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1. Introduction
The effects of temperature on the optoelectronic

properties of semiconductormaterials have been ex-
tensively studied for many years [1, 2]. Understand-
ing these effects is crucial for the development of op-
toelectronic and energy-related applications, such
as photovoltaic devices and LEDs.
Temperature-induced lattice vibrations lead to

electron-phonon coupling (EPC), which not only im-
pacts the optoelectronic properties of polar materi-
als but also plays a key role in other fundamental
physical phenomena, such as conventional super-
conductivity and carrier mobility [3].
First-principles methods, such as Density Func-

tional Theory (DFT), are widely used to compute
the optoelectronic properties ofmaterials. However,
systems exhibiting strong EPC and anharmonic be-
havior often require more sophisticated and compu-
tationally expensive approaches [4]. This challenge
is further exacerbated in complex materials, such
as solid solutions, where unit cells can contain hun-
dreds or even thousands of atoms.
In this work, we propose leveraging machine

learning techniques tomodel the effects of tempera-
ture on the optoelectronic properties of anharmonic
semiconductor systems, as illustrated in Fig. 1a. As
a case study, we investigate silver chalcohalide anti-
perovskites (CAP), e.g., Ag3SBr and Ag3SI, which
exhibit pronounced anharmonicity and strong EPC
[5, 6].

2. Methods
We employed crystal graph convolutional neural

networks (CGCNN) [7] and ab initio molecular dy-
namics (AIMD) simulations to determine the tem-
perature dependence of the band gap. After per-
forming AIMD calculations at a given temperature
T , the renormalized band gap is computed with [8]:

Eg(T ) = lim
t0→∞

1

t0

∫ t0

0

ER(t)
g dt, (1)

whereR(t) represents the atomic positions at time t
in the AIMD simulation at T .
The band gaps of the structures corresponding

to R(t) are computed using a CGCNN model. This
model is initially trained on the band gap dataset
from the Materials Project and subsequently re-
trained on a DFT-based dataset specific to our study.
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Fig. 1: (a) Schematic illustrating how our machine
learning model predicts the band gap of a mate-
rial at a given temperature. (b) Comparison be-
tween the unit cell representation and the graph
representation of a material. (c) Predicted band
gaps after retraining our graph neural network,
compared with Density Functional Theory (DFT)
calculations. (d) Band gap prediction for the
CAP solid solution Ag3SBr0.5I0.5 using our CGCNN
model. The experimental value at T = 300 K is
shown for reference.
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To make predictions using CGCNN, the material’s
structure must be represented as a graph, as illus-
trated in Fig. 1b.
Additionally, molecular dynamics simulations us-

ing machine learning interatomic potentials (MLIP)
[9] can serve as an alternative to AIMD, enabling the
study of larger systems across a wider temperature
range.

3. Results
The retrained CGCNNmodel achieved amean ab-

solute error (MAE) of less than < 0.1 eV in band gap
prediction for both the training and test sets (Fig. 1c).
The DFT-computed structures were generated us-
ing a Monte Carlo approach, incorporating uniform
noise into the original structure as well as phononic
noise at different temperatures to approximate the
configuration space explored during molecular dy-
namics simulations.
Our model successfully reproduced a

temperature-induced band gap reduction of several
hundredmeV inCAP compounds, in agreementwith
DFT computations. Moreover, it accurately captured
the band gap reduction with temperature for a more
complex system, the solid solution Ag3SBr0.5I0.5,
Fig. 1d, demonstrating excellent agreement with
experimental observations [10].

4. Conclusions
In this work, we demonstrated the effectiveness

of machine learning models, specifically graph neu-
ral networks, in predicting the temperature depen-
dence of the band gap in anharmonic semiconduc-
tor systems. Our approach successfully reproduced
the temperature-induced band gap reduction in CAP
compounds and extended its predictive capability
to more complex solid solutions, showing excellent
agreement with experimental data.
These results highlight the potential of machine

learning techniques as a powerful alternative to tra-
ditional computational methods, enabling efficient
band gap predictions across a wide range of temper-
atures.
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