)
where we say D,D0 are neighboring if they are of the same size and differ in at most one data record.
Definition B.2 ((↵, ")-Rényi DP [28]). A randomized algorithm A is said to satisfy (↵, ")-Rényi
differential privacy (or (↵, ")-Rényi DP for short), if for any neighboring datasets D and D0,

R↵(A(D)kA(D0))  ", where R↵(µk⌫) =
1

↵� 1
logE✓⇠⌫

✓
µ(✓)

⌫(✓)

◆↵�
(15)

where A(D) (A(D0)) denote the distribution of output given input dataset D (D0), and R↵(µk⌫) is
the Rényi divergence [31] of order ↵ > 1 for two distributions with density µ(✓) and ⌫(✓) on Rd.

16

Definition B.3 (log-Sobolev Inequality [35]). A distribution ⌫ over Rd satisfies the log-Sobolev
inequality (LSI) with constant c if for all smooth function g : Rd ! R with E✓⇠⌫

⇥
g(✓)2

⇤
<1,

E✓⇠⌫

⇥
g(✓)2 log

�
g(✓)2

�⇤
� E✓⇠⌫

⇥
g(✓)2

⇤
· logE✓⇠⌫

⇥
g(✓)2

⇤
 2

c
E✓⇠⌫

⇥
krg(✓)k2

⇤
. (16)

C Discussion about the concurrent work [32, Corollary 3.3]

Chourasia et al. [15] prove privacy dynamics bound for noisy gradient descent, and Ryffel et al. [32]
extend this bound to SGLD, by directly viewing each mini-batch update as gradient descent on a
smaller dataset of size b (which is the size of a mini-batch). This approach is similar to our approach
for deriving the naive privacy dynamics baseline Theorem 2.1, and the expression in [32, Corollary
3.3] is very similar to the expression in our Theorem 2.1, except for having n2 (instead of b2) in the
bound denominator.

However, an inspection of the proof for [32, Lemma 3.4] shows that, this difference between [32,
Corollary 3.3] and our Theorem 2.1 is caused because by a flawed assumption in [32, Lemma 3.3].
More specifically, [32, Lemma 3.3] wrongly assume that the LSI constant proved in [15, Lemma
5] (which only holds for a GD process) would also similarly hold for a SGLD process that takes
the form of a more complex mixture distribution. Here, each mixture component is the conditional
distribution of last-iterate parameters given a fixed sequence of mini-batches.

This assumption is wrong because a given mixture distribution generally satisfies a different LSI
constant than each of its component distributions. Moreover, bounding the LSI constant for a mixture
distribution is largely an open problem [42, 43, 36, 6, 13]. The current best bound for this problem,
to the best of our knowledge, is [13, Theorem 1], which says that the LSI constant for a mixture
distribution, depends on the LSI constant for the distribution of each component, and the worst-case
�2 distance between any two components’ distributions. Therefore, the actual LSI constant for
SGLD process would be significantly smaller (related to the number of components in the mixture
distribution) than the assumed LSI constant in [32, Lemma 3.4] (which only holds for the conditional
parameter distribution given a fixed mini-batch sequence). After replacing the wrongly assumed
LSI constant in [32, Lemma 3.4] with a correct LSI constant for SGLD process (that takes the form
of mixture distribution), the privacy dynamics bounds in [32, Corollary 3.3] would be significantly
worse (larger).

Due to this flawed assumption, in this paper, we do not compare our improved privacy dynamics the-
orem Theorem 3.3 with [32, Corollary 3.3]. Instead, we compare Theorem 3.3 with the naive privacy
dynamics baseline Theorem 2.1 (which has similar expression as [32, Corollary 3.3]) in Figure 1.

D Proof for Section 3

We first establish a tool lemma for proving Lemma 3.1 and obtaining the partial differential inequality
that bounds the growth of differential privacy loss.
Lemma D.1 (Lemma 5 in Vempala and Wibisono [35]). Suppose ⌫ is a distribution that satisfies
log-Sobolev inequality with constant c > 0, and that has smooth density µ(✓). Let ↵ � 1. For all
measure µ that has smooth density ⌫(✓),

I↵(µk⌫)
E↵(µk⌫)

� 2c

↵2
·R↵(µk⌫) +

2c

↵2
· ↵(↵� 1)

@R↵(µk⌫)
@↵

(17)

where I↵(µk⌫) = E✓⇠⌫

⇣
µ(✓)
⌫(✓)

⌘↵
·
���r log µ(✓)

⌫(✓)

���
2
�

, and E↵(µk⌫) = E✓⇠⌫

h⇣
µ(✓)
⌫(✓)

⌘↵i

Proof. This Lemma is initially proved in Vempala and Wibisono [35] Lemma 5. We give an
alternative proof here, that only uses one step of inequality in Equation (23). We hope this alternative
proof helps understand whether there is still room for improving this Lemma (e.g. by improving the
inequality in Equation (23)).

We denote ⇢ to be another distribution with density ⇢(✓) = 1
E↵(µk⌫) ·

⇣
µ(✓)
⌫(✓)

⌘↵
· ⌫(✓). By simple

integration, we verify that
R
⇢(✓)d✓ = E↵(µk⌫)

E↵(µk⌫) = 1. By definition,

17

I↵(µk⌫)
E↵(µk⌫)

=

E✓⇠⌫

⇣
µ(✓)
⌫(✓)

⌘↵
·
���r log µ(✓)

⌫(✓)

���
2
�

E↵(µk⌫)
(18)

= E✓⇠⌫

"
⇢(✓)

⌫(✓)
·
����r log

µ(✓)

⌫(✓)

����
2
#

(19)

=
1

↵2
E✓⇠⌫

"
⇢(✓)

⌫(✓)
·
����r log

✓
µ(✓)

⌫(✓)

◆↵����
2
#

(20)

by r logE↵(µk⌫) = 0, =
1

↵2
E✓⇠⌫

"
⇢(✓)

⌫(✓)
·
����r log

✓
µ(✓)

⌫(✓)

◆↵

�r logE↵(µk⌫)
����
2
#

(21)

=
1

↵2
E✓⇠⌫

"
⇢(✓)

⌫(✓)
·
����r log

⇢(✓)

⌫(✓)

����
2
#

(22)

By definition, E✓⇠⌫


⇢(✓)
⌫(✓) ·

���r log ⇢(✓)
⌫(✓)

���
2
�

is the relative Fisher information J(⇢k⌫) of ⇢ with

respect to ⌫. A celebrated equivalence result (e.g. Section 2.2 of Vempala and Wibisono [35]) says
that, if and only if ⌫ satsifies log-Sobolev inequality with constant c, the following relation between
the KL divergence and relative Fisher information holds for all ⇢:

KL(⇢k⌫)  1

2c
J(⇢k⌫) (23)

By plugging Equation (23) into Equation (22), we prove
I↵(µk⌫)
E↵(µk⌫)

� 2c

↵2
·KL(⇢k⌫) (24)

by definition, =
2c

↵2
·
Z

Rn

⇢(✓) log
⇢(✓)

⌫(✓)
d✓ (25)

by definition of ⇢, =
2c

↵2
· E✓⇠⌫


1

E↵(µk⌫)
·
✓
µ(✓)

⌫(✓)

◆↵

·
✓
↵ log

µ(✓)

⌫(✓)
� logE↵(µk⌫)

◆�
(26)

=
2c

↵
· 1

E↵(µk⌫)
· E✓⇠⌫


@

@↵

✓
µ(✓)

⌫(✓)

◆↵�
� 2c

↵2
· logE↵(µk⌫)

E↵(µk⌫)
· E✓⇠⌫

✓
µ(✓)

⌫(✓)

◆↵�

(27)

=
2c

↵
· 1

E↵(µk⌫)
· E✓⇠⌫


@

@↵

✓
µ(✓)

⌫(✓)

◆↵�
� 2c

↵2
logE↵(µk⌫) (28)

By exchanging the order of derivative and expectation (because µ(✓) and ⌫(✓) are smooth densities),
we prove that Equation (28) is equivalent to the following inequality.

I↵(µk⌫)
E↵(µk⌫)

� 2c

↵
· @

@↵
logE↵(µk⌫)�

2c

↵2
logE↵(µk⌫) (29)

By definition, we have E↵(µk⌫) = e(↵�1)R↵(µk⌫), therefore we prove
I↵(µk⌫)
E↵(µk⌫)

� 2c

↵
·
✓
R↵(µk⌫) + (↵� 1)

@R↵(µk⌫)
@↵

◆
� 2c

↵2
· (↵� 1)R↵(µk⌫) (30)

=
2c

↵2
·R↵(µk⌫) +

2c

↵2
· ↵(↵� 1)

@R↵(µk⌫)
@↵

(31)

D.1 Proof for Lemma 3.1

Lemma 3.1. Let µ, ⌫ be two distributions on Rd. Let f : Rd ! Rd be a measurable mapping
on Rd. We denote N (0, 2t�2 · Id) to be the standard Gaussian distribution on Rd with covariance

18

matrix 2t�2 ·Id. We denote pt(✓) and p0t(✓) to be the probability density functions for the distributions
f#(µ) ⇤N (0, 2t�2Id) and f#(⌫) ⇤N (0, 2t�2Id) respectively, where f#(µ), f#(⌫) denote the push
forward distributions of µ, ⌫ under mapping f . Then if µ and ⌫ satisfy log-Sobolev inequality with
constant c, and if the mapping f is L-Lipschitz, then for any order ↵ > 1,

@

@t
R↵ (pt(✓)kp0t(✓))  �ct · 2�2 ·

✓
R↵(pt(✓)kp0t(✓))

↵
+ (↵� 1) · @

@↵
R↵(pt(✓)kp0t(✓))

◆
, (32)

where ct =
⇣

L2

c + 2t�2
⌘�1

is the log-Sobolev inequality constant for distributions pt(✓) and p0t(✓).

Proof. By definition, pt(✓) and p0t(✓) are probability density functions for distributions f#(µ) ⇤
N (0, 2t�2Id) and f#(⌫)⇤N (0, 2t�2Id) respectively. Therefore pt(✓) and p0t(✓) satisfy the following
Fokker-Planck equations.

@pt(✓)

@t
= �2�pt(✓), (33)

@p0t(✓)

@t
= �2�p0t(✓) (34)

We denote E↵(pt(✓)kp0t(✓)) =
R pt(✓)

↵

p0
t(✓)

↵�1 d✓ to be the moment of the likelihood ratio function. Then
by definition of Rényi divergence, we prove

R↵(pt(✓)kp0t(✓)) =
1

↵� 1
logE↵(pt(✓)kp0t(✓)) (35)

Therefore we compute the rate of Rényi divergence with regard to t as follows.

@

@t
R↵(pt(✓)kp0t(✓)) =

1

↵� 1

@

@t
logE↵(pt(✓)kp0t(✓)) (36)

=
1

(↵� 1)E↵(pt(✓)kp0t(✓))
· @

@t
E↵(pt(✓)kp0t(✓)) (37)

By definition of E↵(pt(✓)kp0t(✓)), =
1

(↵� 1)E↵(pt(✓)kp0t(✓))
· @

@t

✓Z
pt(✓)↵

p0t(✓)
↵�1

d✓

◆
(38)

By exchanging the order of derivative and integration, we prove

@

@t
R↵(pt(✓)kp0t(✓)) =

1

(↵� 1)E↵(pt(✓)kp0t(✓))
·
Z

@

@t

pt(✓)↵

p0t(✓)
↵�1

d✓ (39)

=
1

(↵� 1)E↵(pt(✓)kp0t(✓))
·
Z ✓

↵ · pt(✓)
↵�1

p0t(✓)
↵�1

· @pt(✓)
@t

� (↵� 1) · pt(✓)
↵

p0t(✓)
↵
· @p

0
t(✓)

@t

◆
d✓

(40)

By the Fokker-Planck equations Equation (33) and Equation (34), we substitute the terms @pt(✓)
@t and

@p0
t(✓)
@t in the above equation as follows.

@

@t
R↵(pt(✓)kp0t(✓)) (41)

=
1

(↵� 1)E↵(pt(✓)kp0t(✓))
·
Z ✓

↵�2 · pt(✓)
↵�1

p0t(✓)
↵�1

·�pt(✓)� (↵� 1)�2 · pt(✓)
↵

p0t(✓)
↵
·�p0t(✓)

◆
d✓

(42)

By applying Green’s first identity in Equation (42), the first intergration term in Equation (42) is
changed to

Z
↵�2 · pt(✓)

↵�1

p0t(✓)
↵�1

·�pt(✓)d✓ = lim
r!1

Z

Br

↵�2 · pt(✓)
↵�1

p0t(✓)
↵�1

·�pt(✓)d✓ (43)

= lim
r!1

Z

@Br

↵�2 · pt(✓)
↵�1

p0t(✓)
↵�1

·rpt(✓) · dS�
Z
r
✓
↵�2 · pt(✓)

↵�1

p0t(✓)
↵�1

◆
·rpt(✓)d✓, (44)

19

where Br is the unit ball centered around origin in d-dimensional Euclidean space with radius r. The
limits in the first term of Equation (44) becomes zero given the smoothness and fast decay properties
of pt(✓), and the Lebesgue integrability of pt(✓)

↵�1

p0
t(✓)

↵�1 · pt(✓). Therefore we prove that
Z
↵�2 · pt(✓)

↵�1

p0t(✓)
↵�1

·�pt(✓)d✓ = �
Z
r
✓
↵�2 · pt(✓)

↵�1

p0t(✓)
↵�1

◆
·rpt(✓)d✓, (45)

Similarly by applying Green’s first identity in Equation (42), the second intergration term in Equa-
tion (42) is changed to

Z
� (↵� 1)�2 · pt(✓)

↵

p0t(✓)
↵
·�p0t(✓)d✓ =

Z
r
✓
(↵� 1)�2 · pt(✓)

↵

p0t(✓)
↵

◆
·rp0t(✓)d✓, (46)

(This techinque for using Green’s identity and bounding the rate of entropy change with relative
Fisher information-like quantity, has been previously used for KL divergence in ?], and Rényi
divergence in Vempala and Wibisono [35], Chourasia et al. [15]. The result is also closely related to
the well known de Bruijn’s indentity in information theory literature.)

By plugging in Equation (45) and Equation (46) into Equation (42), we prove that
@

@t
R↵(pt(✓)kp0t(✓)) (47)

=
�2

(↵� 1)E↵(pt(✓)kp0t(✓))
·
Z
�↵ ·

⌧
r
✓
pt(✓)↵�1

p0t(✓)
↵�1

◆
,rpt(✓)

�
+ (↵� 1) ·

⌧
r
✓
pt(✓)↵

p0t(✓)
↵

◆
,rp0t(✓)

�
d✓

(48)

=
↵(↵� 1)�2

(↵� 1)E↵(pt(✓)kp0t(✓))
·
Z

pt(✓)↵�2

p0t(✓)
↵�2

·
⌧
r
✓
pt(✓)

p0t(✓)

◆
,�rpt(✓) +

pt(✓)

p0t(✓)
rp0t(✓)

�
d✓ (49)

= � ↵�2

E↵(pt(✓)kp0t(✓))
·
Z

pt(✓)↵�2

p0t(✓)
↵�2

·
⌧
r
✓
pt(✓)

p0t(✓)

◆
,r
✓
pt(✓)

p0t(✓)

◆�
· p0t(✓)d✓ (50)

= �↵�2 · I↵(pt(✓)kp0t(✓))
E↵(pt(✓)kp0t(✓))

, (51)

where I↵(pt(✓)kp0t(✓)) =
R pt(✓)

↵�2

p0
t(✓)

↵�2 ·
D
r
⇣

pt(✓)
p0
t(✓)

⌘
,r
⇣

pt(✓)
p0
t(✓)

⌘E
· p0t(✓)d✓. Therefore, if pt(✓) and

p0t(✓) satisfy log-Sobolev inequality with constant ct, then by Lemma D.1, we obtain the following
inequality.

I↵(pt(✓)kp0t(✓))
E↵(pt(✓)kp0t(✓))

� 2ct
↵2

R↵(pt(✓)kp0t(✓)) +
2ct
↵2

· ↵(↵� 1)
@

@↵
R↵(pt(✓)kp0t(✓)) (52)

Meanwhile, by Lemma 16 in Vempala and Wibisono [35] and Lemma 17 in Vempala and Wibisono
[35], the distributions (with densities pt(✓) and p0t(✓)) indeed satisfy ct-log-Sobolev inequality with

ct =

✓
L2

c
+ 2t�2

◆�1

(53)

By plugging Equation (53) and Equation (52) into Equation (51), we prove the following bound for
the rate of Rényi divergence.

@

@t
R↵(pt(✓)kp0t(✓))  �↵�2 ·

✓
2ct
↵2

R↵(pt(✓)kp0t(✓)) +
2ct
↵2

· ↵(↵� 1) · @

@↵
R↵(pt(✓)kp0t(✓))

◆

(54)

= �ct · 2�2 ·
✓
R↵(pt(✓)kp0t(✓))

↵
+ (↵� 1) · @

@↵
R↵(pt(✓)kp0t(✓))

◆
(55)

where ct =
⇣

L2

c + 2t�2
⌘�1

is the log-Sobolev inequality constant for distributions pt(✓) and
p0t(✓).

20

D.2 Proof for Lemma 3.2

Reduce analysis to point initialization:. Without loss of generality, in this paper, we only analyze
recursive Rényi DP bounds for Algorithm 1 under an arbitrary point initialization for initial parameters
✓00 . This is because, under an arbitrary initialization distribution, the last-iterate parameters ✓0K
in Algorithm 1 follow a mixture distribution, with each component being the conditional output
distribution given fixed initial parameters ✓00 . Therefore, by the quasi-convexity of Rényi divergence,
the largest (worst-case) Rényi DP bound for R↵(p(✓0K |✓00)kp(✓0

0
K |✓00)) over all possible initial

parameters ✓00 , is also an upper bound for the Rényi privacy loss R↵(✓0Kk✓0
0
K) between (mixture)

last-iterate parameters distributions for running Algorithm 1 on two neighboring datasets.

We now proceed to prove the recursive privacy bound Lemma 3.2.
Lemma 3.2. Let D,D0 be an arbitrary pair of neighboring datasets that differ in the i0-th data point
(i.e. xi0 6= x0

i0). Let Bj
k be a fixed mini-batch used (in iteration j of epoch k) in Algorithm 1,

which contains b indices sampled from {1, · · · , n}. We denote ✓jk and ✓0jk as the intermediate
parameters in Algorithm 1 on input datasets D and D0, respectively. If the distributions of ✓jk and
✓0jk satisfy log-Sobolev inequality with a constant c, and if the mini-batch GD mapping f(✓) =
✓ � ⌘ · 1

b ·
P

i2Bj
k
`(✓;xi) is L-Lipschitz for parameters ✓, then the following recursive bound for

Rényi divergence holds.

R↵(✓
j+1
k k✓0j+1

k)

↵


8
<

:

R↵0 (✓
j
kk✓

0j
k)

↵0 ·
⇣
1 + c·2⌘�2

L2

⌘�1
if i0 /2 Bj

k

R↵(✓j
kk✓

0j
k)

↵ +
⌘S2

g

4�2b2 if i0 2 Bj
k

with ↵0 =
↵� 1

1 + c·2⌘�2

L2

+ 1.

(56)

Proof. 1. When i0 /2 Bj
k, the noisy mini-batch gradient descent mapping under both dataset

D and D0 is written in the same way as f(✓) + N (0, 2⌘�2Id), where f(✓) = ✓ � ⌘
b ·P

i2Bj
k
r`(✓;xi) (this is because xi = x0

i for i 2 Bj
k, when i0 /2 Bj

k). Therefore, we
could use Lemma 3.1 and solve Equation (1) on the interval t 2 [0, ⌘] to obtain the
recursive privacy bound, where the Rényi divergence at t = 0 (i.e. before the update in
iteration j of epoch k takes place) satisfies R↵(p0(✓)kp00(✓))  "jk(↵). We denote function
R(↵, t) = R↵(pt(✓)kp0t(✓)). Then Equation (1) is equivalent to the following equation.
8
<

:
@
@tR(↵, t)  �

⇣
L2

c + 2t�2
⌘�1

· 2�2 ·
⇣

R(↵,t)
↵ + (↵� 1) · @

@↵R(↵, t)
⌘
,

R(↵, 0)  "jk(↵)
(57)

By substituting u(↵, t) = R(↵,t)
↵ into Equation (57), we prove that Equation (57) is equiva-

lent to the following equation.
8
<

:

@
@tu(↵, t)  �

⇣
L2

c + 2t�2
⌘�1

· 2�2 ·
�
u(↵, t) + (↵� 1) · @

@↵u(↵, t)
�
,

u(↵, 0)  "jk(↵)
↵

(58)

By change of variable y = ln(↵ � 1), we prove that Equation (58) is equivalent to the
following equation.

8
<

:

@
@tu(y, t)  �

⇣
L2

c + 2t�2
⌘�1

· 2�2 ·
⇣
u(y, t) + @

@yu(y, t)
⌘
,

u(y, 0)  "jk(e
y+1)

ey+1

(59)

Now we do change of variable

(
⌧ = t

z = y �
R t
0

⇣
L2

c + 2t0�2
⌘�1

· 2�2dt0 + ln
⇣
1 + c·2⌘�2

L2

⌘

then by chain rule, we prove the following expressions for the partial derivatives using new

21

variables. 8
<

:
@u
@t = @u

@⌧ · @⌧
@t + @u

@z · @z
@t = @u

@⌧ �
@u
@z ·

⇣
L2

c + 2t�2
⌘�1

· 2�2

@u
@y = @u

@⌧ · @⌧
@y + @u

@z · @z
@y = @u

@z

(60)

By plugging Equation (60) into Equation (59), we prove that the partial differential inequality
59 is equivalent to the following inequality under new variables ⌧ and z.

8
>>><

>>>:

@
@⌧ u(z, ⌧)  �

⇣
L2

c + 2⌧�2
⌘�1

· 2�2 · u(z, ⌧),

u(z, 0) 
"jk

e
z�ln

✓
1+ c·2⌘�2

L2

◆

+1

!

e
z�ln

✓
1+ c·2⌘�2

L2

◆

+1

(61)

Now we observe that given any fixed z, Equation (61) is an ordinary differential equation

with regard to ⌧ , with a decay term that proportional to �
⇣

L2

c + 2⌧�2
⌘�1

· 2�2 · u(z, ⌧).
Therefore, we directly solve Equation (61), and prove that

ln(u(z, ⌧))� ln(u(z, 0))  �
Z ⌧

0

✓
L2

c
+ 2⌧ 0�2

◆�1

· 2�2d⌧ 0 = � ln

✓
1 +

c · 2⌧�2

L2

◆

(62)
We take ⌧ = ⌘ in Equation (62), then we prove

lnu(z, ⌘)� lnu(z, 0)  � ln

✓
1 +

c · 2⌘�2

L2

◆
(63)

By plugging the initial condition for u(z, 0) in Equation (61) into Equation (63), we prove
that the solution for u at the end of a set ⌧ = ⌘ satisfies the following inequality.

u(z, ⌘) 
"jk

✓
e
z�ln

⇣
1+ c·2⌘�2

L2

⌘

+ 1

◆

e
z�ln

⇣
1+ c·2⌘�2

L2

⌘

+ 1
·
✓
1 +

c · 2⌘�2

L2

◆�1

(64)

Now we translate the variables z = z, ⌧ = ⌘ back to the old variables y and t by definitions,

and prove that t = ⌧ = ⌘ and z = y�
R t
0

⇣
L2

c + 2t0�2
⌘�1

· 2�2dt0 + ln
⇣
1 + c·2⌘�2

L2

⌘
= y.

Therefore, under these variable substitutions, we prove that Equation (63) is equivalent to
the following equation.

u(y, ⌘) 
"jk

✓
e
y�ln

⇣
1+ c·2⌘�2

L2

⌘

+ 1

◆

e
y�ln

⇣
1+ c·2⌘�2

L2

⌘

+ 1
·
✓
1 +

c · 2⌘�2

L2

◆�1

(65)

Finally, we translate the variable y back to ↵, under the fixed variable t = ⌘, by the definition
y = log(↵ � 1). Therefore, we prove that Equation (65) is equivalent to the following
solution for u(↵, ⌘).

u(↵, ⌘) 
"jk

✓
(↵� 1) ·

⇣
1 + c·2⌘�2

L2

⌘�1
+ 1

◆

(↵� 1) ·
⇣
1 + c·2⌘�2

L2

⌘�1
+ 1

·
✓
1 +

c · 2⌘�2

L2

◆�1

(66)

By the definition u(↵, t) = R(↵,t)
↵ , we prove that Equation (66) is equivalent to the following

solution for R(↵, t).

R(↵, ⌘)

↵


"jk

✓
(↵� 1) ·

⇣
1 + c·2⌘�2

L2

⌘�1
+ 1

◆

(↵� 1) ·
⇣
1 + c·2⌘�2

L2

⌘�1
+ 1

·
✓
1 +

c · 2⌘�2

L2

◆�1

(67)

22

Therefore, by using the definition R(↵, ⌘) = "j+1
k (↵), we finish the proof for the Lemma

statement, that when i0 6= Bj
k,

R↵(✓
j+1
k k✓0j+1

k)

↵


R↵0(✓jkk✓0
j
k)

↵0 ·
✓
1 +

c · 2⌘�2

L2

◆�1

(68)

where ↵0 = (↵� 1) ·
⇣
1 + c·2⌘�2

L2

⌘�1
+ 1.

2. When i0 2 Bj
k, by composition theorem for Rényi differential privacy [28], and by the

Rényi privacy bound for Gaussian mechanism [28] under `2-sensitivity Sg/b (for batch
averaged gradient) and noise N (0, 2⌘�2Id), we prove that

R↵(✓
j+1
k k✓0j+1

k)  R↵(✓
j
k, ✓

j+1
k k✓0jk, ✓0

j+1
k) (69)

 R↵(✓
j
kk✓

0j
k) +

⌘2(Sg/b)2

2 · 2⌘�2
= R↵(✓

j
kk✓

0j
k) +

↵⌘S2
g

4�2b2
. (70)

D.3 Proof for LSI sequence for noisy mini-batch gradient descent

To apply the recurisve privacy bound Lemma 3.2 and prove a converging privacy dynamics, we first
need to prove that the distributions of parameters ✓jk in Algorithm 1 satisfy log-Sobolev inequality with
certain constant cjk, that depends on k and j. In this section, we prove that noisy mini-batch gradient
descent on convex smooth loss function, as well as strongly convex smooth loss functions,satusfies
LSI with certain sequences of constants as follows.
Lemma D.2 (LSI constant sequence in Algorithm 1 for convex smooth loss). Suppose that the
loss function `(✓;x) in Algorithm 1 is convex and �-smooth. If the step-size ⌘ < 2

� , then for any
k = 0, · · · ,K � 1 and j = 0, · · · , n/b� 1, the distribution of parameters ✓jk in Algorithm 1 satisfies
cjk-log-Sobolev inequality with

cjk =
1

2⌘�2 · (k · n/b+ j)
, (71)

and we define c00 = 1
0 = +1.

Proof. The mini-batch noisy gradient descent update could be written as ✓j+1
k = f(✓jk) +

N (0, 2⌘�2Id), where f is a deterministic mapping on Rd written as f(✓) = ✓� ⌘ ·
P

i2B `(✓;xi)

b , and
B is a mini-batch of size b consisting of indices selected from 0, · · · , n.

Because the initialization is point distribution around ✓0, therefore ✓00 satisfies log-Sobolev inequality
with constant c0 =1.

By the �-smoothness of `(✓;x), and by ⌘ < 2
� , we prove that the mini-batch gradient mapping f(✓)

is 1-Lipschitz. Further using LSI under Lipchitz mapping (Lemma 16 in Vempala and Wibisono [35])
and under Gaussian convolution (Lemma 17 in Vempala and Wibisono [35]), we prove that

1

cjk
=

1

cj�1
k

+ 2⌘�2 (72)

=
1

c00
+ 2⌘�2 · (k · n/b+ j) (73)

by c00 = +1, = 2⌘�2 · (k · n/b+ j) (74)
(75)

This suffices to prove the LSI sequence in Equation (71).

Similarly, we prove another LSI sequence for noisy mini-batch gradient descent on strongly convex
smooth loss function.

23

Lemma D.3 (LSI constant sequence in Algorithm 1 for strongly convex smooth loss). Suppose the
loss function `(✓;x) in Algorithm 1 is �-strongly convex and �-smooth. If the step-size ⌘ < 2

�+� , then
for any k = 0, · · · ,K � 1 and j = 0, · · · , n/b� 1, the distribution of parameters ✓jk in Algorithm 1
satisfies cjk-log-Sobolev inequality with

cjk =
1

2⌘�2
· 1
Pk·n/b+j�1

s=0 (1� ⌘�)2s
(76)

Proof. The mini-batch noisy gradient descent update could be written as ✓j+1
k = f(✓jk) +

N (0, 2⌘�2Id), where f is a deterministic mapping on Rd written as f(✓) = ✓� ⌘ ·
P

i2B `(✓;xi)

b , and
B is a mini-batch of size b consisting of indices selected from 0, · · · , n.

Because the initialization is point distribution around ✓0, therefore ✓00 satisfies log-Sobolev inequality
with constant c0 =1.

By �-strong convexity and �-smoothness of `(✓;x), and by ⌘ < 2
�+� , we prove that the mini-batch

gradient mapping f(✓) is 1� ⌘�-Lipschitz. Further using LSI under Lipchitz mapping (Lemma 16 in
Vempala and Wibisono [35]) and under Gaussian convolution (Lemma 17 in Vempala and Wibisono
[35]), we prove that

1

cjk
=

(1� ⌘�)2

cj�1
k

+ 2⌘�2 (77)

=
(1� ⌘�)2(k·n/b+j)

c00
+ 2⌘�2 ·

k·n/b+j�1X

s=0

(1� ⌘�)2s (78)

by c00 = +1, = 2⌘�2 ·
k·n/b+j�1X

s=0

(1� ⌘�)2s (79)

This suffices to prove the LSI sequence in Equation (76).

D.4 Equivalence Between Lemma 3.2 (Ours) And The Bound in Feldman et al. [18]

We now plug the LSI constant sequence derived in Lemma D.2 into the recursive privacy
bound Lemma 3.2, and prove the following privacy dynamics theorems for noisy mini-batch gradient
descent under smooth convex loss functions.
Theorem D.4 (Privacy dynamics under convex smooth loss). Under fixed mini-batches
B0, · · · , Bn/b�1, if the loss function `(✓;x) is convex, �-smooth, and if its gradient has finite
`2-sensitivity Sg , then Algorithm 1 with step-size ⌘ < 2

� satisfies (↵, ")-Rényi DP for data points in
the batch Bj0 , with

"j 
↵⌘S2

g

4�2b2
· b
n
· (K � 1) +

↵⌘S2
g

4�2b2
· 1

n/b� j0
(80)

(81)

Proof. We first observe that for any batch index j0 = 0, · · · , n/b � 1, the privacy bound for data
points in batch Bj0 in Algorithm 1 (that has K epochs) is equivalent to the privacy bound for data
points in the batch B0 after K � 1 epochs and n/b � j0 iterations in Algorithm 1. That is, if
R↵(✓

j
kk✓0

j
k)  "jk(↵) is an upper bound for the Rényi divergence between distributions of parameters

✓jk and ✓0jk in running Algorithm 1 on neighboring datasets D and D0, when the differing data point
between D and D0 is contained in the mini-batch B0, then the privacy bound " for data points in the
mini-batch Bj0 of Algorithm 1 satisfies

"  "n/b�j0
K�1 (↵)  "0K�1(↵) + "n/b�j0

0 (↵) (82)

 (K � 1) · "n/b0 (↵) + "n/b�j0
0 (↵), (83)

where the last two inequalities are by composition of Rényi DP guarantees.

24

Therefore, in the remaining proof, we only prove upper bounds for the terms "j0(↵) for j = 1, · · · , n/b,
that are required by Equation (83) for bounding ".

By Lemma D.2, for any k = 0, · · · ,K � 1 and j = 0, · · · , n/b� 1, the distribution of parameters
✓jk satisfies log-Sobolev inequality with the following constant cjk.

cjk =
1

2⌘�2 · (k · n/b+ j)
(84)

By plugging the LSI constant sequence {cjk} into Lemma 3.2, and by the noisy mini-batch gradient
descent mapping, under convex smooth loss with stepsize ⌘ < 2

� , is 1-Lipschitz, we prove the
following recursive bound for "jk(↵), i.e. the Rényi DP bound for data points in the mini-batch B0 of
Algorithm 1. For any k = 0, · · · ,K � 1 and any j = 0, · · · , n/b� 1,

"00(↵) = 0 (85)

"j+1
k (↵)

↵


8
<

:

"jk(↵)
↵ +

⌘S2
g

4�2b2 if j = 0
"jk(↵

0)
↵0 · k·n/b+j

k·n/b+j+1 if j = 1, · · · , n/b� 1
(86)

where ↵0 = (↵� 1) ·
✓
1 +

c · 2⌘�2

L2

◆�1

+ 1 (87)

"0k+1(↵) = "n/bk (↵) (88)

By solving Equation (86) under k = 0, we prove that for any j = 1, · · · , n/b, and for any ↵ > 1,

"j0(↵)

↵


⌘S2
g

4�2b2
·
j�1Y

j0=1

j0

j0 + 1
(89)

=
⌘S2

g

4�2b2
· 1
j

(90)

By plugging Equation (90) into Equation (83), we prove the privacy bound Equation (80) in the
theorem statement.

Theorem D.4 is equivalent to Theorem 23 in Feldman et al. [18] for Algorithm 1 under single-epoch
setting (where K = 1) with batch-size b = 1. For multi-epoch setting with K = n and batch-size
b = 1, Theorem D.4 is equivalent to Theorem 35 in Feldman et al. [18].

D.5 Proof for Theorem 3.3

We now plug the LSI constant sequence derived in Lemma D.3 into the recursive privacy
bound Lemma 3.2, and prove the following privacy dynamics theorems for noisy mini-batch gradient
descent under strongly convex smooth loss functions.
Theorem 3.3. Conditioned on a fixed sequence of partitioned mini-batches B0, · · · , Bn/b�1 in Line 3,
if the loss function is �-strongly convex, �-smooth and its gradient has `2-sensitivity Sg , then running
Algorithm 1 for K � 1 epochs with step-size ⌘ < 2

�+� , satisfies (↵, ")-Rényi DP for data points in
the batch Bj0 , with

"  "
b n
2b c

0 (↵) · 1� (1� ⌘�)2·(K�1)·(n/b�b n
2b c)

1� (1� ⌘�)2·(n/b�b n
2b c)

+ "n/b�j0
0 (↵) (91)

where "j0(↵) =
↵⌘S2

g

4�2b2 · (1� ⌘�)2·(j�1) · 1Pj�1
s=0(1�⌘�)2s

for any j = 1, · · · , n
b (we assume n

b � 2).

Proof. We first observe that for any batch index j0 = 0, · · · , n/b � 1, the privacy bound for data
points in batch Bj0 in Algorithm 1 (that has K epochs) is equivalent to the privacy bound for data

25

points in the batch B0 after K � 1 epochs and n/b � j0 iterations in Algorithm 1. That is, if
R↵(✓

j
kk✓0

j
k)  "jk(↵) is an upper bound for the Rényi divergence between distributions of parameters

✓jk and ✓0jk in running Algorithm 1 on neighboring datasets D and D0, when the differing data
point between D and D0 is contained in the mini-batch B0, then the privacy bound ", for running
Algorithm 1 on neighboring datasets D and D0 that differs in a point in the mini-batch Bj0 , satisfies

"  "n/b�j0
K�1 (↵)  "0K�1(↵) + "n/b�j0

0 (↵), (92)

where the last inequality is by composition of Rényi DP guarantees.

Therefore, in the remaining proof, we only prove upper bounds for the terms "n/b�1�j0
0 (↵) and

"0K�1(↵), that are required by Equation (92) for bounding ".

By Lemma D.3, for any k = 0, · · · ,K � 1 and j = 0, · · · , n/b� 1, the distribution of parameters
✓jk satisfies log-Sobolev inequality with the following constant cjk.

cjk =
1

2⌘�2
· 1
Pk·n/b+j�1

s=0 (1� ⌘�)2s
(93)

By plugging the LSI constant sequence {cjk} proved in Lemma D.3 into the proved recursive privacy
bound Lemma 3.2, we prove that for running noisy mini-batch gradient descent on neighboring
datasets that differ in a data point in the first mini-batch B0, the following recursion for the Rényi
divergence bound "jk(↵) holds: if the loss function is �-strongly convex and �-smooth, and if the
stepsize ⌘ < 2

�+� , then for any k = 0, · · · ,K � 1, any j = 0, · · · , n/b� 1, and any ↵ > 1,

"00(↵) = 0 (94)

"j+1
k (↵)

↵


8
<

:

"jk(↵)
↵ +

⌘S2
g

4�2b2 if j = 0
"jk(↵

0)
↵0 · (1� ⌘�)2 ·

Pk·n/b+j�1
s=0 (1�⌘�)2s
Pk·n/b+j

s=0 (1�⌘�)2s
if j = 1, · · · , n/b� 1

(95)

where ↵0 = (↵� 1) ·
✓
1 +

c · 2⌘�2

L2

◆�1

+ 1 (96)

"0k+1(↵) = "n/bk (↵) (97)

We now solve the above recursion, thus bounding the privacy loss " of Algorithm 1 in Equation (92).

1. We first prove a bound for the term "n/b�j0
0 (↵) in Equation (92). By solving Equation (95)

under k = 0, we prove that for any j = 1, · · · , n/b, and for any ↵ > 1,

"j0(↵)

↵


⌘S2
g

4�2b2
·
j�1Y

j0=1

(1� ⌘�)2 ·

Pj0�1
s=0 (1� ⌘�)2s

Pj0

s=0(1� ⌘�)2s

!
(98)

=
⌘S2

g

4�2b2
· (1� ⌘�)2·(j�1) · 1

Pj�1
s=0(1� ⌘�)2s

(99)

2. We now prove a bound for the term "0K�1(↵) in Equation (92).

The term "jk(↵) corresponds to the privacy bound for the data points in the batch B0 for
running Algorithm 1 with k epochs plus j iteration. This is equivalent to the composition
A2 �A1 of two sub-mechanisms A1 and A2, where A1 corresponds to running Algorithm 1
with K = k epochs, and A2 corresponds to running Algorithm 1 with only j iterations.
Therefore, by the composition theorem for Rényi DP guarantees [28], we prove the following
alternative recursive privacy bound for "jk(↵). For any k = 0, · · · ,K � 1 and any j =
0, · · · , n/b� 1,

"j+1
k (↵)  "0k(↵) + "j+1

0 (↵) (100)

26

We now prove an upper bound for "jk(↵), by carefully combining the original recursion Equa-
tion (95) and the new alternative recursion Equation (100) (obtained by composition the-
orem). We use the original recursion Equation (100) for recursively bounding "j+1

k (↵)
during the first half of one epoch, i.e., for j = 0, · · · , b n

2bc � 1, and then we use the
new alternative recursive bound Equation (95) for the second half of one epoch, i.e., for
j = b n

2bc, · · · , n/b� 1. 5 Via this combination, we obtain a new combined recursion for
privacy bound as follows. For any k = 0, · · · ,K � 1,

"j+1
k (↵)

↵


8
<

:

"0k(↵)+"j+1
0 (↵)

↵ if j = 0, · · · , b n
2bc � 1

"jk(↵
0)

↵0 · (1� ⌘�)2 ·
Pk·n/b+j�1

s=0 (1�⌘�)2s
Pk·n/b+j

s=0 (1�⌘�)2s
if j = b n

2bc, · · · , n/b� 1

(101)

where ↵0 = (↵� 1) ·
⇣
1 + c·2⌘�2

L2

⌘�1
+ 1.

We now solve this new recursion Equation (101) for one epoch, by accumulating j =
0, · · · , n/b� 1. We prove that for any k = 0, · · · ,K � 1,

"0k+1(↵)

↵
=

"n/bk (↵)

↵
(102)

 "0k(↵̃) + "
b n
2b c

0 (↵̃)

↵̃
·

n/b�1Y

j0=b n
2b c

(1� ⌘�)2 ·
Pk·n/b+j�1

s=0 (1� ⌘�)2s
Pk·n/b+j

s=0 (1� ⌘�)2s
(103)



⇣
"0k(↵̃) + "

b n
2b c

0 (↵̃)
⌘

↵̃
· (1� ⌘�)2·(n/b�b n

2b c) (104)

where the RDP order ↵̃ > 1 is the n/b � b n
2bc fold mapped value of ↵ under repeated

mappings ↵ (↵� 1) ·
⇣
1 + c·2⌘�2

L2

⌘�1
+ 1.

We now further solve this new recursion Equation (101) for multiple epochs, by accumulat-
ing Equation (104) for k = 0, 1, · · · ,K � 1. We prove that for any k = 0, 1, · · · ,K � 1,

"0k+1(↵)

↵
 "00(↵̃)

↵̃
· (1� ⌘�)2·(k+1)·(n/b�b n

2b c) +
"
b n
2b c

0 (↵̃)

↵̃
·
k+1X

k0=1

(1� ⌘�)2·k
0·(n/b�b n

2b c)

(105)

for some RDP order ↵̃ > 1 that is the (k + 1) · (n/b� b n
2bc) fold mapped value of ↵ under

repeated mapping ↵ (↵� 1) ·
⇣
1 + c·2⌘�2

L2

⌘�1
+ 1.

By further substituting "00(↵̃) = 0 at the initialization point ✓0 for any ↵̃ > 1 in the above
equation, we prove that for any k = 0, · · · ,K � 1

"0k+1(↵)

↵
=

"
b n
2b c

0 (↵̃)

↵̃
· (1� ⌘�)2·(n/b�b n

2b c) · 1� (1� ⌘�)2·(k+1)·(n/b�b n
2b c)

1� (1� ⌘�)2·(n/b�b n
2b c)

(106)

for some RDP order ↵̃ > 1.

By setting k = K � 2 in Equation (106), we prove that for K � 2

"0K�1(↵)

↵
"

b n
2b c

0 (↵̃)

↵̃
· 1� (1� ⌘�)2·(K�1)·(n/b�b n

2b c)

1� (1� ⌘�)2·(n/b�b n
2b c)

(107)

for some RDP order ↵̃ > 1. By the format of "j0(↵) for any ↵ > 1 in our proof Equation (99)
(i.e., "j0(↵)

↵ is bounded by a constant for all ↵ > 1), we prove that Equation (107) is equivalent

5This seemingly artificial way of separating one epoch into two halves, and using the recursive bounds
separately in each half, is for obtaining a small privacy bound at convergence.

27

to the following equation

"0K�1(↵) "
b n
2b c

0 (↵) · 1� (1� ⌘�)2·(K�1)·(n/b�b n
2b c)

1� (1� ⌘�)2·(n/b�b n
2b c)

(108)

For K = 1, by definition, we compute that "0K�1(↵) = 0 =Right hand side of Equa-
tion (108), therefore Equation (108) also holds for K = 1.

We now plug our bound Equation (108) into Equation (92), and prove a bound for " as follows.

" "0K�1(↵) + "n/b�j0
0 (↵) (109)

"b
n
2b c

0 (↵) · 1� (1� ⌘�)2·(K�1)·(n/b�b n
2b c)

1� (1� ⌘�)2·(n/b�b n
2b c)

+ "n/b�j0
0 (↵) (110)

where the term "j0(↵) is upper bounded by Equation (99). This gives the privacy bound Equation (3)
in the theorem statement.

D.6 Explanations for the privacy bound derived from Balle et al. [5] in Figure 1

For convenience, we first translate [5, Theorem 5] into the symbols used in this paper, as well as
under mini-batch with size b > 1, as follows.
Theorem D.5 (Balle et al. [5]). Let `(✓,x) be an L-Lipschitz, �-smooth, �-strongly convex loss func-
tion. If ⌘  2

�+� , then conditioned on a fixed sequence of partitioned mini-batches B0, · · · , Bn/b�1

in Line 3, Algorithm 1 satisfies (↵, ")-Rényi DP for data points in the mini-batch j0, with

" =

8
<

:

↵ · 2(L/b)2

2⌘�2 j0 = n/b� 1

↵ · 2(L/b)2

(n/b�j0�1)·2⌘�2

⇣
1� 2⌘��

�+�

⌘n/b�j0
2

j0 = 0, · · · , n/b� 2
(111)

The variables from Balle et al. [5] that we replaced are as follows: L ! L/b, this is because,
in Algorithm 1, we additionally average each per-example gradient with the mini-batch size b;
i ! j0 + 1, this is because the index used in our paper starts from j0 = 0, while the index used
in Balle et al. [5] starts from i = 1; n ! n/b, this is because under mini-batch size b > 1, the
number of iterations in one epoch in our paper is n/b, while the number of iteration in Balle et al. [5]
equals the size of the datasets n; �2 ! 2⌘�2, this is because in our paper, we follow the noise scaling
with variance 2⌘�2 that is related to stepsize ⌘, as in SGLD, while Balle et al. [5] use the standard
Gaussian noise with variance �2.

By further substituting the Lipschitz requirement with its equivalent sensitivity assumption, i.e.
L! ⌘Sg/2, and by using Rényi DP composition [28] over the epochs, we obtain that the privacy

bound in Balle et al. [5, Theorem 5] is ↵·⌘S2
g

4·(n/b�1)·b2�2 ·
⇣
1� 2⌘��

�+�

⌘ n
2b ·K when the differing data

point is in the first batch, and the bound is ↵·⌘S2
g

4·(n/b�1)·b2�2 ·
⇣
1� 2⌘��

�+�

⌘ n
2b · (K � 1) +

↵·⌘S2
g

4b2�2 when
the differing data point is in the last batch.

D.7 Revisiting noisy GD: A tighter bound than [15, Corollary 1]

In this section, we prove a new converging hidden-state privacy bound for the noisy GD algorithm,
which is a special case of Algorithm 1 under b = n. We then show that our bound is slightly tighter
than [15, Corollary 1] and also admits a conceptually simpler proof (our proof relies on the privacy
amplification by randomized post-processing results in Section 3). We first state our privacy bound
and its proof as follows.
Theorem D.6. Let `(✓;x) be a �-strongly convex, and �-smoooth loss function, with a finite total
gradient sensitivity Sg, then the noisy gradient descent algorithm with step-size ⌘ < 1

� , satisfies
(↵, ") Rényi Differential Privacy with

" 
↵⌘S2

g

2�2n2
·

KX

k=1

✓
1� ⌘�

2

◆k

. (112)

28

Proof. We first offer a new perspective of viewing a noisy GD update as follows. Recall that one
noisy GD update in Algorithm 1 is written as

✓0k+1 = ✓0k � ⌘ · g(✓0k;D) +
p
2⌘�2 · N (0, Id) where g(✓jk;D) =

1

n

nX

i=1

r`(✓jk;xi) (113)

Therefore, this update is equivalent to the following two steps:

✓
1
2
k = ✓0k � ⌘ · g(✓0k;D) +

p
⌘�2 · N (0, Id) where g(✓0k;D) =

1

n

nX

i=1

r`(✓0k;xi) (114)

✓0k+1 = ✓
1
2
k +

p
⌘�2 · N (0, Id) (115)

That is, we view each noisy GD update as another noisy GD update with smaller noise scale followed
by pure additive Gaussian noise.

Moreover, by Lemma D.3, we prove that distributions of ✓0k satisfies c0k-log Sobolev inequality with

c0k =
1

2⌘�2
· 1
Pk�1

s=0 (1� ⌘�)2s
(116)

Therefore, by further using LSI under Lipschitz mapping ([35, Lemma 16]) and under Gaussian
convolution ([35, Lemma 17]), we prove that the distribution of ✓

1
2
k satisfies c

1
2
k -log Sobolev inequality

with

1

c
1
2
k

=
(1� ⌘�)2

c0k
+ ⌘�2 (117)

= 2⌘�2 ·
kX

s=1

(1� ⌘�)2s + ⌘�2 (118)

Therefore, by applying composition on the conceptual step from ✓0k ! ✓
1
2
k , we prove that

R↵(✓
1
2
k k✓0

1
2
k)

↵
 R↵(✓0kk✓0

0
k)

↵
+

⌘S2
g

2�2n2
(119)

For the remaining conceptual step from ✓
1
2
k ! ✓0k+1, we note that pure additive Gaussian noise is

equivalent to identity mapping convolved with Gaussian noise. Therefore, we apply i0 /2 Bj
k case

of Lemma 3.2 with L = 1 (for identity mapping) and noise standard deviation �p
2

, and prove that

R↵(✓0k+1k✓0
0
k+1)

↵


R↵0(✓
1
2
k k✓0

1
2
k)

↵0 ·
⇣
1 + c

1
2
k · ⌘�2

⌘�1
with ↵0 =

↵� 1

1 + c
1
2
k · ⌘�2

+ 1 (120)

Therefore, by combining (119) and (120), we prove the following recursive Rényi DP bound.

R↵(✓0k+1k✓0
0
k+1)

↵


R↵0(✓0kk✓0

0
k)

↵0 +
⌘S2

g

2�2n2

!
·
⇣
1 + c

1
2
k · ⌘�2

⌘�1
with ↵0 =

↵� 1

1 + c
1
2
k · ⌘�2

+ 1

(121)

By further plugging in the LSI constant sequence (117), we simplify Equation (121) into the following
inequality.

29

R↵(✓0k+1k✓0
0
k+1)

↵


R↵0(✓0kk✓0

0
k)

↵0 +
⌘S2

g

2�2n2

!
·

1� 1

2
Pk

s=0(1� ⌘�)2s

!
(122)



R↵0(✓0kk✓0

0
k)

↵0 +
⌘S2

g

2�2n2

!
·

1� 1

2
P+1

s=0(1� ⌘�)2s

!
(123)

=

R↵0(✓0kk✓0

0
k)

↵0 +
⌘S2

g

2�2n2

!
·
✓
1� 1� (1� ⌘�)2

2

◆
(124)



R↵0(✓0kk✓0

0
k)

↵0 +
⌘S2

g

2�2n2

!
·
✓
1� ⌘�

2

◆
, (125)

where ↵0 = (↵� 1) ·
⇣
1� 1

2
Pk

s=0(1�⌘�)2s

⌘
+ 1, and the last inequality Equation (125) is because

of the inequality ⌘� < �
�  1 that is ensured by the condition ⌘ < 1

� .

Therefore, by solving the recursion Equation (125) from k = 0, · · · ,K � 1, and by using
R↵(✓00k✓0

0
0) = 0 for any ↵ > 1, we prove the theorem statement in Theorem D.6.

R↵(✓0Kk✓0
0
K)

↵


⌘S2
g

2�2n2
·

KX

k=1

✓
1� ⌘�

2

◆k

(126)

Comparison with [15, Corollary 1] We now compare our privacy bound Theorem D.6 with [15,
Corollary 1] and show that our bound is tighter. For convenience, we now repeat the privacy bound
for noisy gradient descent (i.e. when b = n in Algorithm 1) that is proved in [15, Corollary 1] below.
Theorem D.7 (Corollary 1 in Chourasia et al. [15]). Let `(✓;x) be a �-strongly convex, and �-
smoooth loss function, with a finite total gradient sensitivity Sg, then the noisy gradient descent
algorithm with start parameter ✓0 ⇠ N (0, 2�2

� Id), and step-size ⌘ < 1
� , satisfies (↵, ") Rényi

Differential Privacy with

" 
↵S2

g

��2n2
(1� e��⌘K/2). (127)

Because 1� x < e�x for x 6= 0, we are able to further relax the bound in Theorem D.6 as follows.

" 
↵⌘S2

g

2�2n2
·

KX

k=1

✓
1� ⌘�

2

◆k

(128)

<
↵⌘S2

g

2�2n2
·
✓
1� ⌘�

2

◆
·
K�1X

k=0

e�
⌘�k
2 (129)

=
↵⌘S2

g

2�2n2
·
✓
1� ⌘�

2

◆
· 1� e��⌘K

1� e�⌘�/2
(130)

Because 1 � e�x > x · e�x for x > 0, we prove that 1 � e�⌘�/2 � �⌘
2 · e��⌘

2 . By plugging this
inequality to Equation (130), we prove that

" <
↵S2

g

��2n2
·
1� ⌘�

2

e�
�⌘
2

· (1� e��⌘K) (131)

By again using 1� x < e�x for x 6= 0 into Equation (131), we prove that

30

" <
↵S2

g

��2n2
· (1� e��⌘K) = RHS of [15, Corollary 1] (132)

This shows that the privacy bound Theorem D.6 enabled by our analysis is strictly tighter than [15,
Corollary 1].

E Proof for Section 4

Lemma 4.1. Let µ1, · · · , µm and ⌫1, · · · , ⌫m be measures over Rd. Then for any ↵ � 1, and any
p1, · · · , pm � 0 that satisfies p1 + · · ·+ pm = 1,

e(↵�1)·R↵(
Pm

j=1 pjµjk
Pm

j=1 pj⌫j) 
mX

j=1

pj · e(↵�1)·R↵(µjk⌫j) (133)

Proof. By definition of Rényi divergence,

e(↵�1)·R↵(µk⌫) =

Z ✓
µ(✓)

⌫(✓)

◆↵

· µ(✓)d✓ (134)

Therefore by definition of f -divergence, e(↵�1)·R↵(µk⌫) is f -divergence with f(x) = x↵. By the
convexity of f when ↵ � 1, and by applying Theorem 3.1 in Taneja and Kumar [33], we prove that
the f-divergence e(↵�1)·R↵(µk⌫) is jointly convex in arguments µ, ⌫.

E.1 Proof for Theorem 4.2

Theorem 4.2 (Privacy dynamics for "shuffle and partition" mini-batch gradient descent). If the loss
function `(✓;x) is �-strongly convex, �-smooth, and if its gradient has finite `2-sensitivity Sg , then
for K � 1 and n

b � 2, Algorithm 1 with stepsize ⌘ < 2
�+⌘ satisfies (↵, ")-Rényi DP for all data

points with

"  "
b n
2b c

0 (↵) · 1� (1� ⌘�)2·(K�1)·(n/b�b n
2b c)

1� (1� ⌘�)2·(n/b�b n
2b c)

+
1

↵� 1
· log

Avg

0j0<n/b
e(↵�1)"

n/b�j0
0 (↵)

!

(135)

where the terms "j0(↵) is upper-bounded for any j = 1, · · · , n/b as follows.

"j0(↵) 
↵⌘S2

g

4�2b2
· (1� ⌘�)2·(j�1) · 1

Pj�1
s=0(1� ⌘�)2s

(136)

Proof. Our proof relies on the joint convexity of the scaled exponentiated Rényi divergence
e(↵�1)R↵(µk⌫) in its arguments µ and ⌫). By further using the batch decomposition in Section 2, we
prove

" =
1

↵� 1
log e(↵�1)·R↵(✓0

Kk✓00
K) (137)

 1

↵� 1
log

0

@
X

B0,··· ,Bn/b�1in Line 3

p(B0, · · · , Bn/b�1) · e(↵�1)·R↵(p(✓0
K |B0,··· ,Bn/b�1)kp(✓00

K |B0,··· ,Bn/b�1))

1

A

(138)

Therefore, by plugging the privacy bound of Algorithm 1 proved in Theorem 3.3 into Equation (138),
depending on which mini-batch contains the differing data point with any index i0, we further prove

31

that

"  1

↵� 1
log

0

@
n/b�1X

j0=0

p(i0 2 Bj0) · e
(↵�1)·

✓
"
b n
2b

c
0 (↵)· 1�(1�⌘�)

2·(K�1)·(n/b�b n
2b

c)

1�(1�⌘�)
2·(n/b�b n

2b
c) +"

n/b�j0
0 (↵)

◆1

A

(139)

=
1

↵� 1
log

0

@
n/b�1X

j0=0

b

n
· e

(↵�1)·
✓
"
b n
2b

c
0 (↵)· 1�(1�⌘�)

2·(K�1)·(n/b�b n
2b

c)

1�(1�⌘�)
2·(n/b�b n

2b
c) +"

n/b�j0
0 (↵)

◆1

A (140)

Explanations for the terms in Theorem 4.2. The privacy bound Theorem 4.2 is strictly smaller than
the composition-based privacy bound (derived from DP-SGD[1] and SGM [29] analysis) after 1

�⌘ +
n
b

epochs. More specifically, the first term in Equation (12) is strictly smaller than the composition-based
privacy bound after 1

�⌘ epochs, and the second term in Equation (12) is strictly smaller than the
composition-based privacy bound after n/b epochs (where n/b � 2). We explain the terms more
specifically as follows.

1. The sensitivity for one mini-batch gradient update in Algorithm 1 is ⌘ · Sg

b , the standard
deviation of Gaussian noise added in one update is

p
2⌘�2, and the sampling probability

for each data point is b
n . By Abadi et al. [1] and Mironov et al. [29], the composition-based

privacy bound for one iteration is larger than b2

n2

↵·⌘2·S2
g/b

2

2·2⌘�2 = b2

n2

↵·⌘S2
g

4�2b2 . By Rényi DP
composition over n/b iterations, the composition-based privacy bound for one epoch is
larger than b

n · ↵·⌘S2
g

4�2b2 .

2. The first term is upper bounded as follows, which is smaller than the composition-based
privacy bound after 1

�⌘ epochs.

"
b n
2b c

0 (↵) · 1� (1� ⌘�)2·(K�1)·(n/b�b n
2b c)

1� (1� ⌘�)2·(n/b�b n
2b c)

(141)


↵⌘S2

g

4�2b2
· (1� ⌘�)2·(b

n
2b c�1) · 1

Pb n
2b c�1

s=0 (1� ⌘�)2s
· 1� (1� ⌘�)2·(K�1)·(n/b�b n

2b c)

1� (1� ⌘�)2·(n/b�b n
2b c)

(142)

=
↵⌘S2

g

4�2b2
· (1� ⌘�)2·(b

n
2b c�1) · 1� (1� ⌘�)2

1� (1� ⌘�)2·b
n
2b c

· 1� (1� ⌘�)2·(K�1)·(n/b�b n
2b c)

1� (1� ⌘�)2·(n/b�b n
2b c)

(143)


↵⌘S2

g

4�2b2
· 1

1� (1� ⌘�)2·(n/b�b n
2b c)

(by (1� ⌘�)x is monotonically decreasing for x 2 R)

(144)


↵⌘S2

g

4�2b2
· 1

2 · (n/b� b n
2bc) · �⌘

(by (1� x)a  1� ax for x > 0 and a � 1) (145)


↵⌘S2

g

4�2b2
· 1

n/b · �⌘ (by
n

b
� 2) (146)

3. The second term is upper bounded by "10(↵) =
↵⌘S2

g

4�2b2 , which is smaller than the composition-
based privacy bound after ·nb epochs.

32

E.2 Proof for Theorem 4.3

Theorem 4.3. If the loss function `(✓;x) is �-strongly convex, �-smooth, and if its gradient has finite
`2-sensitivity Sg , then Algorithm 1 with stepsize ⌘ < 2

�+� satisfies (↵, ")-Rényi DP guarantee with

"  1

↵� 1
log
�
S0
K(↵)

�
(147)

where the term Sj
k(↵) is recursively defined by

S0
0(↵) = 1 (148)

Sj+1
k (↵) =

b

n
· e

(↵�1)↵⌘S2
g

4�2b2 · Sj
k(↵) + (1� b

n
) · Sj

k(↵)
(1�⌘�)2 , for k = 0, · · · ,K � 1 and j = 0, · · · , n/b� 1

(149)

S0
k+1(↵) = Sn/b

k (↵) for k = 0, · · · ,K � 1 (150)
(151)

Proof. By definition,

e(↵�1)"j+1
k (↵) =

Z
pj+1
k (✓)

p0j+1
k (✓)

!↵

p0
j+1
k (✓)d✓ (152)

=

Z 0

@
EB0

0 ,··· ,B
j
k

h
pj+1
k (✓|B0

0 , · · · , B
j
k)
i

EB0
0 ,··· ,B

j
k

h
p0j+1

k (✓|B0
0 , · · · , B

j
k)
i

1

A

↵

· EB0
0 ,··· ,B

j
k

h
p0

j+1
k (✓|B0

0 , · · · , B
j
k)
i
d✓

(153)

By the joint convexity of the function x↵

y↵�1 on x, y > 0 (Lemma 20 Balle et al. [5]), and by the
mini-batch decomposition for the distribution of the last iterate parameters in Section 2, we prove

e(↵�1)"j+1
k (↵) EB0

0 ,··· ,B
j
k

"Z
pj+1
k (✓|B0

0 , · · · , B
j
k)

p0j+1
k (✓|B0

0 , · · · , B
j
k)

!↵

· p0j+1
k (✓|B0

0 , · · · , B
j
k)d✓

#
(154)

We now derive a recursive scheme for computing the right hand side term denoted as Sj+1
k (↵). By

definition,

Sj+1
k (↵) = EB0

0 ,··· ,B
j
k

"Z
pj+1
k (✓|B0

0 , · · · , B
j
k)

p0j+1
k (✓|B0

0 , · · · , B
j
k)

!↵

· p0j+1
k (✓|B0

0 , · · · , B
j
k)d✓

#
(155)

The term inside expectation corresponds to Rényi privacy loss under fixed mini-batches B0
0 , · · · , B

j
k.

Therefore, by Lemma 3.2,

Z
pj+1
k (✓|B0

0 , · · · , B
j
k)

p0j+1
k (✓|B0

0 , · · · , B
j
k)

!↵

· p0j+1
k (✓|B0

0 , · · · , B
j
k)d✓ (156)



8
>><

>>:

R ⇣ pj
k(✓|B

0
0 ,··· ,B

j
k)

p0j
k(✓|B0

0 ,··· ,B
j
k)

⌘↵
· p0jk(✓|B0

0 , · · · , B
j
k)d✓ · e

(↵�1)↵⌘S2
g

4�2b2 if i0 2 Bj
k

✓R ⇣ pj
k(✓|B

0
0 ,··· ,B

j
k)

p0j
k(✓|B0

0 ,··· ,B
j
k)

⌘↵
· p0jk(✓|B0

0 , · · · , B
j
k)d✓

◆(1�⌘�)2

if i0 /2 Bj
k

(157)

33

By plugging Equation (157), and by the definition of Sj+1
k (↵), we prove

Sj+1
k (↵) = EB0

0 ,··· ,B
j
k

"Z
pj+1
k (✓|B0

0 , · · · , B
j
k)

p0j+1
k (✓|B0

0 , · · · , B
j
k)

!↵

· p0j+1
k (✓|B0

0 , · · · , B
j
k)d✓

#
(158)

= P (i0 2 Bj
k) · S

j
k · e

(↵�1)↵⌘S2
g

4�2b2 + P (i0 /2 Bk)· (159)

EB0
0 ,··· ,B

j�1
k

2

4
 Z

pjk(✓|B0
0 , · · · , B

j
k)

p0jk(✓|B0
0 , · · · , B

j
k)

!↵

· p0jk(✓|B0
0 , · · · , B

j
k)d✓

!(1�⌘�)2
3

5 (160)

By further using the concavity of x(1�⌘�)2 , and the definition of Sj
k(↵), we prove

Sj+1
k (↵)  P (i0 2 Bj

k) · S
j
k · e

(↵�1)↵⌘S2
g

4�2b2 + P (i0 /2 Bk)· (161)

EB0

0 ,··· ,B
j�1
k

"Z
pjk(✓|B0

0 , · · · , B
j
k)

p0jk(✓|B0
0 , · · · , B

j
k)

!↵

· p0jk(✓|B0
0 , · · · , B

j
k)d✓

#!(1�⌘�)2

(162)

=
b

n
· e

(↵�1)↵⌘S2
g

4�2b2 · Sj
k +

✓
1� b

n

◆
· (Sj

k)
(1�⌘�)2 (163)

Therefore, the full recursive scheme for computing Sj
k(↵) is as follows.

1. S0
0(↵) = 1

2. Sj+1
k (↵) = b

n · e
(↵�1)↵⌘S2

g

4�2b2 · Sj
k(↵) + (1 � b

n) · S
j
k(↵)

(1�⌘�)2 , for k = 0, · · · ,K � 1 and
j = 0, · · · , n/b� 1.

3. S0
k+1(↵) = Sn/b

k (↵) for k = 0, · · · ,K � 1.

And Algorithm 1 satisfies (↵, ")-Rényi DP guarantee with

"  1

↵� 1
log
�
S0
K(↵)

�
(164)

F Proofs and Explanations for Section 5

F.1 Pseudocode for DP-SGD under notations in this paper

In Algorithm 2, we provide the pseudocode of an equivalent of DP-SGD algorithm under notations
in our paper. For the convenience of implementation in existing privacy libaries, we introduce the
noise multiplier �mul to substitute � in Algorithm 1. We comment that the noisy gradient update in
Algorithm 2 under noise multiplier �mul, is equivalent to a noisy gradient update in Algorithm 1 with
noise standard deviation � =

p⌘
2 · 1

b · �mul · Sg

2 . By plugging this equivalent � into Theorem 4.2,
we prove the privacy dynamics bound in Corollary 5.3 for regularized logistic regression.

F.2 Proof for ensuring strong convexity

Regularized Logistic regression (for strong convexity). The loss function for regularized logistic
regression in the multi-class setting (with per-class bias) is as follows.

`�(✓;x,y) = `0(✓;x,y) +
�

2
k✓k22 (165)

34

Algorithm 2 Aimplementation: Noisy mini-batch Gradient Descent on regularized logistic regression
loss function

Input: Data domain X . Dataset D = ((x1,y1), (x2,y2), · · · , (xn,yn)), where each data point
consists of the feature vector xi 2 Rd and the label vector yi 2 {0, 1}c. The logistic regression
loss function `0(✓;x,y) defined as Equation (8) with parameter space R(d+1)·c. Stepsize ⌘, noise
multiplier �mul, a (data-independent) parameter initialization distribution p0(✓), mini-batch size b,
feature clipping norm L, and (unregularized) gradient clipping norm Sg

2 .
Feature Normalization: x1, · · · ,xn normalize(x1, · · · ,xn), where normalize() is an
(↵, "norm)-Rényi differentially private batch normalization or group normalization scheme de-
scribed in Tramèr and Boneh [34] (Section 2.3 and Appendix B).
Feature Clipping: xi xi

kxik2
·min{kxik2, L}.

Initialization: Sample ✓00 from the initialization distribution p0(✓).
Batch Generation: shuffle the indices set {1, · · · , n}, and partition them into n/b sequential
mini-batches B0, · · · , Bn/b�1 that are subsets of {1, · · · , n}, each with size b.
for k = 0, 1, · · · ,K � 1 do

for j = 0, 1, · · · , n/b� 1 do
Gradient Clipping: g0(✓jk, Bj) = 1

b

P
xi2Bj

r`(✓j
k;xi)

kr`0(✓
j
k;xi)k2

·min{kr`0(✓jk;xi)k2, Sg

2 }

Regularization: g
⇣
✓jk;B

j
⌘
= g0(✓

j
k;B

j) + � · ✓jk
✓j+1
k = ✓jk � ⌘ · g

⇣
✓jk;B

j
⌘
+ ⌘ · 1

b · �mul · Sg

2 · N (0, Id)
✓0k+1 = ✓n/bk

Output ✓0K

where `0(✓;x,y) is the following logistic regression loss function.

`0(✓;x,y) = �y1 log

ex̄

T ·✓1

ex̄T ·✓1 + · · ·+ ex̄T ·✓c

!
� · · ·� yc log

ex̄

T ·✓c

ex̄T ·✓1 + · · ·+ ex̄T ·✓c

!
(166)

where x̄ = (x, 1) 2 Rd+1 denotes the concatenation of the data feature vector x and 1, and
y = (y1, · · · ,yc) is the label vector. The parameter vector is ✓ = (✓1, · · · , ✓c) 2 R(d+1)·c that
represents the weight and the per-class bias of the linear model. The logistic regression loss function
is convex, and therefore the regularized logistic regression loss function is �-strongly convex.

F.3 Proof for ensuring smoothness

Feature Normalization (for faster convergence). For a better convergence of the learning task, we
follow Tramèr and Boneh [34], and use feature normalization (including both batch normalization
and group normalization). Batch normalization first computes the per-channel mean and variance of
the training dataset, in a differentially private way, and then normalizes each channel of each data
point in the training dataset. Group normalization [38] separates the channels in a data feature vector
into a number of different groups, and normalizes each channel of each data point with the per-point
per-group mean and variance (which does not incur additional privacy cost). We refer the reader
to [34] (their Section 2.2 and Appendix B) for more details.

Feature Clipping (for bounding the smoothness constant). To ensure that the condition of finite
gradient sensitivity Sg is satisified in our experiments, we follow Feldman et al. [18] and normalize
the data feature vector in `2 norm, such that kxk2  L. Under this data feature clipping, we prove
that the logistic regression loss function (8) is (L

2+1
2)-smooth in the following Proposition 5.1.

Proposition F.1. If the data feature vector x has bounded `2 norm, such that kxk2  L, then the
unregularized logistic regression loss function `0(✓;x,y) Equation (8) is convex , L-Lipschitz and
�-smooth with regard to parameters ✓, for

L =
p
2(L2 + 1) (167)

� =
L2 + 1

2
(168)

35

Proof. We compute the gradient and Hessian matrix for the logistic regression loss function as
follows.

The gradient of the logistic regression loss function Equation (8) with respect to ✓ is:

r✓`0(✓;x,y) = �y1 ·r✓ log

ex̄

T ·✓1

ex̄T ·✓1 + · · ·+ ex̄T ·✓c

!
� · · ·� yc ·r✓ log

ex̄

T ·✓c

ex̄T ·✓c + · · ·+ ex̄T ·✓c

!

(169)

=

ex̄

T ·✓1

ex̄T ·✓1 + · · ·+ ex̄T ·✓c
� y1

!
x̄T , · · · ,

ex̄

T ·✓1

ex̄T ·✓c + · · ·+ ex̄T ·✓c
� yc

!
x̄T

!

(170)
(171)

The Hessian of loss function with respect to ✓ is:

r2
✓`0(✓;x,y) =

0

B@
H11 · · · H1c

...
...

...
Hc1 · · · Hcc

1

CA (172)

where the submatrices are as follows.

For i = j, Hii =
ex̄

T ·✓i

ex̄T ·✓1 + · · ·+ ex̄T ·✓c
·

1� ex̄

T ·✓i

ex̄T ·✓1 + · · ·+ ex̄T ·✓c

!
x̄ · x̄T (173)

For i 6= j, Hij = �
ex̄

T ·✓i

ex̄T ·✓1 + · · ·+ ex̄T ·✓c
· ex̄

T ·✓j

ex̄T ·✓1 + · · ·+ ex̄T ·✓c
· x̄ · x̄T (174)

(175)

Therefore, the Hessian matrix of the loss function with respect to ✓ equals the following Kronecker
product.

r2
✓`0(✓;x,y) = T ⌦ (x̄ · x̄T) (176)

where Tij =

8
<

:

ex̄
T ·✓i

ex̄
T ·✓1+···+ex̄T ·✓c

·
⇣
1� ex̄

T ·✓i

ex̄
T ·✓1+···+ex̄T ·✓c

⌘
i = j

� ex̄
T ·✓i

ex̄
T ·✓1+···+ex̄T ·✓c

· ex̄
T ·✓j

ex̄
T ·✓1+···+ex̄T ·✓c

i 6= j
(177)

By Böhning [9], T is a positively semi-definite matrix that satisfies

T � 1

2
·
✓
Ic �

1

c
· 1c · 1T

c

◆
, where 1c = (1, · · · , 1)T 2 Rc. (178)

Therefore, the eigenvalues of T fall in the range [0, 1
2]. Therefore, because the eigenvalues for the

Kronecker product matrix r2
✓`0(✓;x,y) = T ⌦

�
x̄ · x̄T

�
consists of the product of eigenvalues for

T and x̄ · x̄T , we prove that the eigenvalues forr2
✓`0(✓;x,y) fall in the range of [0, 1

2kx̄k
2
2].

By kxk2  L, we prove that kx̄k2 
p
L2 + 1, therefore Equation (9) and Equation (10) (in the

proposition statement) hold.

These computations of these Lipschitz smoothness constants could also be cross-checked in the
tensorflow privacy tutorial for logistic regression. https://github.com/tensorflow/privacy/
blob/master/tutorials/mnist_lr_tutorial.py. The feature clipping technique is different
from the DP-SGD [1] algorithm that only requires per-example gradient clipping. The major reason
that we use data feature clipping (besides per-example gradient clipping), is for ensuring smoothness
of the logistic regression loss function (by Proposition 5.1), which is a necessary condition for
applying our privacy bound Theorem 3.3.

36

https://github.com/tensorflow/privacy/blob/master/tutorials/mnist_lr_tutorial.py
https://github.com/tensorflow/privacy/blob/master/tutorials/mnist_lr_tutorial.py

F.4 Proof for ensuring finite gradient sensitivity

Per-example Clipping on Unregularized Gradient (for reducing gradient sensitivity without harm-
ing smoothness or strong convexity). Although feature clipping already bounds the gradient sensi-
tivity by 2

p
2(L2 + 1) (by Proposition 5.1), this bound grows with the feature clipping norm L. This

in turn restricts the signal to noise ratio, and does not give good empirical privacy-utility trade-off in
our experiments. Therefore, we additionally perform per-example `2-clipping on the unregularized
gradient (detailed pseudocode in Appendix F.1). Under per-example clipping on unregularized
gradient, we prove in the following Proposition 5.2, that each gradient update in regularized logistic
regression has finite gradient sensitivity, and preserves strong convexity and smoothness.
Proposition F.2. Let `0(✓;x,y) be the logistic regression loss function defined in Equation (8). Let
g0(✓;x,y) =

r`0(✓;x,y)
kr`0(✓;x,y)k2

·min{kr`0(✓;x,y)k2, Sg

2 } be the clipped gradient of (unregularized)

loss function `0(✓;x,y), under `2 clipping norm Sg

2 . If g(✓;x,y) = g0(✓;x,y)+�✓, and if the data
vector x has bounded `2 norm, such that kxk2  L, then g(✓;x, y) has finite `2-sensitivity Sg, is
continuous, and is almost everywhere differentiable with

� · I(d+1)·c � r✓g(✓;x,y) � (� + �) · I(d+1)·c (179)

for any ✓, ✓0 2 R(d+1)·c and � = L2+1
2 .

We provide complete proof for this proposition below. This construction of clipped unregularized
gradient facilitates us to enjoy the benefits of gradient clipping (such as for speeding up conver-
gence [41, 14]) while satsifying the necessary smoothness and strong convexity conditions for
applying our privacy dynamics bound.

Proof. By definition Equation (8) for the logistic regression loss function, r`0(✓;x,y) is twice
continuously differentiable and convex. By Proposition 5.1, `�(✓;x,y) is �-smooth with � = L2+1

2 .
Therefore, the Hessian matrix of `0(✓;x,y) satisfies the following inequality.

0 · I(d+1)·c � r2
✓`0(✓;x,y) � � · I(d+1)·c, (180)

where d is the dimension of the input data feature vector x, and c is the number of classes in the label
vector y. Moreover, the clipped (unregularized) gradient g0(✓;x,y) (under `2 clipping norm Sg

2) is
continuous, and is almost everywhere differentiable as follows.

r✓g0(✓;x,y) =(
r2

✓`0(✓;x,y) if kr✓`0(✓;x,y)k2 < Sg

2
Sg

2 · 1
kr✓`0(✓;x,y)k2

·M ·r2
✓`0(✓;x,y) if kr✓`0(✓;x,y)k2 > Sg

2

(181)

where M = I(d+1)·c� r`0(✓;x,y)
kr`0(✓;x,y)k2

·
⇣

r`0(✓;x,y)
kr`0(✓;x,y)k2

⌘T
is a symmetric matrix. Because r`0(✓;x,y)

kr`0(✓;x,y)k2

is a unit vector, we prove that M is positive semi-definite and satisfies 0 · I(d+1)·c �M � I(d+1)·c.
Moreover, for the case where kr✓`0(✓;x,y)k2 > Sg

2 , we have that Sg

2 · 1
kr✓`0(✓;x,y)k2

 1. By
combining this ineuality with property of M and Equation (180), we prove that for any ✓ such that
kr✓`(✓;x,y)k2 6= Sg

2 ,

0 · I(d+1)·c � r✓g0(✓;x,y) � � · I(d+1)·c (182)

Therefore, by plugging this into the definition of g(✓;x,y) = g0(✓;x,y) + �✓, we prove that
g(✓;x,y) is continous, and is almost everywhere differentiable with

� · I(d+1)·c � r✓g(✓;x,y) � (� + �) · I(d+1)·c (183)

37

	Introduction
	An overview of the problem and our approach
	Privacy dynamics for fixed-ordering noisy mini-batch gradient descent
	Privacy amplification by randomized post-processing (additive Gaussian noise)
	Improved privacy dynamics for fixed-ordering noisy mini-batch gradient descent

	Privacy dynamics for noisy stochastic mini-batch gradient descent
	Privacy dynamics under shuffle and partition
	Privacy dynamics under (re)sampling mini-batch of fixed size without replacement

	Example: privacy dynamics for DP-SGD on regularized logistic regression
	How to ensure strong convexity, smoothness and finite sensitivity
	Composition-based privacy bound and privacy dynamics analysis for DP-SGD

	Conclusions and Discussion
	 Appendix
	Symbols
	Preliminaries
	Discussion about the concurrent work [Corollary 3.3]ryffel2022differential
	Proof for sec:fixsgd
	Proof for lem:postproc
	Proof for lem:recursive
	Proof for LSI sequence for noisy mini-batch gradient descent
	Equivalence Between lem:recursive (Ours) And The Bound in feldman2018privacy
	Proof for thm:strconvexsmooth
	Explanations for the privacy bound derived from balle2019privacy in fig:improveddynamics
	Revisiting noisy GD: A tighter bound than [Corollary 1]chourasia2021differential

	Proof for sec:sgdsubsampled
	Proof for thm:shuffle
	Proof for thm:ampsampworeplacement

	Proofs and Explanations for sec:trade-off
	Pseudocode for DP-SGD under notations in this paper
	Proof for ensuring strong convexity
	Proof for ensuring smoothness
	Proof for ensuring finite gradient sensitivity

