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A BACKGROUND MATERIAL

A.1 MULTIVARIATE NORMAL DISTRIBUTION

In the following, we recall some basic results about the multivariate normal distribution that are relevant in the context of
this work [Anderson, 2003].

Let the joint distribution of (X,Y ,Z) be multivariate normal, i.e., PX,Y ,Z = N (µ,Σ) for some mean vector µ and some
positive definite covariance matrix Σ. It is a known fact that the multivariate normal distribution is closed under conditioning
and marginalization, that means that if PX,Y ,Z is multivariate normal, then PX,Y |Z=z, PX|Z=z, PY |Z=z, PX , PY and
PZ are also (multivariate) normal. Furthermore, it is known that the partial correlation coefficient encapsulates the entire
dependence structure between components of a multivariate normal random vector; in particular, Xi ⊥⊥ Yj | Z if and only
if ρXiYj |Z = 0.

Conditional independence is also encoded in the covariance matrices Σz corresponding to the distributions PX,Y |Z=z. The
fact Xi ⊥⊥ Yj | Z is equivalent to Σz

ij = 0 for all z. If Xi ⊥⊥ Yj | Z for all i ∈ {1, . . . , dX} and j ∈ {1, . . . , dY }, then
each Σz is a block diagonal matrix, which implies that pX,Y |Z=z factorizes for each z according to equation (2), which
implies X ⊥⊥ Y | Z.

Thus, if the distribution of (X,Y ,Z) is multivariate normal, then statement (1) is indeed equivalent to statement (3). As
the multivariate normal distribution is closed under conditioning and marginalization, the above reasoning also applies to
arbitrary subvectors XA and YB . Thus, if PX,Y ,Z is multivariate normal, then Assumption 1 is satisfied.

A.2 OTHER SUFFICIENT CONDITIONS FOR ASSUMPTION 1

We now discuss another sufficient condition for Assumption 1 to hold. This sufficient condition arises in the area of graphical
modelling.

Following Pearl [2009] and Spirtes et al. [2000], let G = (V,E) be a directed acyclic graph, where V is the set of vertices,
and E is the set of directed edges. In slight abuse of notation, we equate the vertex names with the variable names. Now,
assume that the joint distribution PX,Y ,Z is faithful and globally Markov with respect to G. Then, Assumption 1 is satisfied.

To see this fact, note that Xi ⊥⊥ Yj | Z for all i ∈ A and for all j ∈ B in conjunction with faithfulness implies that Xi

and Yj are d-separated by Z for all i ∈ A and for all j ∈ B. This pairwise d-separation then implies that XA and YB are
d-separated by Z, which, in conjunction with the global Markov property, implies that XA ⊥⊥ YB | Z.

∗Equal contribution, order chosen uniformly at random.

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<tom.hochsprung@dlr.de>?Subject=Your UAI 2023 paper


B MORE NUMERICAL EXPERIMENTS

B.1 DIFFERENT SIGNIFICANCE LEVELS IN FIRST STEP OF SAMPLE SPLITTING ALGORITHM

We do the same simulations as in Section 5, this time, with αpre = 0.8 in the first step for the algorithms that use sample
splitting. Figure 3 displays the results.

A larger αpre leads to smaller sets Qi and Q′
j that are learned in the first step. In case of Σ(1), where the dependence

between X and Y is only between X1 and Y1, we would expect a slightly worse performance than for αpre = 0.5 because
theoretically, the Qi’s and Q′

j’s can be very large, and by learning smaller subsets, we omit some useful components that can
be additionally conditioned out. We see that this theoretical reasoning indeed seems to be true; the results for αpre = 0.8
(Figure 3 in the SM) are indeed slightly worse than the results for αpre = 0.5 (Figure 2 in the main paper).

If there are more components of X and Y that are conditionally dependent (which, for example, is the case for Σ(2)), then
the effect of increasing αpre is harder to foresee. On the one hand, some conditional independencies might be additionally
omitted if αpre is large, however, if αpre is too small, wrong components of X and Y might be deemed conditionally
independent (a Type II error). We again see that the performance for Σ(2) is slightly worse for αpre = 0.8 (Figure 3 in the
SM) than for αpre = 0.5 (Figure 2 in the main paper).

B.2 SIMULATION RESULTS FOR THE GENERALIZED COVARIANCE MEASURE

In this section, we emphasize that the results of this paper are not only true for partial correlations and the multivariate
normal distribution, but also more generally for other dependence measures and distributions. In particular, we employ
the generalized covariance measure from Shah and Peters [2020] which is implemented in the R-package GeneralisedCo-
varianceMeasure [Peters and Shah, 2022] and show that we get similar empirical results to the one in Section 5. We again
restrict to the case dZ = 1. For the case dX = dY = 2, we use a model similar to model (d) in Section 5.2 of Shah and
Peters [2020], i.e.,

X1 := exp(−Z2/2) · sin(Z) + 0.3 · η1,
X2 := exp(−Z2/2) · sin(Z) + τ ·X1 + 0.3 · η2,
Y1 := exp(−Z2/2) · sin(Z) + 0.3 · η3,
Y2 := exp(−Z2/2) · sin(Z) + τ · Y1 + ρ ·X2 + 0.3 · η4,

where Z, η1, . . . , η4 are independent standard normal random variables and ρ and τ are real-valued parameters.

For the case dX = dY = 3, we look at the model

X1 := exp(−Z2/2) · sin(Z) + 0.3 · η1,
X2 := exp(−Z2/2) · sin(Z) + τ ·X1 + 0.3 · η2,
X3 := exp(−Z2/2) · sin(Z) + τ ·X2 + 0.3 · η3,
Y1 := exp(−Z2/2) · sin(Z) + 0.3 · η4,
Y2 := exp(−Z2/2) · sin(Z) + τ · Y1 + 0.3 · η5,
Y3 := exp(−Z2/2) · sin(Z) + τ · Y2 + ρ ·X3 + 0.3 · η6,

where Z, η1, . . . , η6 are independent standard normal random variables and ρ and τ are again real-valued parameters.

The parameters τ and ρ have a similar meaning as in Section 5. Roughly speaking, τ characterizes the withing-group depen-
dence, and ρ characterizes the between-group dependence. We look at the cases τ ∈ {0, 1, 2} and ρ ∈ {0, 0.005, . . . , 0.15}.
Moreover, we consider the sample sizes n ∈ {216, 432, 864}.

We compare the same algorithms with the same settings as in in Section 5. Again, we employ the Bonferroni method to
aggregate univariate test statistics. We again do 100 replications for each of the above mentioned cases and plot the mean
rejection rate with one standard error (see Figure 4 in the SM). We observe similar results as in Section 5. If the within-group
dependence is relatively high, i.e., τ = 2, the algorithm that assumes a conditional independence oracle (Section 3.2) and the
sample splitting algorithms (Section 3.3) perform better; if the within-group dependence is relatively low, i.e., τ = 0, there
is no improvement by conditioning out already known independencies. For the case τ = 0, the sample-splitting algorithm



Figure 3: Simulation results for the setting explained in Section B.1. The left 3 and the right 3 columns display the results
for Σ(1) and Σ(2) respectively. The first two rows are for τ = 0, the middle two rows for τ = 0.5, and the last two rows
for τ = 0.9. The abbreviation simple stands for the approach from Section 3.1, oracle for the approach from Section 3.2,
no_oracle_0.2 and no_oracle_0.5 for the sample split approaches from Section 3.3 with 20% respectively 50% of the sample
used for the first part of the algorithm, and pdcor for the partial distance correlation.



Figure 4: Simulation results for the setting explained in Section B.2. The first two rows are for τ = 0, the middle two rows
for τ = 0.5, and the last two rows for τ = 0.9. The abbreviation simple stands for the approach from Section 3.1, oracle for
the approach from Section 3.2, no_oracle_0.2 and no_oracle_0.5 for the sample split approaches from Section 3.3 with 20%
respectively 50% of the sample used for the first part of the algorithm, and pdcor for the partial distance correlation.



(Section 3.3) again performs slighthly worse. The partial distance correlation test does not seem to properly control the false
positive rate, so we cannot properly compare its power to the other approaches.

C PROOFS

C.1 PROOF OF LEMMA 1

Let D ∈ Rn×(dX+dY +dZ) be a matrix that has the n rows (X(1),Y (1),Z(1)), . . . , (X(n),Y (n),Z(n)). Let Xn be the sam-
ple space corresponding the observations (X(1),Y (1),Z(1)), . . . , (X(n),Y (n),Z(n)) (where we assume for mathematical
rigor that each element of Xn is a real-valued matrix with n rows and dX + dY + dZ columns) . Let ψ′ : Xn → [0, 1]
be a (possibly randomized) test for H′

0 at fixed sample size n and let ψ : Xn → [0, 1] be the induced test for H0. Here
1 corresponds to certain rejection and 0 to certain not-rejection. Denote the set of all possible distributions P̃X,Y ,Z for
(X,Y ,Z) such that H0 is true by P0. Similarly, we write P ′

0 for the set of all P̃X,Y ,Z such that H′
0 is true. Moreover, we

write P̃D
X,Y ,Z to denote the product measure induced by P̃X,Y ,Z for the sample D, and we write EP̃D

X,Y ,Z
to denote the

expectation which is determined by P̃D
X,Y ,Z . The size of the test ψ for H0 for fixed sample size n is supP0

EP̃D
X,Y ,Z

[ψ(D)].

Now, assume that ψ′ has valid level for H′
0 at sample size n, i.e.,

sup
P′

0

EP̃D
X,Y ,Z

[ψ′(D)] ≤ α.

By definition, H0 is rejected if and only if H′
0 had been rejected, therefore,

sup
P0

EP̃D
X,Y ,Z

[ψ(D)] = sup
P0

EP̃D
X,Y ,Z

[ψ′(D)].

Moreover, we note that P0 ⊆ P ′
0 (by the discussion in Section 2.2) and thus,

sup
P0

EP̃D
X,Y ,Z

[ψ′(D)] ≤ sup
P′

0

EP̃D
X,Y ,Z

[ψ′(D)] ≤ α,

where the last inequality follows from the assumption on the size of ψ′. Hence, ψ has valid level for H0 at sample size n.

Now assume that ψ′ has pointwise asymptotic level for H′
0, i.e.,

sup
P′

0

lim sup
n→∞

EP̃D
X,Y ,Z

[ψ′(D)] ≤ α.

Now, by arguing similarly as before, for all P̃X,Y ,Z ∈ P0 we have

lim sup
n→∞

EP̃D
X,Y ,Z

[ψ(D)] = lim sup
n→∞

EP̃D
X,Y ,Z

[ψ′(D)]

and hence

sup
P0

lim sup
n→∞

EP̃D
X,Y ,Z

[ψ(D)] = sup
P0

lim sup
n→∞

EP̃D
X,Y ,Z

[ψ′(D)].

Again, P0 ⊆ P ′
0 and thus,

sup
P0

lim sup
n→∞

EP̃D
X,Y ,Z

[ψ′(D)] ≤ sup
P′

0

lim sup
n→∞

EP̃D
X,Y ,Z

[ψ′(D)] ≤ α.

Hence, ψ has pointwise asymptotic level for H0.

Lastly, assume that ψ′ has uniform asymptotic level for H′
0, i.e.,

lim sup
n→∞

sup
P′

0

EP̃D
X,Y ,Z

[ψ′(D)] ≤ α.

By arguing as before, we have for all n ∈ N that

sup
P0

EP̃D
X,Y ,Z

[ψ(D)] = sup
P0

EP̃D
X,Y ,Z

[ψ′(D)].



Again, P0 ⊆ P ′
0 and thus,

sup
P0

EP̃D
X,Y ,Z

[ψ′(D)] ≤ sup
P′

0

EP̃D
X,Y ,Z

[ψ′(D)] ≤ α

for all n ∈ N. As the previous equality holds for all n ∈ N,

lim sup
n→∞

sup
P0

EP̃D
X,Y ,Z

[ψ′(D)] ≤ lim sup
n→∞

sup
P′

0

EP̃D
X,Y ,Z

[ψ′(D)] ≤ α.

Hence, ψ has uniform asymptotic level for H0.

C.2 PROOF OF LEMMA 2

The proof is very similar to the proof of Lemma 1, we reuse most of its notation. Let P ′′
0 denote the set of all distributions

P̃X,Y,Z such that Xi ⊥⊥ Yj | (Z,Sij) for all i ∈ {1, . . . , dX} and j ∈ {1, . . . , dY }. As shown in the proof sketch in the
main paper, X ⊥⊥ Y | Z implies Xi ⊥⊥ Yj | (Z,Sij) for all i ∈ {1, . . . , dX} and j ∈ {1, . . . , dY }, and hence, P0 ⊆ P ′′

0 .
Because of this fact, the proof of Lemma 2 is the same as the proof of Lemma 1 where P ′

0 is replaced by P ′′
0 .

C.3 PROOF OF LEMMA 3

We reuse some notation from the proof of Lemma 1. To emphasize that the test for step 2 depends on the chosen
Qi’s and Q′

j’s, we write ψ′′
{Qi},{Q′

j}
. Here, {Qi} and {Q′

j} are shorthand notation for the sets of all Qi’s and Q′
j’s

respectively. As before, we let ψ denote the induced test procedure for H0. Let P ′′
0,{Qi},{Q′

j}
denote the set of all dis-

tributions P̃X,Y ,Z that satisfy Xi ⊥⊥ Yj | (Z,Sij) for all i ∈ {1, . . . , dX} and j ∈ {1, . . . , dY }, where the Sij’s
are constructed using the respective Qi’s and Q′

j’s.1 To underline that the estimates in step 1 depend on the particular
sample as well, we write Ŝ(X1,D), . . . , Ŝ(XdX

,D), Ŝ(Y1,D), . . . , Ŝ(YdY
,D). We write AD

{Qi},{Q′
j}

to denote the event

{(Q1, . . . , QdX
, Q′

1, . . . , Q
′
dY

) = (Ŝ(X1,D), . . . , Ŝ(XdX
,D), Ŝ(Y1,D), . . . , Ŝ(YdY

,D))}, i.e., the event that a particular
set of Qi’s and Q′

j’s has been chosen in step 1. The D in the superscript of the event indicates that the event is with respect
to the random matrix D. We assume that all these events are measurable, which in practice, depends on the underlying
estimation procedure, and we assume without loss of generality that all events have positive measure.

Now, assume that for all possible fixed Q1, . . . , QdX
⊆ {1, . . . , dY } and Q′

1, . . . , Q
′
dY

⊆ {1, . . . , dX} we have a test in
step 2 that has valid level α ∈ (0, 1) conditioned on the fact that Q1, . . . , QdX

, Q′
1, . . . , Q

′
dY

have been selected in step
1. That means, we assume that for all fixed Q1, . . . , QdX

⊆ {1, . . . , dY } and Q′
1, . . . , Q

′
dY

⊆ {1, . . . , dX} and for all
P̃X,Y ,Z ∈ P ′′

0,{Qi},{Q′
j}

that

EP̃D
X,Y ,Z

[ψ′′
{Qi},{Q′

j}
(D) | AD

{Qi},{Q′
j}
] ≤ α. (1)

(This notion of conditioning is similar to the one from Fithian et al. [2014]). By the proof sketch in the main paper,
P0 ⊆ P ′′

0,{Qi},{Q′
j}

for all Q1, . . . , QdX
⊆ {1, . . . , dY } and Q′

1, . . . , Q
′
dY

⊆ {1, . . . , dX} (and not just for all Qi ⊆ S(Xi)

andQ′
j ⊆ S(Yj)) and hence, inequality (1) holds for all P̃X,Y ,Z ∈ P0 as well. Thus, by applying the law of total expectation,

1Actually, ψ′′
{Qi},{Q′

j}
and P ′′

0,{Qi},{Q′
j}

only depend on the Qi’s and Q′
j’s that are chosen for some Sij . For better clarification, we

do not make this distinction in our notation.



we have for all P̃X,Y ,Z ∈ P0 that

EP̃D
X,Y ,Z

[ψ(D)]

=
∑

Q1,...,QdX
⊆{1,...,dY }

Q′
1,...,Q

′
dY

⊆{1,...,dX}

EP̃D
X,Y ,Z

[ψ(D) | AD
{Qi},{Q′

j}
] · P̃D

X,Y ,Z(A
D
{Qi},{Q′

j}
)

=
∑

Q1,...,QdX
⊆{1,...,dY }

Q′
1,...,Q

′
dY

⊆{1,...,dX}

EP̃D
X,Y ,Z

[ψ′′
{Qi},{Q′

j}
(D) | AD

{Qi},{Q′
j}
] · P̃D

X,Y ,Z(A
D
{Qi},{Q′

j}
)

≤
∑

Q1,...,QdX
⊆{1,...,dY }

Q′
1,...,Q

′
dY

⊆{1,...,dX}

α · P̃D
X,Y ,Z(A

D
{Qi},{Q′

j}
)

= α
∑

Q1,...,QdX
⊆{1,...,dY }

Q′
1,...,Q

′
dY

⊆{1,...,dX}

P̃D
X,Y ,Z(A

D
{Qi},{Q′

j}
)

= α,

where we used twice that the events AD
{Qi},{Q′

j}
partition the underlying sample space Xn. Hence,

sup
P0

EP̃D
X,Y ,Z

[ψ(D)] ≤ α.

For the sample splitting part of the Lemma, we write D1 to denote a matrix that is constructed by an arbitrary but fixed
subset of rows of the matrix D, and we define D2 to contain exactly all the other rows that do not make up D1. Without
loss of generality, assume that D1 is made up of the first n1 rows of D and D2 of the remaining n2 := n− n1 rows. Now,
suppose that the estimates Ŝ(X1,D), . . . , Ŝ(XdX

,D), Ŝ(Y1,D), . . . , Ŝ(YdY
,D) are calculated using only the first part of

the sample D1 and suppose that the test ψ′′
{Qi},{Q′

j}
(D) is calculated based on D2 only.

Under the assumption that all observations are mutually independent (i.e, under the classical iid assumption), we get
that ψ′′

{Qi},{Q′
j}
(D) is independent of (Ŝ(X1,D), . . . , Ŝ(XdX

,D), Ŝ(Y1,D), . . . , Ŝ(YdY
,D)). Because ψ′′

{Qi},{Q′
j}
(D)

only depends on D2, we can define a test ϕ′′{Qi},{Q′
j}

: X |D2| → [0, 1] that is equal to ψ′′
{Qi},{Q′

j}
(D) in the sense that

ψ′′
{Qi},{Q′

j}
(D) = ψ′′

{Qi},{Q′
j}
(D1,D2) = ϕ′′{Qi},{Q′

j}
(D2) (this definition is just a technical detail, loosely speaking, we

could directly write ψ′′
{Qi},{Q′

j}
(D2) to indicate that the test depends on the dataset D2 only, but we need to make sure that

the underlying domain is correct). We now obtain that

EP̃D
X,Y ,Z

[ψ′′
{Qi},{Q′

j}
(D) | AD

{Qi},{Q′
j}
]

= EP̃D
X,Y ,Z

[ψ′′
{Qi},{Q′

j}
(D)]

= EP̃D
X,Y ,Z

[ϕ′′{Qi},{Q′
j}
(D2)]

= E
P̃

D2
X,Y ,Z

[ϕ′′{Qi},{Q′
j}
(D2)]. (2)

The term E
P̃

D2
X,Y ,Z

[ϕ′′{Qi},{Q′
j}
(D2)] in (2) is the usual unconditional size of the test based on the second part of the dataset.

Thus, if for all fixed Q1, . . . , QdX
⊆ {1, . . . , dY } and Q′

1, . . . , Q
′
dY

⊆ {1, . . . , dX} it holds that

sup
P′′

0,{Qi},{Q′
j
}

E
P̃

D2
X,Y ,Z

[ϕ′′{Qi},{Q′
j}
(D2)] ≤ α,

we obtain that

sup
P0

EP̃D
X,Y ,Z

[ψ(D)] ≤ α.



C.4 ANALOGOUS RESULT AS IN PROPOSITION 1 FOR PARTIAL CORRELATIONS

In this section, we prove an analogous result as in Proposition 1 for partial correlations.

Proposition 4. For any set of indices Qi ⊆ S(Xi),

|ρXiYj |Z,YQi\{j}
| ≥ |ρXiYj |Z |.

Similarly, for any set of indices Q′
j ⊆ S(Yj),

|ρXiYj |Z,XQ′
j
\{i}

| ≥ |ρXiYj |Z |

Proof. We only prove the statement for any arbitrary but fixedQi ⊆ S(Xi), the proof for any arbitrary but fixedQ′
j ⊆ S(Yj)

is analogous.
Write S(Xi) \ {j} = {j1, . . . , jm}, where m is a natural number such that 1 ≤ m ≤ dY − 1. Without loss of generality (as
we can relabel the elements j1, . . . , jm arbitrarily), we prove the statement (and a slightly stronger statement for later use)
for all sets {j1, . . . , jk} ⊆ S(Xi) by induction over k ∈ {1, . . . ,m}.2
Induction start (k = 1): First of all, note that Xi ⊥⊥ Yjl | Z for all jl ∈ S(Xi) \ {j}, hence, ρXiYjl

|Z = 0 for all
jl ∈ S(Xi). Therefore,

ρXiYj |Z,Yj1
=

ρXiYj |Z −
=0︷ ︸︸ ︷

ρXiYj1
|Z ρYjYj1

|Z√
1− ρ2XiYj1

|Z︸ ︷︷ ︸
=1

√
1− ρ2YjYj1

|Z

=
ρXiYj |Z√
1− ρ2YjYj1

|Z

and hence,

|ρXiYj |Z,Yj1
| ≥ |ρXiYj |Z |

Induction hypothesis: Let k ≤ m be an arbitrary but fixed natural number. Assume that

ρXiYjl
|Z,Yj1

,...,Yjk−1
= 0 (3)

for all l ∈ {k, . . . ,m}. Here, the notation Yj1 , . . . Yjk−1
means the empty set if k = 1.

Furthermore, assume that

ρXiYj |Z,Yj1 ,...,Yjk
=

ρXiYj |Z√
1− ρ2YjYj1

|Z

√
1− ρ2YjYj2

|Z,Yj1
· · ·

√
1− ρ2YjYjk

|Z,Yj1
,...,Yjk−1

(4)

and hence that

|ρXiYj |Z,Yj1
,...,Yjk

| ≥ |ρXiYj |Z |.

Induction step (k → k + 1): If k = m, then we are done, so assume that k < m. Let l ∈ {k + 1, . . . ,m} be arbitrary but
fixed. Then,

ρXiYjl
|Z,Yj1

,...,Yjk
=

=0, equation (3)︷ ︸︸ ︷
ρXiYjl

|Z,Yj1
,...,Yjk−1

−
=0, equation (3)︷ ︸︸ ︷

ρXiYjk
|Z,Yj1

,...,Yjk−1
ρYjk

Yjl
|Z,Yj1

,...,Yjk−1√
1− ρ2XiYjk

|Z,Yj1
,...,Yjk−1︸ ︷︷ ︸

=1, equation (3)

√
1− ρ2Yjk

Yjl
|Z,Yj1

,...,Yjk−1

=
0− 0 · ρYjk

Yjl
|Z,Yj1

,...,Yjk−1

1 ·
√
1− ρ2Yjk

Yjl
|Z,Yj1

,...,Yjk−1

= 0. (5)
2Usually, a proof by induction is over the entire natural numbers. To be formally correct, we can also say that we inductively proof a

statement that equals the original statement for k ∈ {1, . . . ,m} and is always correct for k > m.



With this, we obtain that

ρXiYj |Z,Yj1
,...,Yjk+1

=
ρXiYj |Z,Yj1

,...,Yjk
−

=0, equation (5)︷ ︸︸ ︷
ρXiYjk+1

|Z,Yj1
,...,Yjk

ρYjYjk+1
|Z,Yj1

,...,Yjk√
1− ρ2XiYjk+1

|Z,Yj1 ,...,Yjk︸ ︷︷ ︸
=1, equation (5)

√
1− ρ2YjYjk+1

|Z,Yj1 ,...,Yjk

=
ρXiYj |Z,Yj1 ,...,Yjk

− 0 · ρYjYjk+1
|Z,Yj1 ,...,Yjk

1 ·
√
1− ρ2YjYjk+1

|Z,Yj1 ,...,Yjk

=
ρXiYj |Z,Yj1

,...,Yjk√
1− ρ2YjYjk+1

|Z,Yj1 ,...,Yjk

=
ρXiYj |Z√

1− ρ2YjYj1
|Z

√
1− ρ2YjYj2

|Z,Yj1
· · ·

√
1− ρ2YjYjk+1

|Z,Yj1
,...,Yjk

where the last equality follows from the induction hypothesis, see equation (4). Therefore,

|ρXiYj |Z,Yj1 ,...,Yjk+1
| ≥ |ρXiYj |Z |.

C.5 PROOF OF PROPOSITION 2

We start the proof by calculating the power corresponding to the null hypothesis ρXiYj |Z = 0. One rejects that null
hypothesis if

√
n− 3− |Z||z(ρ̂X1Y2|Z)| > q, where q := Φ−1(1− α/2) is the 1− α/2 - quantile of a standard normal

distribution. Assume that the true ρXiYj |Z is fixed and not equal to zero. Note that this fact is equivalent to z(ρXiYj |Z) ̸= 0.
The statistical power is then

PD
X,Y ,Z(

√
n− 3− |Z||z(ρ̂XiYj |Z)| > q)

= PD
X,Y ,Z(

√
n− 3− |Z|z(ρ̂XiYj |Z) > q or

√
n− 3− |Z|z(ρ̂XiYj |Z) < −q)

= PD
X,Y ,Z(

√
n− 3− |Z|z(ρ̂XiYj |Z) > q) + PD

X,Y ,Z(
√
n− 3− |Z|z(ρ̂XiYj |Z) < −q)

= PD
X,Y ,Z(

√
n− 3− |Z|(z(ρ̂XiYj |Z)− z(ρXiYj |Z)) > q −

√
n− 3− |Z|z(ρXiYj |Z))

+ PD
X,Y ,Z(

√
n− 3− |Z|(z(ρ̂XiYj |Z)− z(ρXiYj |Z)) < −q −

√
n− 3− |Z|z(ρXiYj |Z))

=: (1).

Using that the left-hand-side in the probabilities is (approximately) standard normally distributed, we obtain that

(1) = P (W > q − γ1) + P (W < −q − γ1),

where W is a standard normal random variable, P is the underlying probability measure, and γ1 =√
n− 3− |Z|z(ρXiYj |Z).

By the same argument, we can calculate the power corresponding to the null hypothesis ρXiYj |Z,YQi\{j}
= 0, (note that this

null hypothesis is true if and only if ρXiYj |Z = 0; for that, see the proof of Proposition 4). These calculations yield that the
power (approximately) equals

(2) := P (W > q − γ2) + P (W < −q − γ2),

where γ2 =
√
n2 − 3− |Z| − |Qi \ {j}|z(ρXiYj |Z,YQi\{j}

). The power difference ∆β between (2) and (1) then is

∆β = P (W > q − γ2) + P (W < −q − γ2)− P (W > q − γ1)− P (W < −q − γ1).



We now use our assumption that

I(Yj ;YQi\{j}|Z) ≥ log

(z−1
(√ n−3−|Z|

n2−3−|Z|−|Qi\{j}|z(ρXiYj |Z)
)

ρXiYj |Z

)
. (6)

We start by assuming that ρXiYj |Z > 0 (which, see the proof of Proposition 4, is equivalent to ρXiYj |Z,YQi\{j}
> 0). With

that assumption, we can rearrange (6) and obtain that

eI(Yj ;YQi\{j}|Z)ρXiYj |Z ≥ z−1

(√
n− 3− |Z|

n2 − 3− |Z| − |Qi \ {j}|
z(ρXiYj |Z)

)
.

Writing Qi \ {j} = {j1, . . . , jm} and using the chain rule for conditional mutual information, we obtain that

eI(Yj ;Yj1 |Z)+I(Yj ;Yj2 |Z,Yj1 )+...+I(Yj ;Yjm |Z,Yj1 ,...,Yjm−1
)ρXiYj |Z ≥ z−1

(√
n− 3− |Z|

n2 − 3− |Z| − |Qi \ {j}|
z(ρXiYj |Z)

)
.

Further rearrangements yield

eI(Yj ;Yj1 |Z) · eI(Yj ;Yj2 |Z,Yj1 ) · · · eI(Yj ;Yjm |Z,Yj1
,...,Yjm−1

)ρXiYj |Z ≥ z−1

(√
n− 3− |Z|

n2 − 3− |Z| − |Qi \ {j}|
z(ρXiYj |Z)

)
.

Recall that for multivariate normal distributions, eI(Yj ;Yj1
|Z) = 1/

√
1− ρ2YjYj1

|Z (analogously for the other terms), which

then yields that

ρXiYj |Z√
1− ρ2YjYj1

|Z ·
√
1− ρ2YjYj2

|Z,Yj1
· · ·

√
1− ρ2YjYjm |Z,Yj1

,...,Yjm−1

≥ z−1

(√
n− 3− |Z|

n2 − 3− |Z| − |Qi \ {j}|
z(ρXiYj |Z)

)
.

Because Xi ⊥⊥ Yjl | Z for all l ∈ {1, . . . ,m}, we can (by looking at the proof of Proposition 4) simplify the left-hand side
of the previous inequality to

ρXiYj |Z√
1− ρ2YjYj1

|Z ·
√

1− ρ2YjYj2
|Z,Yj1

· · ·
√
1− ρ2YjYjm |Z,Yj1

,...,Yjm−1

= ρXiYj |Z,YQi\{j}
.

Thus,

ρXiYj |Z,YQi\{j}
≥ z−1

(√
n− 3− |Z|

n2 − 3− |Z| − |Qi \ {j}|
z(ρXiYj |Z)

)
.

Further rearrangement then yields that√
n2 − 3− |Z| − |Qi \ {j}|z(ρXiYj |Z,YQi\{j}

) ≥
√
n− 3− |Z|z(ρXiYj |Z)

which implies that

0 < γ1 ≤ γ2.

Thus,

∆β = P (q − γ2 < W < q − γ1)− P (−q − γ2 < W < −q − γ1)

= P (γ1 − q < W < γ2 − q)− P (γ1 + q < W < γ2 + q).

To see that ∆β is positive, we make a case distinction. First of all note that γ2 + q and γ1 + q are always positive because
we assumed that ρXiYj |Z is positive, and hence (see the proof of Proposition 4), ρXiYj |Z,YQi\{j}

is positive.

If γ1 − q ≥ 0, both probabilities are integrals of the standard normal density over intervals which are a subset of the
nonnegative part of the real line. As the standard normal density is strictly decreasing on the nonnegative real line and



both the interval (γ1 − q, γ2 − q) and (γ1 + q, γ2 + q) have the same length, the first probability is larger than the second
probability.

If γ1 − q < 0 and γ2 − q ≥ 0, the interval (γ1 + q, γ2 + q) is further away from zero than the interval (γ1 − q, γ2 − q);
and hence, the standard normal density takes smaller values on (γ1 + q, γ2 + q) than on (γ1 − q, γ2 − q). As again both
integrals have the same length, the first probability is larger than the second probability.

The last case is γ2 − q < 0 (and hence, γ1 − q < 0). Note that γ2 − q is closer to zero than γ1 + q, because

|γ2 − q| < |γ1 + q|
⇐⇒ q − γ2 < γ1 + q

⇐⇒ γ1 + γ2 > 0,

where the last line is always true by definition of γ1 and γ2. Hence, the interval (γ1 − q, γ2 − q) is again closer to zero than
the interval (γ1 + q, γ2 + q), and hence, the first probability is again greater than the second probability.

Thus, in all cases, we have ∆β ≥ 0.

If ρXiYj |Z is negative, then one can proceed analogously and obtain that γ2 ≤ γ1 < 0. It then follows that

∆β = P (−q − γ1 < W < −q − γ2)− P (q − γ1 < W < q − γ2).

By a similar case distinction, one then obtains that ∆β ≥ 0. Thus, we have proved the proposition.

C.6 PROOF OF PROPOSITION 3

Let both tests corresponding to the respective null hypotheses ρXiYj |Z = 0 and ρXiYj |Z,YQi\{j}
= 0 achieve a power

of exactly β. From the proof of Proposition 2, we use the formulas for calculating the power. We start by assuming that
ρXiYj |Z > 0 (equivalent to ρXiYj |Z,YQi\{j}

> 0, see proof of Proposition 4) and obtain that for the test corresponding to
the null hypothesis ρXiYj |Z = 0,

β = P (W > q − γ1) + P (W < −q − γ1)

≤ P (W > q − γ1) + P (W < −q)

= P (W > q − γ1) +
α

2
.

Rearranging terms yields

γ1 ≥ q − Φ−1(1− β + α/2).

Note that the term on the right-hand side is positive because we assumed that β ≥ α. Plugging in the definition of γ1 and
further rearrangement now yields that

n ≥
(
q − Φ−1(1− β + α

2 )

z(ρXiYj |Z)

)2

+ 3 + |Z|. (7)

Similarly, for the test corresponding to the null hypothesis ρXiYj |Z,YQi\{j}
= 0,

β = P (W > q − γ2) + P (W < −q − γ2) ≥ P (W > q − γ2).

Rearranging these terms yields

q − Φ−1(1− β) ≥ γ2 ≥ 0.

Plugging in the definition of γ2 and rearranging yields

n2 ≤
(

q − Φ−1(1− β)

z(ρXiYj |Z,YQi\{j}
)

)2

+ 3 + |Z|+ |Qi \ {j}|. (8)

One can work similarly for the case ρXiYj |Z < 0 (equivalent to ρXiYj |Z,YQi\{j}
< 0, see the proof of Proposition 4) and

obtain the same lower bound on n and upper bound on n2.

Putting together (7) and (8) then yields the lower bound on n− n2 stated in the proposition.
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