
Under review as submission to TMLR

Contents (Appendix)

A Optimizers 19
A.1 SGD . 19
A.2 Momentum-SGD . 19
A.3 Nesterov Momentum . 19
A.4 RMSprop . 19
A.5 Adam . 19

B Implementation and Environment for Experiments 19

C Datasets 20
C.1 DomainBed . 20
C.2 Backgrounds Challenge Dataset . 20
C.3 Amazon-WILDS and CivilComments-WILDS Dataset . 21
C.4 CIFAR10-C and CIFAR10-P Dataset . 21

D Experimental Protocol 22
D.1 DomainBed . 22
D.2 Backgrounds Challenge Dataset . 22
D.3 WILDS . 23
D.4 CIFAR10-C and CIFAR10-P . 23

E Hyperparameters and Detailed Configurations 24
E.1 DomainBed . 24
E.2 Backgrounds Challenge Dataset . 26
E.3 WILDS . 26
E.4 CIFAR10-C and CIFAR10-P . 27

F Full Results of Experiments 28
F.1 Full Results of Table . 28
F.2 Full Results of Boxplot . 29

F.2.1 Full Results of Filtered Boxplot (ERM) . 29
F.2.2 Full Results of Filtered Boxplot (IRM) . 33

F.3 Full Results of Bin-Diagram Plots . 35
F.4 Full Results of Scatter Plots . 36

F.4.1 ERM . 36
F.4.2 IRM . 37

G Ablation Study 39
G.1 Probit Transformed Scatter Plot . 39

G.1.1 ERM . 39
G.1.2 IRM . 42

G.2 Model Performance Transition throught Hyperparameter Search 44
G.2.1 Hyperparameter Trial Budget vs OOD Accuracy . 44
G.2.2 Hyperparameter Trial Budget vs OOD Error . 46

G.3 Learning Curve of ColoredMNIST . 50
G.4 Early Stopping . 51

H Soundness Check of Our Experiments 61
H.1 Histgram of Hyperparameters . 61
H.2 Hyperparameters and OOD Accuracy Box-Plot . 61
H.3 E�ect of Initial Configuration on Hyperparameter Optimization 64
H.4 Best OOD Performance Comparison against with Existing Benckmark 66

17

Under review as submission to TMLR

I Additional Study 67
I.1 Corruption and Perturbation Shift . 67
I.2 Model Architecture . 67

I.2.1 ResNet-20 for ColoredMNIST . 67
I.2.2 Vision Transformer for PACS . 67

I.3 State-of-the-Arts Optimizers . 68
I.3.1 Sharpness Aware Minimization (SAM) . 68
I.3.2 Adam with Decoupled Weight Decay (AdamW) . 68

I.4 Large ‘ for Adam . 69
I.5 Learning Rate Schedule . 69
I.6 The E�ect of Random Seeds . 70
I.7 Algorithms (ERM, IRM, VREx and CORAL) . 71

18

Under review as submission to TMLR

A Optimizers

As we explained in Section 4.1, we compared SGD, momentum-SGD, Nesterov momentum, RMSprop, and
Adam. We write the algorithm of these optimizers below.

A.1 SGD

◊t Ω ◊t≠1 ≠ ÷tÒ̃◊t≠1¸ (◊t≠1) (2)

A.2 Momentum-SGD

vt Ω “vt≠1 + ÷tÒ̃◊t≠1¸ (◊t≠1) (3)
◊t Ω ◊t≠1 ≠ vt (4)

A.3 Nesterov Momentum

vt Ω “vt≠1 + ÷tÒ̃◊t≠1¸ (◊t≠1 ≠ “vt≠1) (5)
◊t Ω ◊t≠1 ≠ vt (6)

A.4 RMSprop

vt Ω –vt≠1 + (1 ≠ –)Ò̃◊t≠1¸ (◊t)2 (7)

mt Ω “mt≠1 + ÷tÔ
vt + ‘

Ò̃◊t≠1¸ (◊t) (8)

◊t Ω ◊t≠1 ≠ mt (9)

A.5 Adam

mt Ω —1mt≠1 + (1 ≠ —1) Ò̃◊t≠1¸ (◊t) (10)
vt Ω —2vt≠1 + (1 ≠ —2) Ò̃◊t≠1¸ (◊t)2 (11)

bt Ω

1 ≠ —t
2

1 ≠ —t
1

(12)

◊t Ω ◊t≠1 ≠ ÷t
mtÔ
vt + ‘

bt. (13)

B Implementation and Environment for Experiments

We perform our experiment with supercomputer A (This name will be deanonymized when publication). For
supercomputer A, each node is composed of NVIDIA Tesla V100◊4GPU and Intel Xeon Gold 6148 2.4 GHz,
20 Cores◊2CPU. As a software environment, we use Red Hat 4.8.5, gcc 7.4, Python 3.6.5, Pytorch 1.6.0,
cuDNN 7.6.2, and CUDA 10.0.

All codes for experiments are modifications of the codes provided by the authors who introduced the datasets
Gulrajani & Lopez-Paz (2021); Koh et al. (2021); Xiao et al. (2021). Licenses of the codes are MIT license
for DomainBed Gulrajani & Lopez-Paz (2021) and WILDS Koh et al. (2021). The code of Backgrounds
Challenge does not indicate the license. Our code can be found at the link below.
https://anonymous.4open.science/r/OoD-Optimizer-Comparison-37DF

19

https://anonymous.4open.science/r/OoD-Optimizer-Comparison-37DF

Under review as submission to TMLR

C Datasets

C.1 DomainBed

DomainBed consists of sub-datasets shown in Table 2, where we exclude Terra Incognita and Rotated MNIST
as stated in Section 3.2. We summarize the dataset information in the Table by referring to (Gulrajani &
Lopez-Paz, 2021).

Table 2: DomainBed: Dataset Information

domain examples class
Colored MNIST [0.1, 0.2, 0.9] 70000 2
Rotated MNIST [0, 15, 30, 45, 60, 75] 70000 10
PACS [art, cartoons, photos, sketches] 9991 7
VLCS [Caltech101, LabelMe,415SUN09, VOC2007] 10729 5
O�ce-Home [art, clipart, product, real] 15588 65
TerraIncognita [L100, L38, L43, L46] 24788 10
DomainNet [clipart, infograph, painting, quickdraw,420real, sketch] 586575 345

Colored MNIST is a dataset for binary classification of MNIST dataset (Arjovsky et al., 2019). The digits
from 0 to 4 are labeled 0, and those greater than 5 are labeled 1, and the task is to classify these classes
successfully. However, each digit is also colored by either red or green. This is for having models to confuse
the important feature for classification. The domain d indicates the correlation of the label with color.
For example, if the domain is 0.1, the correlation between, say red, with the number smaller than 5 is 0.1.
Furthermore, the label is flipped at a constant rate: in this paper, 15 % label is flipped. Therefore, the
correlation between color and digit is d, while between label and digits is 0.85. That is, what models should
learn is the correlation between label and noise, resulting in classification accuracy of 0.85. However, if
the model exploits spurious correlation of the domain, it will learn the correlation between label and color,
resulting in training accuracy being 0.9 but test accuracy being 0.1 in this case.

PACS and O�ce-Home are image datasets whose domain determines the style of the image. These are
benchmark datasets for domain generalization.

VLCS is a set of di�erent photographic datasets, PASCAL VOC (Everingham et al., 2010), LabelMe (Russell
et al., 2008), Caltech101 (Fei-Fei et al., 2004), and SUN09 (Choi et al., 2010). PASCAL VOC, LabelMe, and
SUN09 are benchmark datasets for object detection. Caltech101 is 101 classes image datasets, where each
class has 40 - 80 samples.

DomainNet is a large dataset proposed for the study of domain generalization. The number of classes,
domains, and dataset size is the largest in the DomainBed dataset.

TerraIncognita is a dataset consisting of images taken by cameras at di�erent locations. The di�erence in the
camera’s location corresponds to the di�erence in the domain.

RotatedMNIST is a dataset that artificially rotates MNIST and divides the domain according to the rotation
angle. The number in the domain corresponds to the rotation angle.

We leave one domain for the final evaluation and use the remaining domains for training. To evaluate the
performance during training, we split the data of each domain into training data and validation data. The
split ratio is 80 % for training and 20 % for validation. We take an average of test accuracies and validation
accuracies across domains, respectively, and use them to evaluate the OOD generalization.

C.2 Backgrounds Challenge Dataset

In Section D.2, we explained that we use the subset of ImageNet (ORIGINAL). ORIGINAL consists of nine
classes displayed in table 3. These classes are synthetically created from ImageNet classes based on WordNet
ID. This table is a copy of a table in the original paper (Xiao et al., 2021).

20

Under review as submission to TMLR

Table 3: Backgrounds Challenge: Dataset information originally created in (Xiao et al., 2021)

classes WordNet ID num sub-classes
Dog n02084071 116
Bird n01503061 52
Vehicle n04576211 42
Reptile n01661091 36
Carnivore n02075296 35
Insect n02159955 27
Instrument n03800933 26
Primate n02469914 20
Fish n02512053 16

This dataset is filtered to balance samples across classes. We follow the same filtering procedure as the
original paper. For further details, please refer to the original paper (Xiao et al., 2021).

C.3 Amazon-WILDS and CivilComments-WILDS Dataset

WILDS is a set ob benchmark datasets with distributional shift and their variants: iWildCam (Beery et al.,
2020), Camelyon17 (Bandi et al., 2018), RxRx1 (Taylor et al., 2019), OGB-MolPCBA (Hu et al., 2020),
GlobalWheat (David et al., 2020; 2021), CivilComments (Borkan et al., 2019), FMoW (Christie et al., 2018),
PovertyMap (Yeh et al., 2020), Amazon (Ni et al., 2019), and Py150 (Lu et al., 2021; Raychev et al., 2016).
We use CivilComments and Amazon for our experiment as NLP tasks.

C.4 CIFAR10-C and CIFAR10-P Dataset

First, for the corrupted or perturbed data generalization studies, we use CIFAR-10-C, CIFAR-10-P to evaluate
the generalization performance Hendrycks & Dietterich (2019); Mu & Gilmer (2019). CIFAR-10-C consist
of CIFAR image data corrupted by 19 noise patterns. CIFAR-10-P is similar, but with ten perturbations.
Similar corruptions and perturbations frequently occur in real-world imaging applications. Thus, evaluating
the robustness against this noise is essential for improving practical applicability. Because noises changes the
input samples, we can regard the corrupted and perturbed data as being sampled from a di�erent distribution
P (x, y)Õ than the original distribution: P (x, y)Õ ”= P (x, y). If a classifier f : X æ Y is robust to corruption
c : X æ X , or Ec≥C [P (f(c(x) = y))] with corruption distribution C, we can say that the classifier can
generalize for the corrupted samples. The same is true for perturbation.

21

Under review as submission to TMLR

D Experimental Protocol

We employ a Bayesian hyperparameter search strategy in the sweep functionality of Weights&Biases5. In this
strategy, the relationship between parameters and evaluation metrics is modeled as a Gaussian process, and
the parameters are selected in such a way as to optimize the improvement probability. Table 4 shows the
number of hyperparameter optimizations performed for each task. The transition of the best ood accuracy in
these hyperparameter optimizations is shown in Appendix G.2.

In line with previous studies (Gulrajani & Lopez-Paz, 2021; Xiao et al., 2021; Koh et al., 2021) di�erent
benchmarks use di�erent evaluation metrics, each of which is outlined in the following sections.

Table 4: Number of Experiments for Each Dataset

SGD Momentum Nesterov RMSprop Adam
RotatedMNIST 200 200 200 200 200
ColoredMNIST 200 342 200 200 200
PACS 200 200 200 200 412
VLCS 200 200 200 200 324
O�ceHome 399 200 200 200 699
TerraIncognita 200 200 200 451 202
DomainNet 490 515 857 1160 1137
Amazon-WILDS 440 438 449 489 466
Amazon-CivilComments 594 543 588 575 554
Background Challenge - 347 - - 567

D.1 DomainBed

We follow the setting that is employed in the original paper (Gulrajani & Lopez-Paz, 2021). We train models
with training domains and evaluate their performance on the test domain, which is the domain not used
for training. We use ResNet-50 for PACS, VLCS, O�ce-Home, DomainNet, TerraIncognita, and MNIST
ConvNet (Gulrajani & Lopez-Paz, 2021) for RotatedMNIST and Colored MNIST.

In our experiments, one domain is used as the test domain (OOD: out-of-distribution) and the other domain as
the training domain (ID: in-distribution). More precisely, the test domain is "Art" for PACS, "Caltech101" for
VLSC, "Art" for O�ce-Home, "Clipart" for DomainNet, "L100" for TerraIncognita, "30°" for RotatedMNIST,
and "-90%" for ColoredMNIST. We explain the experimental configurations in Section E.1.

D.2 Backgrounds Challenge Dataset

We follow Xiao et al. (2021) for using Backgrounds Challenge dataset for evaluation. Thus, we use the
following data-generating procedure proposed by Xiao et al. (2021). We train ResNet-50 on ImageNet-1k with
two popular optimizers, Momentum SGD, and Adam. The test datasets to evaluate the trained model are
derivations of ImageNet dataset. First, we construct a subset of the ImageNet which has nine coarse-grained
classes, e.g. insect (ORIGINAL). Especially, we refer to ORIGINAL with all images from ImageNet as IN9L.
Then, we create a dataset by changing the background of the images of IN9L. In particular, we change
the background of each image into a random background cropped from another image in ORIGINAL. We
call this dataset Mixed-Random, following Xiao et al. (2021). By comparing the accuracy of Mixed-Same
with that of ORIGINAL, we can measure the dependence of the model on the spurious correlation of
background information. Thus, we investigate the relations between these two accuracies. The search range
for hyperparameters is shown in Section E.2.

5https://wandb.ai/site

22

https://wandb.ai/site

Under review as submission to TMLR

D.3 WILDS

We also follow the setting that is employed in the original paper (Koh et al., 2021). First, we divide the
dataset into train, validation, and test and train a model using the train data. For model selection, we use
the performance evaluation of validation data. In the test dataset, considering the subpopulation shift, we
measure the performance of the OOD in the worst group for CivilComments-WILDS and in the domain of
10-percentile for Amazon-WILDS. In both Amazon-WILDS and CivilComments-WILDS, DistilBERT (Sanh
et al., 2019) is used as the deep neural network model architecture. We explain the further details of the
experimental configurations in Section E.3.

D.4 CIFAR10-C and CIFAR10-P

First, we trained deep neural networks with CIFAR-106. Then we evaluated the trained models with CIFAR-
10-C, CIFAR-10-P7. For the corruption datasets (CIFAR-10-C), we compared the accuracy for the corruption
or perturbation test samples (samples from CIFAR-10-C) with that for the training domain test samples
(samples from CIFAR-10). For the perturbation dataset, we measured the perturbation robustness introduced
by Hendrycks & Dietterich (2019).

6https://www.cs.toronto.edu/~kriz/cifar.html
7https://zenodo.org/record/2535967

23

https://www.cs.toronto.edu/~kriz/cifar.html
https://zenodo.org/record/2535967

Under review as submission to TMLR

E Hyperparameters and Detailed Configurations

We report the hyperparameter’s search space. For vanilla SGD, we search learning rate ÷, learning rate decay
rate fl and the timing to decay learning rate ”, and regularization coe�cient of weight decay ⁄. When ” = 0.7,
it means that the learning rate decays when training passes 70 % of the total iterations. We do not search fl
and ” for DomainBed because we do not employ a learning rate schedule.

For non-adaptive momentum methods, a parameter to control momentum “ is added to the hyperparameters.
For RMSprop, we further add parameters – and ‘, which control the second-order momentum and numerical
stability, respectively. Although ‘ is originally introduced for numerical stability, this parameter is found to
play a crucial role in generalization performance (Choi et al., 2019). Thus, we follow Choi et al. and vary
this parameter as well.

For Adam, we add ‘, —1, —2 to vanilla SGD’s configuration. The parameter ‘ is the same as that for RMSprop
and —1 and —2 control first and second-order momentum terms, respectively.

E.1 DomainBed

We conduct Bayesian optimization for hyperparameter search of DomainBed. First, we sampled hyperparam-
eters from uniform distribution whose minimum and maximum values are shown in the table 6 and 7 Then,
we conducted Bayesian optimization on these sampled candidate hyperparameters and selected some of the
hyperparameters among them. For reference, the scatter plot of Adam’s learning rate for the O�ceHome
dataset is shown in Appendix H.1. Note that the values for batch size B in the tables do not indicate
minimum and maximum for Bayesian optimization but those for grid search. Unlike other datasets, we
implement IRMv1 in addition to ERM. IRMv1 is a heuristic optimization problem to solve IRM, introduced
by Arjovsky et al. (2019). Thus, we search the hyperparameters of IRMv1 as well.

IRMv1 is the following constrained optimization problem (Arjovsky et al., 2019):

min
�:X æY

ÿ

eœEtr

Re(�) + ⁄IRM
..Òw|w=1.0Re(w ¶ �)

..2
, (14)

where � is representation function and w is the weight on top of the function of a model f = w ¶ �. X is the
input domain and Y is the output domain. The character e indicates an environment in training environment
set Etr and Re is the risk of the environment. Because this is the optimization with regularization term, we
search coe�cient ⁄IRM. In addition, we implement annealing of this coe�cient and so we try various penalty
annealing iterations NIRM too. The basic workload is summarized in table 5.

We made two changes to the experimental setup in the original paper, as well as to the optimizer. We added
regularization to the training of ColoredMNIST and RotatedMNIST to stabilize the learning. In addition, we
increased the steps budget for RotatedMNIST because we observed that the training loss of RotatedMNIST
was not su�ciently reduced.

We also experimented with two additional model architectures (ResNet-20 and Vision Transformer) for the
benchmarks proposed in the existing DomainBed.

24

Under review as submission to TMLR

Table 5: DomainBed: Workloads

Model Dataset Batch size Step Budget
MNIST ConvNet (Gulrajani & Lopez-Paz, 2021) Colored MNIST [128, 512, 2048] 5000
MNIST ConvNet (Gulrajani & Lopez-Paz, 2021) Rotated MNIST [128, 512, 2048] 100K
ResNet-50 VLCS [64, 128] 5000
ResNet-50 PACS [64, 128] 5000
ResNet-50 O�ce Home [64, 128] 5000
ResNet-50 DomainNet [64, 128] 5000
ResNet-50 TerraIncognita [64, 128] 5000
Vision Transformer (for Additional Study) PACS [64] 5000
ResNet-20 (for Additional Study) Colored MNIST [64] 5000

Table 6: DomainBed: ResNet-50

B ÷ ⁄ “ – ‘ ⁄IRM NIRM

SGD [64, 128] [1e-5, 1e-2] [1e-6, 1e-2] - - - [1e-1,
1e+5]

[1e+0,
1e+4]

Momentum [64, 128] [1e-5, 1e-2] [1e-6, 1e-2] [0, 0.99999] - - [1e-1,
1e+5]

[1e+0,
1e+4]

Nesterov [64, 128] [1e-5, 1e-2] [1e-6, 1e-2] [0, 0.99999] - - [1e-1,
1e+5]

[1e+0,
1e+4]

RMSprop [64, 128] [1e-5, 1e-2] [1e-6, 1e-2] [0, 0.99999] [0, 0.999] [1e-8, 1e-3] [1e-1,
1e+5]

[1e+0,
1e+4]

B ÷ ⁄ —1 —2 ‘ ⁄IRM NIRM

Adam [64, 128] [1e-5, 1e-2] [1e-6, 1e-2] [0, 0.999] [0, 0.999] [1e-8, 1e-3] [1e-1,
1e+5]

[1e+0,
1e+4]

B ÷ “ ‘ fl

SAM [64] [1e-5, 1e-2] [0.9] [1e-4] [5e-2]

Table 7: DomainBed: MNIST ConvNet (Gulrajani & Lopez-Paz, 2021)

B ÷ ⁄ “ – ‘ ⁄IRM NIRM

SGD [128, 521, 2048] [1e-5, 1e-2] [1e-6, 1e-2] - - -

Momentum [128, 521, 2048] [1e-5, 1e-2] [1e-6, 1e-2] [0, 0.99999] - - [1e-1,
1e+5]

[1e+0,
1e+4]

Nesterov [128, 521, 2048] [1e-5, 1e-2] [1e-6, 1e-2] [0, 0.99999] - - [1e-1,
1e+5]

[1e+0,
1e+4]

RMSprop [128, 521, 2048] [1e-5, 1e-2] [1e-6, 1e-2] [0, 0.99999] [0, 0.999] [1e-8, 1e-3] [1e-1,
1e+5]

[1e+0,
1e+4]

B ÷ ⁄ —1 —2 ‘ ⁄IRM NIRM

Adam [128, 521, 2048] [1e-5, 1e-2] - [0, 0.999] [0, 0.999] [1e-8, 1e-3] [1e-1,
1e+5]

[1e+0,
1e+4]

25

Under review as submission to TMLR

E.2 Backgrounds Challenge Dataset

We conduct Bayesian optimization for the Backgrounds Challenge dataset as well. We use 4096 as the batch
size. For all configurations other than batch size, as we follow Choi et al. (2019).

We conduct the hyperparameter search and restart training from scratch. Of the trained models, we evaluate
trained model performance in the OOD dataset.

Table 8: Backgrounds Challenge: ResNet-50

÷ ⁄ “

Momentum [1e-5, 1e-2] [1e-6, 1e-2] [0, 0.99999]

÷ ⁄ —1 —2 ‘

Adam [1e-5, 1e-2] [1e-6, 1e-2] [0, 0.999] [0, 0.999] [1e-8, 1e-3]

E.3 WILDS

We conduct Bayesian optimization for the hyperparameter search of WILDS. The hyperparameters are
sampled by uniform distribution whose minimum and maximum values are shown in the table 9 and 10. Note
that the values for batch size B is fixed in these experiments due to computational e�ciency. We implement
IRMv1 as well as DomainBed experiments.

For training the Amazon-WILDS and CivilComments-WILDS datasets that we used as NLP datasets, we
followed the deep neural network model and training configuration proposed in the original paper. DistilBERT,
a distillation of BERT Base, is used as the deep neural network model.

Table 9: WILDS-Amazon: DistilBERT

B ÷ ⁄ “ – ‘ ⁄IRM NIRM

SGD [8] [1e-5, 1e-2] [1e-6, 1e-2] - - - [1e-1,
1e+5]

[1e+0,
1e+4]

Momentum [8] [1e-5, 1e-2] [1e-6, 1e-2] [0, 0.99999] - - [1e-1,
1e+5]

[1e+0,
1e+4]

Nesterov [8] [1e-5, 1e-2] [1e-6, 1e-2] [0, 0.99999] - - [1e-1,
1e+5]

[1e+0,
1e+4]

RMSprop [8] [1e-5, 1e-2] [1e-6, 1e-2] [0, 0.99999] [0, 0.999] [1e-8, 1e-3] [1e-1,
1e+5]

[1e+0,
1e+4]

B ÷ ⁄ —1 —2 ‘ ⁄IRM NIRM

Adam [8] [1e-5, 1e-2] [1e-6, 1e-2] [0, 0.999] [0, 0.999] [1e-8, 1e-3] [1e-1,
1e+5]

[1e+0,
1e+4]

B ÷ —1 —2 ‘

AdamW [8] [1e-5, 1e-2] [0.9] [0.999] [1e-8]

B ÷ “ ‘ fl

SAM [8] [1e-5, 1e-2] [0.9] [1e-4] [5e-2]

26

Under review as submission to TMLR

Table 10: WILDS-CivilComments: DistilBERT

B ÷ ⁄ “ – ‘ ⁄IRM NIRM

SGD [16] [1e-5, 1e-2] [1e-6, 1e-2] - - - [1e-1,
1e+5]

[1e+0,
1e+4]

Momentum [16] [1e-5, 1e-2] [1e-6, 1e-2] [0, 0.99999] - - [1e-1,
1e+5]

[1e+0,
1e+4]

Nesterov [16] [1e-5, 1e-2] [1e-6, 1e-2] [0, 0.99999] - - [1e-1,
1e+5]

[1e+0,
1e+4]

RMSprop [16] [1e-5, 1e-2] [1e-6, 1e-2] [0, 0.99999] [0, 0.999] [1e-8, 1e-3] [1e-1,
1e+5]

[1e+0,
1e+4]

B ÷ ⁄ —1 —2 ‘ ⁄IRM NIRM

Adam [16] [1e-5, 1e-2] [1e-6, 1e-2] [0, 0.999] [0, 0.999] [1e-8, 1e-3] [1e-1,
1e+5]

[1e+0,
1e+4]

E.4 CIFAR10-C and CIFAR10-P

Corruption: The corruption dataset we consider contains 19 corruption patterns. These are Gaussian Noise,
Shot Noise, Impulse Noise, Defocus Blur, Frosted Glass Blur, Motion Blur, Zoom Blue, Show, Frost, Fog,
Brightness, Contrast, Elastic, Pixelate, and JPEG. Sample corrupted images are shown in the original paper
by Hendrycks & Dietterich (2019). Following Hendrycks & Dietterich (2019), we compute the classification
error Es,c for each corruption c with a five-point scale for the noise severity s. Averaging over a five-point
scale, we measure the classification accuracy for each corruption Accc as follows:

Accc = 1 ≠
q5

s=1 Es,c

5 (15)

This accuracy is the test accuracy (corruption) we defined in the main body of this paper. We evaluate the
generalization performance by comparing this quantity with the accuracy calculated using the original test
dataset Acc = 1 ≠ E. Note that E is the classification error for the test (training domain) samples.

Perturbation: The perturbation dataset has six corruption patterns that are the same as in the corruption
dataset and four additional digital transformations: Gaussian Noise, Shot Noise, Motion Blur, Zoom Blur,
Show, Brightness, Translate, Rotate, Tilt, and Scale. The perturbation dataset di�ers from the corruption
dataset in that each corruption generates more than thirty perturbation sequences. Hence, we use not a
simple measure of accuracy but the following metric to determine the perturbation robustness:

d (·(x), · (xÕ)) =
5ÿ

i=1

max{i,‡(i)}ÿ

j=min{i,‡(i)}+1
1(1 Æ j ≠ 1 Æ 5), (16)

where ·(x) is the ranked prediction of the classifier on image x and ‡(i) = ·(xÕ)/·(x). This criterion
measures how the top-5 prediction on two di�erent images di�ers. By using this quantity, top-5 robustness
perturbation can be written as follows:

uT5Dp = 1
m(n ≠ 1)

mÿ

i=1

nÿ

j=2
d (· (xj) , · (xj≠1)) . (17)

27

Under review as submission to TMLR

Table 11: Hyperparameter Search Range: ResNet-8 / CIFAR10

B ÷ ⁄ “

Momentum 256 [1e-6, 1e+1] [1e-5, 1e-4] [1e-4 0.9999]

B ÷ ⁄ —1 —2 ‘

Adam 256 [1e-4, 1e-1] [1e-5, 1e-4] [0.9, 0.999] [0.99, 0.9999] [1e-4, 1e-2]

F Full Results of Experiments

We conducted an evaluation of optimizers using two distinct model selection strategies. One approach is
Oracle-based, while the other employs a method of training-domain validation set (Gulrajani & Lopez-Paz,
2021). In Section F.1, we compare the OOD accuracy of models obtained through each strategy, as displayed
in a tabular format. Particularly for the latter strategy, we present both the average and variance of the
Top-10 models, as well as the average and variance for models surpassing a certain threshold.

The rationale behind providing the average and variance of the Top-10 models lies in our adoption of Bayesian
optimization for hyperparameters, with the aim of illustrating the error bars of high-performing models
obtained through this method. The results for models exceeding a certain threshold (in the rightmost bin)
are shared to facilitate comparison of average OOD accuracy performance when non-adaptive and adaptive
optimization methods are comparable in terms of ID accuracy.

In Section F.2, we present the results for all hyperparameters we explored (except for the model inferior to
random guess), along with their distributions in a box plot. Finally, in Section F.4, we present the OOD
accuracy and ID accuracy results for all the results from which these results are derived as a scatter plot.

F.1 Full Results of Table

Oracle:
In this section, we provide additional information on Table 1 in the paper. Table 12 shows the mean and
standard deviation for the top-10 models, including those selected by the Oracle model selection method. In
eight of the ten datasets, the non-adaptive method outperforms the adaptive method in out-of-distribution
accuracy.

Table 12: Top-10 Trials: Mean and Standard Deviation for Each Dataset (Model Selection by Oracle). The
variance is relatively suppressed in many tasks because it is the mean and variance of the model that achieves
Top-10 OOD accuracy.

Model OOD Dataset Non-Adaptive Optimizer Adaptive Optimizer
SGD Momentum Netsterov RMSProp Adam

4-Layer CNN RotatedMNIST 89.62±0.18 93.23±0.69 92.89±0.2 95.81±0.16 96.05±0.16
ColoredMNIST 14.64±0.07 29.80±1.84 28.85±2.0 52.82±6.21 52.39±6.89

ResNet50

VLCS 98.98±0.1 98.70±0.16 98.49±0.12 96.23±1.39 97.09±1.61
PACS 86.56±0.83 86.90±0.82 86.01±1.36 81.10±2.93 82.59±2.93

O�ceHome 63.68±0.12 63.52±0.44 62.40±0.47 55.34±3.39 62.12±0.35
TerraIncognita 52.22±1.62 56.05±1.96 52.98±1.61 53.67±2.62 48.78±3.53

DomainNet 55.31±2.38 56.12±3.85 58.19±2.2 52.71±2.74 55.74±1.65
BackgroundChallenge - 78.99±0.48 - - 75.55±1.5

DistilBERT WILDS_amazon 52.00±0.0 54.67±0.0 54.67±0.0 48.67±3.46 52.44±1.5
WILDS_civilcomments 51.81±0.29 56.40±0.61 55.98±0.47 38.42±7.04 37.71±4.0

ResNet-20 ColoredMNIST - 28.93±2.63 - - 29.84±1.64
ViT PACS - 90.28±0.54 - - 90.05±0.29

Training-Domain Validation Set: Table 13 shows the results of top-10 models with training-domain
validation set (Gulrajani & Lopez-Paz, 2021) as the model selection method. It shows that 11 out of 12
tasks showed that the non-adaptive optimization method is superior. As exhibited in Table 14, we present
the out-of-distribution accuracy along with the mean and standard deviation of the subset exhibiting high

28

Under review as submission to TMLR

validation performance within our targeted training domain, as graphically depicted in Figure 1. This data
specifically corresponds to the apex of the rightmost bin in the bar chart encapsulated in Figure 1. As
noted, the relatively elevated standard deviations observed can be primarily attributed to our calculation
methodology. This approach calculates the mean and standard deviation values of the out-of-distribution
accuracy, specifically focusing on the rightmost bins indicative of high validation accuracy as portrayed in
Figure 1. It is crucial to acknowledge that this unique approach could potentially yield a broader range of
variances.

Table 13: Top-10 Trials: Mean and Standard Deviation for Each Dataset (Model Selection by Training-Domain
Validation Set). The variance is relatively suppressed in many tasks because it is the mean and variance of
the model that achieves Top-10 OOD accuracy.

Model OOD Dataset Non-Adaptive Optimizer Adaptive Optimizer
SGD Momentum Netsterov RMSProp Adam

4-Layer CNN RotatedMNIST 89.13±0.56 93.09±0.82 91.36±1.4 95.51±0.48 95.76±0.43
ColoredMNIST 10.4±0.3 10.04±0.07 10.09±0.44 9.84±0.18 10.08±0.4

ResNet50

VLCS 98.32±0.34 98.15±0.57 97.93±0.28 94.49±3.9 96.76±2.56
PACS 85.01±1.27 85.60±1.21 84.91±1.53 81.10±2.93 82.36±3.11

O�ceHome 62.62±0.74 62.65±1.02 60.98±1.46 55.02±3.94 60.09±1.08
TerraIncognita 46.84±4.15 44.67±9.2 45.21±4.88 44.48±7.96 41.82±7.65

DomainNet 55.25±2.51 55.96±4.1 58.19±2.2 52.71±2.74 55.67±1.78
BackgroundChallenge - 78.99±0.48 - - 75.55±1.5

DistilBERT WILDS_amazon 52.00±0.0 54.13±0.69 53.77±0.63 50.93±3.25 52.44±1.5
WILDS_civilcomments 49.17±1.09 50.09±1.91 50.40±1.54 31.65±12.56 33.13±5.89

ResNet-20 ColoredMNIST - 11.00±0.52 - - 10.09±0.15
ViT PACS - 90.28±0.54 - - 90.05±0.29

Table 14: Trials in Rightmost Bin: Mean and Standard Deviation for Each Dataset (Model Selection by
Training-Domain Validation Set). The variance is relatively large because we compute the mean and variance
of models that exceed a specific threshold (the rightmost bin in Figure 1) in ID accuracy.

Model OOD Dataset Non-Adaptive Optimizer Adaptive Optimizer
SGD Momentum Netsterov RMSProp Adam

4-Layer CNN RotatedMNIST 82.83±6.15 87.84±5.27 87.43±5.58 94.29±1.22 94.43±1.91
ColoredMNIST 10.93±1.61 12.86±4.66 10.44±2.53 22.84±6.45 16.12±7.98

ResNet50

VLCS 97.95±1.02 96.81±2.96 96.54±2.38 94.07±3.4 94.49±6.59
PACS 79.67±4.35 78.58±6.07 78.11±5.9 74.98±8.59 70.86±6.96

O�ceHome 61.11±2.07 60.38±2.35 58.29±2.58 55.98±3.39 57.74±3.1
TerraIncognita 42.56±5.31 42.22±8.33 41.44±6.3 41.96±10.36 40.76±8.06

DomainNet 55.79±1.94 57.40±3.1 57.51±2.55 55.09±0.65 56.05±1.41
BackgroundChallenge - 74.98±4.7 - - 69.14±5.61

DistilBERT Amazon-WILDS 50.58±1.07 52.20±1.49 52.00±1.56 51.73±1.55 51.32±1.83
CivilComments-WILDS 42.24±5.8 44.79±6.57 44.15±6.37 21.79±9.59 23.55±7.43

ResNet-20 ColoredMNIST - 19.62±7.35 - - 21.70±7.66
ViT PACS - 87.07±5.52 - - 85.17±7.67

F.2 Full Results of Boxplot

Since we could not include all the results in the main paper, we report all the OOD accuracy, ID accuracy
and their di�erence (we denote as gap) results including ERM and IRM results in a box plot.

F.2.1 Full Results of Filtered Boxplot (ERM)

What we want to find out is the OOD generalization performance for models that perform better than
random guess in the ID test set, i.e., models that have been trained. As Filtered Results, we define
random guess = 1/num of classes in each problem setting, and show the results of eliminating those models
whose ID accuracy does not exceed this threshold.

29

Under review as submission to TMLR

Figure 6. Filtered Results of RotatedMNIST and ColoredMNIST in DomainBed: Comparison of the
in-distribution (validation) accuracy and the out-of-distribution (test) accuracy of ERM across five optimizers.

30

Under review as submission to TMLR

Figure 7. Filtered Results of PACS, VLCS, O�ceHome, TerraIncognita, and DomainNet in DomainBed:
Comparison of the in-distribution (validation) accuracy and the out-of-distribution (test) accuracy of ERM
across five optimizers.

31

Under review as submission to TMLR

Figure 8. Filtered Results of Backgrounds Challenge: Comparison of the in-distribution (validation) accuracy
and the out-of-distribution (test) accuracy of ERM across five optimizers.

Figure 9. Filtered Results of Amazon-WILDS and CivilComments-WILDS: Comparison of the in-distribution
(validation) accuracy and the out-of-distribution (test) accuracy of ERM across five optimizers.

32

Under review as submission to TMLR

F.2.2 Full Results of Filtered Boxplot (IRM)

Figure 10. Filtered Results of PACS, VLCS, O�ceHome, TerraIncognita and DomainNet in DomainBed:
Comparison of the in-distribution (validation) accuracy and the out-of-distribution (test) accuracy of IRM
across five optimizers.

33

Under review as submission to TMLR

Figure 11. Filtered Results of RotatedMNIST and ColoredMNIST in DomainBed: Comparison of the
in-distribution (validation) accuracy and the out-of-distribution (test) accuracy of IRM across five optimizers.

Figure 12. Filtered Results of Amazon-WILDS and CivilComments-WILDS: Comparison of the in-distribution
(validation) accuracy and the out-of-distribution (test) accuracy of IRM across five optimizers.

34

Under review as submission to TMLR

F.3 Full Results of Bin-Diagram Plots

Figure 13. DomainBed, Backgrounds Challenge, Amazon-WILDS, and CivilComments-WILDS: Comparison
of the in-distribution accuracy and the out-of-distribution accuracy of ERM between Momentum SGD and
Adam. Since Adam showed better OOD performance than RMSProp, Adam is presented as a representative
of adaptive methods. Momentum SGD shows competitive performance in OOD with Vanilla SGD and
Nesterov Momentum and is a representative of non-adaptive methods.

Figure 14. DomainBed, Amazon-WILDS, and CivilComments-WILDS: Comparison of the in-distribution
accuracy and the out-of-distribution accuracy of IRM between Momentum SGD and Adam. Since Adam
showed better OOD performance than RMSProp, Adam is presented as a representative of adaptive methods.
Momentum SGD shows competitive performance in OOD with Vanilla SGD and Nesterov Momentum and is
a representative of non-adaptive methods.

35

Under review as submission to TMLR

F.4 Full Results of Scatter Plots

The results of the comparison of OOD accuracy and in-distribution accuracy shown in Section 4.3 are shown
below for all benchmarks.

The box plots shown in Section F.2 and the Reliability Diagram Like Plot shown in Section F.3 are based on
the data shown in the Scatter Plot shown below.

F.4.1 ERM

Figure 15. DomainBed (ColoredMNIST, RotatedMNIST, PACS, VLCS, O�ceHome and TerraIncognita):
Comparison of the in-distribution accuracy and the out-of-distribution accuracy of ERM across optimizers.
The legend circles on the right side of each figure show, in order, VanillaSGD, Momentum SGD, Nesterov
Momentum, RMProp, and Adam. The di�erence in each data point indicates the di�erence in hyperparameter
configuration.

36

Under review as submission to TMLR

Figure 16. DomainBed (DomainNet), Backgrounds Challenge and WILDS: Comparison of the in-distribution
accuracy and the out-of-distribution accuracy of ERM across optimizers. The legend circles on the right side
of each figure show, in order, VanillaSGD, Momentum SGD, Nesterov Momentum, RMProp, and Adam. The
di�erence in each data point indicates the di�erence in hyperparameter configuration.

F.4.2 IRM

Figure 17. DomainBed (ColoredMNIST, RotatedMNIST, PACS and VLCS): Comparison of the in-distribution
accuracy and the out-of-distribution accuracy of IRM across optimizers. The legend circles on the right side
of each figure show, in order, VanillaSGD, Momentum SGD, Nesterov Momentum, RMProp, and Adam. The
di�erence in each data point indicates the di�erence in hyperparameter configuration.

37

Under review as submission to TMLR

Figure 18. DomainBed (O�ceHome, TerraIncognita, DomainNet) and WILDS: Comparison of the in-
distribution accuracy and the out-of-distribution accuracy of IRM across optimizers. The legend circles on
the right side of each figure show, in order, VanillaSGD, Momentum SGD, Nesterov Momentum, RMProp,
and Adam. The di�erence in each data point indicates the di�erence in hyperparameter configuration.

38

Under review as submission to TMLR

G Ablation Study

In addition to the experimental results presented in the main paper, we provide a more in-depth analysis,
which is shown in this chapter.

First of all, We show that the pattern of linear correlation of accuracy claimed by (Miller et al., 2021) does
not necessarily occur even when the correlation patterns we observed, such as diminishing returns, are probit
transformed. The results of the probit transform of the scatter plots shown in Appendix F.4 are shown,
following the method of (Miller et al., 2021). This may be due to the fact that our experimental setup uses a
larger number of data sets and takes IRM and other factors into account.

In the second section, we present results comparing the performance improvement of OOD with a larger trial
budget in the search for hyperparameters by Bayesian optimization.

Thirdly, We investigate why Adam shows better OOD performance than SGD in the negatively correlated
case seen in Figure 6 for ColoredMNIST by considering the learning curve.

Finally, we examine the e�ectiveness of the early stopping for each optimizer to study if adaptive optimizers
overfit because of their speed of convergence.

G.1 Probit Transformed Scatter Plot

As shown in Section 4.3, the work of (Miller et al., 2021) compares the accuracy of OOD with the accuracy of
in-distribution by showing a plot on a probit scale. Their comparison shows that the correlation of accuracy
is linear.

In this section, we convert the scatter plots identified in Section F.4 to probit scale and confirm that they do
not necessarily show a linear correlation (Figure 19, 21, 22, 23, 23, and 24).

G.1.1 ERM

0.50 0.70 0.80

0.10

0.25

0.50

SGD

Momentum SGD

Nesterov Momentum SGD

RMSProp

Adam

ColoredMNIST:ERM (probit scaling)

in-distribution acc

ou
t-

of
-d

is
tr

ib
ut

io
n

ac
c

0.10 0.25 0.50 0.70 0.80 0.90 0.95 0.99
0.10

0.25

0.50

0.70

0.80

0.90

0.95 SGD

Momentum SGD

Nesterov Momentum SGD

RMSProp

Adam

RotatedMNIST:ERM (probit scaling)

in-distribution acc

ou
t-

of
-d

is
tr

ib
ut

io
n

ac
c

Figure 19. Probit Scale / DomainBed (ColoredMNIST and RotatedMNIST): Comparison of the in-distribution
accuracy and the out-of-distribution accuracy of ERM across optimizers. The di�erence in each data point
indicates the di�erence in hyperparameter configuration.

39

Under review as submission to TMLR

0.10 0.25 0.50 0.70 0.80 0.90 0.95

0.10

0.25

0.50

0.70

0.80

0.90 SGD

Momentum SGD

Nesterov Momentum SGD

RMSProp

Adam

PACS:ERM (probit scaling)

in-distribution acc

ou
t-

of
-d

is
tr

ib
ut

io
n

ac
c

0.10 0.25 0.50 0.70 0.80

0.10

0.25

0.50

0.70

0.80

0.90

0.95

0.99 SGD

Momentum SGD

Nesterov Momentum SGD

RMSProp

Adam

VLCS:ERM (probit scaling)

in-distribution acc

ou
t-

of
-d

is
tr

ib
ut

io
n

ac
c

0.10 0.25 0.50 0.70 0.80

0.10

0.25

0.50

0.70
SGD

Momentum SGD

Nesterov Momentum SGD

RMSProp

Adam

OfficeHome:ERM (probit scaling)

in-distribution acc

ou
t-

of
-d

is
tr

ib
ut

io
n

ac
c

0.10 0.25 0.50

0.10

0.25

0.50

0.70
SGD

Momentum SGD

Nesterov Momentum SGD

RMSProp

Adam

DomainNet:ERM (probit scaling)

in-distribution acc

ou
t-

of
-d

is
tr

ib
ut

io
n

ac
c

0.10 0.25 0.50 0.70 0.80 0.90

0.10

0.25

0.50

SGD

Momentum SGD

Nesterov Momentum SGD

RMSProp

Adam

TerraIncognita:ERM (probit scaling)

in-distribution acc

ou
t-

of
-d

is
tr

ib
ut

io
n

ac
c

Figure 20. Probit Scale / DomainBed (PACS, VLCS, O�ceHome, DomainNet and TerraIncognita): Com-
parison of the in-distribution accuracy and the out-of-distribution accuracy of ERM across optimizers. The
di�erence in each data point indicates the di�erence in hyperparameter configuration.

40

Under review as submission to TMLR

0.50 0.70 0.80 0.90 0.95

0.25

0.50

0.70

0.80 Momentum SGD
Adam

Background Challenge (probit scaling)

in-distribution acc
ou

t-
of

-d
is

tr
ib

ut
io

n
ac

c

Figure 21. Probit Scale / Backgrounds Challenge: Comparison of the in-distribution accuracy and the
out-of-distribution accuracy of ERM across optimizers. The di�erence in each data point indicates the
di�erence in hyperparameter configuration.

0.50 0.70

0.25

0.50

SGD

Momentum SGD

Nesterov Momentum SGD

RMSProp

Adam

WILDS_amazon:ERM (probit scaling)

in-distribution acc

ou
t-

of
-d

is
tr

ib
ut

io
n

ac
c

0.50 0.70 0.80 0.90

0.10

0.25

0.50
SGD

Momentum SGD

Nesterov Momentum SGD

RMSProp

Adam

WILDS_civilcomments:ERM (probit scaling)

in-distribution acc

ou
t-

of
-d

is
tr

ib
ut

io
n

ac
c

Figure 22. Probit Scale / WILDS: Comparison of the in-distribution accuracy and the out-of-distribution
accuracy of ERM across optimizers. The di�erence in each data point indicates the di�erence in hyperparameter
configuration.

41

Under review as submission to TMLR

G.1.2 IRM

0.50 0.70 0.80

0.10

0.25

0.50

SGD

Momentum SGD

Nesterov Momentum SGD

RMSProp

Adam

ColoredMNIST:IRM (probit scaling)

in-distribution acc

ou
t-

of
-d

is
tr

ib
ut

io
n

ac
c

0.10 0.25 0.50 0.70 0.80 0.90 0.95 0.99

0.10

0.25

0.50

0.70

0.80

0.90

0.95
SGD

Momentum SGD

Nesterov Momentum SGD

RMSProp

Adam

RotatedMNIST:IRM (probit scaling)

in-distribution acc

ou
t-

of
-d

is
tr

ib
ut

io
n

ac
c

0.10 0.25 0.50 0.70 0.80 0.90 0.95

0.10

0.25

0.50

0.70

0.80

SGD

Momentum SGD

Nesterov Momentum SGD

RMSProp

Adam

PACS:IRM (probit scaling)

in-distribution acc

ou
t-

of
-d

is
tr

ib
ut

io
n

ac
c

0.10 0.25 0.50 0.70 0.80

0.10

0.25

0.50

0.70

0.80

0.90

0.95

0.99 SGD

Momentum SGD

Nesterov Momentum SGD

RMSProp

Adam

VLCS:IRM (probit scaling)

in-distribution acc

ou
t-

of
-d

is
tr

ib
ut

io
n

ac
c

0.10 0.25 0.50 0.70 0.80

0.10

0.25

0.50

0.70
SGD

Momentum SGD

Nesterov Momentum SGD

RMSProp

Adam

OfficeHome:IRM (probit scaling)

in-distribution acc

ou
t-

of
-d

is
tr

ib
ut

io
n

ac
c

0.10 0.25 0.50

0.10

0.25

0.50
SGD

Momentum SGD

Nesterov Momentum SGD

RMSProp

Adam

DomainNet:IRM (probit scaling)

in-distribution acc

ou
t-

of
-d

is
tr

ib
ut

io
n

ac
c

0.10 0.25 0.50 0.70 0.80 0.90

0.10

0.25

0.50
SGD

Momentum SGD

Nesterov Momentum SGD

RMSProp

Adam

TerraIncognita:IRM (probit scaling)

in-distribution acc

ou
t-

of
-d

is
tr

ib
ut

io
n

ac
c

Figure 23. Probit Scale / DomainBed (ColoredMNIST, RotatedMNIST, PACS, VLCS, O�ceHome, Do-
mainNed and TerraIncognita): Comparison of the in-distribution accuracy and the out-of-distribution accuracy
of IRM across optimizers. The di�erence in each data point indicates the di�erence in hyperparameter
configuration.

42

Under review as submission to TMLR

0.10 0.25 0.50

0.10

0.25

SGD

Momentum SGD

Nesterov Momentum SGD

RMSProp

Adam

WILDS_amazon:IRM (probit scaling)

in-distribution acc

ou
t-

of
-d

is
tr

ib
ut

io
n

ac
c

0.10 0.25 0.50 0.70 0.80 0.90

0.10

0.25

0.50

SGD

Momentum SGD

Nesterov Momentum SGD

RMSProp

Adam

WILDS_civilcomments:IRM (probit scaling)

in-distribution acc

ou
t-

of
-d

is
tr

ib
ut

io
n

ac
c

Figure 24. Probit Scale / WILDS: Comparison of the in-distribution accuracy and the out-of-distribution
accuracy of IRM across optimizers. The di�erence in each data point indicates the di�erence in hyperparameter
configuration.

43

Under review as submission to TMLR

G.2 Model Performance Transition throught Hyperparameter Search

For practitioners, we show how much the trial budget for hyperparameter optimization a�ects OOD general-
ization.

G.2.1 Hyperparameter Trial Budget vs OOD Accuracy

Figure 25. ERM DomainNet, O�ceHome and TerraIncognita / OOD accuracy when horizontal axis is the
trial budget

44

Under review as submission to TMLR

Figure 26. ERM ColoredMNIST, RotatedMNIST, VLCS and PACS / OOD accuracy when horizontal axis is
the trial budget

45

Under review as submission to TMLR

Figure 27. ERM Background Challenge / OOD accuracy when horizontal axis is the trial budget

Figure 28. ERM WILDS Amazon and WILDS CivilComment / OOD accuracy when horizontal axis is the
trial budget

G.2.2 Hyperparameter Trial Budget vs OOD Error

To visualize the slight increase at the end of OOD accuracy more clearly, we visualized it in log scale as OOD
error.

46

Under review as submission to TMLR

Figure 29. ERM DomainNet, O�ceHome and TerraIncognita / OOD error when horizontal axis is the trial
budget

47

Under review as submission to TMLR

Figure 30. ERM ColoredMNIST, RotatedMNIST, VLCS and PACS / OOD error when horizontal axis is the
trial budget

48

Under review as submission to TMLR

Figure 31. ERM Background Challenge / OOD accuracy when horizontal axis is the trial budget

Figure 32. ERM WILDS Amazon and WILDS CivilComment / OOD accuracy when horizontal axis is the
trial budget

49

Under review as submission to TMLR

G.3 Learning Curve of ColoredMNIST

In Section 4.2, we conjecture that the better performance of Adam in Colored MNIST classification may
come from overfitting to training data. To confirm this hypothesis, we plot the averaged training accuracy,
the averaged validation accuracy, and the averaged test accuracy throughout the training. We pick the top-14
results in terms of test accuracy and use them for the plot. We show the result in Figure 33.

As is evident from Figure 33 (a) and Figure 33 (b), we observe that training accuracy increases while the
validation accuracy keeps unchanged. This indicates that overfitting occurs in the training. However, Figure
33 (c) indicates that test accuracy gradually improves as the model is overfitting. On the other hand, SGD
shows no such overfitting and OOD generalization improvement, as shown in Figure 34. Thus, we can
empirically support our conjecture that Adam produces the better OOD generalization performance by
overfitting training data.

(a) ERM: Averaged training accuracy of Adam on Colored
MNIST throughout the training.

(b) ERM: Averaged validation accuracy of Adam on Col-
ored MNIST throughout the training.

(c) ERM: Averaged test accuracy of Adam on Colored
MNIST throughout the training.

Figure 33. Adam: Comparison of averaged training accuracy, averaged validation accuracy, and averaged test
accuracy throughout the training. We plot these values of check points whose train accuracy is in the top-14.

50

Under review as submission to TMLR

(a) ERM: Averaged training accuracy of SGD on Colored
MNIST throughout the training.

(b) ERM: Averaged validation accuracy of SGD on Col-
ored MNIST throughout the training.

(c) ERM: Averaged test accuracy of SGD on Colored
MNIST throughout the training.

Figure 34. SGD: Comparison of averaged training accuracy, averaged validation accuracy, and averaged test
accuracy of SGD throughout the training. We plot these values of checkpoints whose train accuracy is in the
top-14.

G.4 Early Stopping

In Section 4.2, figures 1 shows that adaptive optimizers tend to overfit to training domain. A possible reason
is that the training speed of adaptive methods is faster than non-adaptive ones. That is, in the same steps
budget, adaptive optimizers converge faster in e�ect. To validate if this is the case, we investigate whether
early stopping improves the OOD generalization of adaptive optimizers.

In particular, we compute the di�erence between averaged accuracy at early stopping and at last epoch for
test accuracy and validation accuracy, respectively:

Accdi� = 1
Nes

Nesÿ

i=1
Acces-i ≠ 1

Nle

Nleÿ

i=1
Accle-i (18)

where Accdi� represents the di�erence in accuracy between early stopping and the last epoch, Nes is the
number of trials at early stopping, Nle is the number of trials at the last epoch, Acces-i denotes the accuracy
at the early stopping for the i ≠ th trial, Accle-i denotes the accuracy at the last epoch for the i ≠ th trial.

If the average accuracy at early stopping is larger, the di�erence is positive and vice versa.

51

Under review as submission to TMLR

Figures 35 to 40 are the results of this comparison for each dataset and algorithm. The y-axis is the di�erence
of out-of-distribution (test) accuracy and the x-axis is the di�erence of in-distribution (validation) accuracy.
The color indicates the epoch of early stopping. The darker color indicates that early stopping is conducted
in relatively earlier epochs.

For PACS, both di�erences are positive and lighter colors are concentrated at points of small di�erence of the
validation accuracy, as indicated in Figures 35 and 36. Therefore, we can conclude that when the validation
accuracy deteriorates by further training, the test accuracy also gets worse. However, the e�ect of further
training is less evident for Adam. In other words, early stopping does not influence Adam so much but keeps
test accuracy from decreasing for SGD.

The result of VLCS shows a similar pattern as PACS (Figures 37 and 38). If anything, Further training after
early stopping makes adaptive optimizes be likely to result in better test accuracy than SGD, though they
have a large variance. With respect to SGD, additional training degrades the test accuracy as much as it
degrades validation accuracy.

O�ce-Home shows similar results as PACS, as presented in Figures 39 and 40.

In summary, we find that early stopping does not influence adaptive optimizers. Therefore, we can conclude
that adaptive optimizer overfits not because it trains faster than non-adaptive methods.

The fact that early stopping does not a�ect the adaptive optimizer means that adjusting the number of
epochs instead of a fixed number of epochs will not change the result. We have followed previous studies and
experimented with a fixed number of epochs in the present study, and our results suggest that this does not
have a serious impact on the comparison of adaptive and non-adaptive optimizers. Thus, we can see that
using a fixed epoch number does not undermine the validity of our optimizer comparison experiment in this
sense.

52

Under review as submission to TMLR

Figure 35. ERM/PACS: Di�erence between accuracy at early stopping and at last epoch. The y-axis is the
di�erence of out-of-distribution (test) accuracy and the x-axis is the di�erence of in-distribution (validation)
accuracy. The color indicates the epoch of early stopping. The darker color indicates that early stopping is
conducted in relatively earlier epochs.

53

Under review as submission to TMLR

Figure 36. IRM/PACS: Di�erence between accuracy at early stopping and at last epoch. The y-axis is the
di�erence of out-of-distribution (test) accuracy and the x-axis is the di�erence of in-distribution (validation)
accuracy. The color indicates the epoch of early stopping. The darker color indicates that early stopping is
conducted in relatively earlier epochs.

54

Under review as submission to TMLR

Figure 37. ERM/VLCS: Di�erence between accuracy at early stopping and at last epoch. The y-axis is the
di�erence of out-of-distribution (test) accuracy and the x-axis is the di�erence of in-distribution (validation)
accuracy. The color indicates the epoch of early stopping. The darker color indicates that early stopping is
conducted in relatively earlier epochs.

55

Under review as submission to TMLR

Figure 38. IRM/VLCS: Di�erence between accuracy at early stopping and at last epoch. The y-axis is the
di�erence of out-of-distribution (test) accuracy and the x-axis is the di�erence of in-distribution (validation)
accuracy. The color indicates the epoch of early stopping. The darker color indicates that early stopping is
conducted in relatively earlier epochs.

56

Under review as submission to TMLR

Figure 39. ERM/O�ce-Home: Di�erence between accuracy at early stopping and at last epoch. The y-axis
is the di�erence of out-of-distribution (test) accuracy and the x-axis is the di�erence of in-distribution
(validation) accuracy. The color indicates the epoch of early stopping. The darker color indicates that early
stopping is conducted in relatively earlier epochs.

57

Under review as submission to TMLR

Figure 40. IRM/O�ce-Home: Di�erence between accuracy at early stopping and at last epoch. The y-axis
is the di�erence of out-of-distribution (test) accuracy and the x-axis is the di�erence of in-distribution
(validation) accuracy. The color indicates the epoch of early stopping. The darker color indicates that early
stopping is conducted in relatively earlier epochs.

However, we find di�erent results from Colored MNIST. As shown in Figures 41 and 42, we can observe that
the di�erence of validation accuracy is positive and that of test accuracy is negative. That is further training
after early stopping decreases validation accuracy but increases test accuracy on Colored MNIST, while there
is no di�erence for SGD. This is consistent with the result of Appendix G.3.

58

Under review as submission to TMLR

Figure 41. ERM/Colored MNIST: Di�erence between accuracy at early stopping and at last epoch. The
y-axis is the di�erence of out-of-distribution (test) accuracy and the x-axis is the di�erence of in-distribution
(validation) accuracy. The color indicates the epoch of early stopping. The darker color indicates that early
stopping is conducted in relatively earlier epochs.

59

Under review as submission to TMLR

Figure 42. IRM/Colored MNIST: Di�erence between accuracy at early stopping and at last epoch. The
y-axis is the di�erence of out-of-distribution (test) accuracy and x-axis is the di�erence of in-distribution
(validation) accuracy. The color indicates the epoch of early stopping. The darker color indicates that early
stopping is conducted in relatively earlier epochs.

60

Under review as submission to TMLR

H Soundness Check of Our Experiments

H.1 Histgram of Hyperparameters

We have shown the histgram of the hyperparameters to be used for training just for reference. In particular,
we display a result for learning rate of Momentum SGD and Adam for the each dataset. We observe that we
could sample hyperparameters from a reasonably wide range.

Figure 43. Histogram of explored hyperparameters (learning rate) in training of DomainBed, WILDS dataset
in ERM. Momentum SGD and Adam results are included. Although uniform distribution is used as the prior
distribution for hyperparameter optimization, the histogram results do not match the uniform distribution
because Bayesian optimization is used.

H.2 Hyperparameters and OOD Accuracy Box-Plot

The previous section provided information on the hyperparameter search range. In this section, we share
the results of the out-of-distribution performance for a specific hyperparameter range as a box plot with the
hyperparameters separating the bin as shown in Figure 44, 45 and 46.

From these results, we observe that lr, which achieves high out-of-distribution accuracy, is within the search
range of learning rate and thus has su�cient range to perform the search.

61

Under review as submission to TMLR

Figure 44. Box-Plot of Out-of-Distribution Accuracy per Log-Scale of Learning Rate: ColoredMNIST,
RotatedMNIST, PACS and VLCS

62

Under review as submission to TMLR

Figure 45. Box-Plot of Out-of-Distribution Accuracy per Log-Scale of Learning Rate: O�ceHome, Ter-
raIncognita, and DomainNet

63

Under review as submission to TMLR

Figure 46. Box-Plot of Out-of-Distribution Accuracy per Log-Scale of Learning Rate: Amazon-WILDS, and
CivilComments-WILDS

H.3 E�ect of Initial Configuration on Hyperparameter Optimization

In this section, we investigate how the first hyperparameter combination a�ected the search in our Bayesian
optimization of hyperparameters. We compared Momentum SGD to Adam and chose PACS as our dataset.
The experimental results showed that random initialization which we used, given a su�cient number of
trials (e.g., more than 200 trials within our experimental protocol), did not di�er from the final performance
obtained when searching from the default hyperparameters of pytorch.

Figure 47. ERM PACS MomentumSGD / Comparison of Initialization (Left: Random initialization, Right:
Pytorch default hyperparameter initialization)

64

Under review as submission to TMLR

Figure 48. ERM PACS Adam / Comparison of Initialization (Left: Random initialization, Right: Pytorch
default hyperparameter initialization)

65

Under review as submission to TMLR

H.4 Best OOD Performance Comparison against with Existing Benckmark

In order to confirm the soundness of our experiments, we compared our results with existing benchmarks to
see how well they actually performed, in addition to the hyperparameter search ranges in the previous section.
In particular, we compared our experimental results with those of DomainBed (Gulrajani & Lopez-Paz, 2021),
an existing oracle benchmark that uses Adam.

Table 15: OOD accuracy (%) comparison of our experimental results with the benchmark results reported in
DomainBed (Gulrajani & Lopez-Paz, 2021)

Dataset OOD Domain Existing Benchmark Results(Adam) Our Results(Adam)
ColoredMNIST 0.9 30.0±0.3 73.92
RotatedMNIST 0 96.0±0.2 96.40
VLCS C 97.7±0.3 99.36
PACS A 87.8±0.4 89.30
O�ceHome A 61.2±1.4 63.12
TerraIncognita L100 59.9±1.0 61.35
DomainNet clipart 58.4±0.3 58.48

66

Under review as submission to TMLR

I Additional Study

I.1 Corruption and Perturbation Shift

In the main body of our paper, we presented experimental results for the seven types of domain shifts included
in DomainBed (Gulrajani & Lopez-Paz, 2021), as well as the Background Challenge (Xiao et al., 2021), which
deals with background shifts, and WILDS datasets (Koh et al., 2021) which deals with the population shift
dataset. In this section, we report the results of our investigation of the corruption and perturbation datasets
to investigate a broader range of out-of-distribution generalization. Details of the experiments are described
in Appendix C.4, D.4 and E.4. CIFAR10-C and CIFAR10-P (Hendrycks & Dietterich, 2019) were used as the
datasets. Momentum SGD and Adam were used as optimization methods for comparison.

The CIFAR10-C results are averaged performance results for 19 di�erent noise types of corruption and are
based on Hendrycks & Dietterich (2019) experimental protocol. The higher the performance, the better. The
CIFAR10-P experiment shows the variability of inference for noise perturbations, with lower values indicating
better performance. Experimental results show that Momentum SGD outperforms Adam in both CIFAR10-C
and CIFAR10-P (Table 16).

Table 16: CIFAR-10-C (averaging corruption classification accuracy %) and CIFAR-10-P (top-5 robustness
perturbation): Performance comparison between Momentum SGD and Adam with mean and standard
deviation.

Dataset Momentum Adam
CIFAR10-C (�) 42.89±6.66 42.06±6.79
CIFAR10-P (�) 1.38±0.33 1.62±0.26

I.2 Model Architecture

In DomainBed experiments, we followed Gulrajani & Lopez-Paz (2021) and used only ConvNet for the
MNIST-based dataset and ResNet-50 for the ImageNet-based dataset. In this section, we investigate the
impact of changing the model architecture.

I.2.1 ResNet-20 for ColoredMNIST

Here are the results of ResNet-20 on the ColorMNIST Task (Figure 17). In ConvNet case, Adam outperformed
Momentum SGD, but the results were reversed in ResNet-20.

Table 17: ColoredMNIST: OOD accuracy (%) comparison between Momentum SGD and Adam

Model Architecture Momentum Adam
ConvNet 12.86±4.66 16.12±7.98
ResNet-20 11.00±0.52 10.09±0.15

I.2.2 Vision Transformer for PACS

Vision Transformer (ViT)(Dosovitskiy et al., 2020) is a neural network using the recent attention structure.
We evaluated the out-of-distribution performance when using Vision Transformer as well as ResNet-50 used
in DomainBed. However, due to computational resource constraints, we compared Adam and Momentum
SGD only for the task on the PACS dataset. The experimental results are shown in Table 18.

As a result, the experimental results with Vision Transformer show a significant performance improvement
over the ResNet-50 case. Furthermore, the result that Momentum SGD outperforms Adam is consistent with
the ResNet-50 case.

67

Under review as submission to TMLR

Table 18: PACS: OOD accuracy(%) comparison between Momentum SGD and Adam

Model Architecture Momentum Adam
ResNet-50 87.03±0.65 83.94±0.88
ViT 90.28±0.54 90.05±0.29

I.3 State-of-the-Arts Optimizers

I.3.1 Sharpness Aware Minimization (SAM)

Sharpness-Aware Minimization (SAM) (Foret et al., 2020) prevents convergence to high curvature local
minima. Its convergence towards smaller curvature solutions results in high validation and test performance on
in-distribution (ID) environment. SAM searches for points where the loss is maximized within a neighborhood
of fl and uses the gradient at that point for iterative optimization. The larger the fl, the higher the e�ect of
preventing convergence to high curvature local minima.

We carried out experiments with SAM on PACS and Amazon-WILDS datasets tasks, comparing it to both
Momentum SGD and Adam over a range of hyperparameters outlined in Appendices E.3 and E.3. The
experimental results indicated competitive performance by SAM, equaling Momentum SGD. In the case of
the Amazon-WILDS dataset, SAM proved superior for both in-distribution and out-of-distribution accuracy.

Table 19: PACS: Accuracy (%) comparison of SAM with Momentum SGD and Adam

Accuracy Momentum Adam SAM
ID accuracy 96.79±0.9 96.78±0.42 97.54±0.07
OOD accuracy 87.03±0.65 83.94±0.88 86.65±0.9

Table 20: Amazon-WILDS: Accuracy (%) comparison of SAM with Momentum SGD and Adam

Accuracy Momentum Adam SAM
ID accuracy 72.51±0.06 72.02±0.07 73.42±0.07
OOD accuracy 53.33±0.0 52.67±0.77 54.0±0.94

I.3.2 Adam with Decoupled Weight Decay (AdamW)

The AdamW optimizer, proposed by Loshchilov & Hutter (2017) is an extension of the popular Adam
optimization algorithm. AdamW addresses the shortcomings of the original Adam optimizer concerning
weight decay regularization. In the original Adam algorithm, weight decay is directly applied to the adaptive
learning rates, causing a discrepancy between the intended e�ect of weight decay and the actual e�ect in
practice. The AdamW optimizer decouples weight decay from the adaptive learning rates, resulting in a more
e�ective regularization method that is better suited for various deep learning tasks. By incorporating weight
decay separately from the update step, the AdamW optimizer exhibits improved convergence properties and
generalization performance compared to the original Adam algorithm.

We show the results of our AdamW experiment in Table 21. After tuning learning rate and selecting the
model with the best learning rate, we ran the experiment with three di�erent seeds and computed the mean
and variance. We found that AdamW performs better than Adam, but not as well as Momentum SGD.

Table 21: Amazon-WILDS: Comparison of AdamW with Momentum SGD and Adam

Accuracy Momentum Adam AdamW
ID accuracy 72.51±0.06 72.02±0.07 72.27±0.21
OOD accuracy 53.33±0.0 52.67±0.77 53.33±0.33

68

Under review as submission to TMLR

I.4 Large ‘ for Adam

The study in Choi et al. (2019) shows that high in-distribution performance similar to Momentum SGD can
be achieved with large ‘. However, ‘ is a hyperparameter that has been introduced to prevent zero-percentage,
and is specified as ‘ = 1e-8 in pytorch’s default implementation8. It is known that as ‘ increases, Adam
approximate Momentum SGD (Choi et al., 2019). While this section of our paper investigated with ‘ to the
extent that it behaves as Adam, in this section we provide experimental results at large ‘, where Adam is
expected to behave more like Momentum SGD.

The results of the experiment are shown in Figure 49. The x marker in the lower left corner shows the results
for the default hyperparameters in Adam. The other circle markers are for di�erent ‘ in Adam. Red stars
indicate some of the Momentum results. It can be seen that the larger ‘ achieved performance closer to
Momentum SGD than the default ‘ in Adam.

Figure 49. Demonstrating the varying performance of out-of-distribution accuracy according to the value of ‘
in Adam. As ‘ becomes larger, it approaches the performance of Momentum.

I.5 Learning Rate Schedule

Amazon-WILDS task uses linear scheduling without warmups 9. However, learning rate scheduling can a�ect
performance. To consider this impact, we compared and verified the following four learning rate schedules
and eight patterns with and without warmup.

Table 22 shows the results of the Amazon-WILDS experiments. However, the results for the largest out-of-
distribution accuracy are shown since no significant di�erences were found for all experiments. No significant
di�erences were found with or without warmup. It was not clear that introducing warmup is always e�ective.
The Cosine LR Schedule was found to be the most e�ective in the problem setting of this study.

8https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
9https://github.com/p-lambda/wilds

69

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://github.com/p-lambda/wilds

Under review as submission to TMLR

Table 22: Amazon-WILDS: OOD Accuracy (%) comparison of LR Scheduler and Warmup

Learning Rate Schedule Momentum Adam AdamW
Constant LR 53.33 53.33 52.00
Constant LR + Warmup 53.33 52.00 53.33
Cosine LR 54.67 54.67 54.67
Cosine LR + Warmup 54.67 54.67 54.67
Linear LR (Default) 54.67 52.00 52.00
Linear LR + Warmup 54.67 54.67 53.33
MultiStep LR 52.00 53.33 52.00
MultiStep LR + Warmup 50.67 53.33 52.00

The CivilComments-WILDS task, akin to Amazon-WILDS, employs linear scheduling without warmups,
as elucidated in the o�cial repository10. We proceeded to examine the CivilComments-WILDS dataset to
identify any analogous trends that may emerge. Our analyses from the CivilComments-WILDS dataset
corroborated the findings from our Amazon-WILDS study, thereby reinforcing our preliminary conclusion that
non-adaptive optimizers typically exhibit superior performance over their adaptive counterparts. Notably,
we observed a significant deviation in the OOD performance when modifying the learning rate scheduler
in the CivilComments-WILDS dataset. This observation starkly contrasts with our experiences in the
Amazon-WILDS setting. Moreover, despite these modifications to the learning rate scheduler, we could
not surpass the performance outcomes achieved with the default learning rate schedule. This reiterates the
e�cacy of the default setting, and further validates our overall findings.

Table 23: CivilComments-WILDS: OOD Accuracy (%) comparison of LR Scheduler and Warmup

Learning Rate Schedule Momentum Adam
Constant LR 47.82 44.29
Constant LR + Warmup 47.54 44.44
Cosine LR 56.98 45.40
Cosine LR + Warmup 56.83 45.48
Linear LR (Default) 57.69 46.82
Linear LR + Warmup 57.14 45.00
MultiStep LR 47.82 44.29
MultiStep LR + Warmup 51.35 44.04

I.6 The E�ect of Random Seeds

We conducted experiments on the e�ect of seed, which controls randomness, such as model initialization, on
learning, using the PACS and Amazon-WILDS datasets.

In the PACS experiment shown in Table 24, a performance di�erence of around 6% was observed due to the
e�ect of seed, especially for Adam. In contrast, in Momentum SGD, the e�ect of seed was not significant. In
the Amazon-WILDS experiment shown in Table 25, seed had no significant e�ect on either Adam or Nesterov
Momentum SGD.

Table 24: PACS: OOD Accuracy (%)
Di�erent Seed Comparison

Seed Momentum Adam
2021 86.47 81.20
2022 86.47 87.06
2023 87.74 85.69

Table 25: Amazon-WILDS: OOD Accuracy (%)
Di�erent Seed Comparison

Seed Nesterov Adam
2021 53.33 52.00
2022 53.73 53.33
2023 54.67 53.33

10https://github.com/p-lambda/wilds

70

https://github.com/p-lambda/wilds

Under review as submission to TMLR

I.7 Algorithms (ERM, IRM, VREx and CORAL)

In this study, we focused on ERM and IRM and obtained consistent results that the Non-Adaptive op-
timizer outperforms the Adaptive optimizer in out-of-distribution performance. We also verified the use
of VREx(Krueger et al., 2021) and CORAL(Sun & Saenko, 2016) as the other algorithms. The results of
these experiments are shown in Table 26. However, due to limited computing resources, experiments were
conducted only for Momentum SGD and Adam for PACS.

Table 26: PACS: OOD Accuracy (%) comparison of algorithms (ERM, IRM, VREx and CORAL)

Algorithm Momentum Adam
ERM 87.03±0.65 83.94±0.88
IRM 83.06±0.32 83.05±0.44
VREx 85.70±0.24 84.85±1.88
CORAL 84.25±1.35 84.10±1.13

71

	1 Introduction
	2 Related Work
	2.1 Optimizer Selection
	2.2 Out-of-Distribution Generalization

	3 Preliminaries
	3.1 Optimizers Subjected to Our Analysis
	3.2 Out-of-Distribution Generalization Datasets
	3.3 Model Selection Method and Evaluation Metrics

	4 Experiments
	4.1 Experimental Overview
	4.2 Experimental Results
	4.3 Correlation Behaviors

	5 Discussion and Conclusion
	A Optimizers
	A.1 SGD
	A.2 Momentum-SGD
	A.3 Nesterov Momentum
	A.4 RMSprop
	A.5 Adam

	B Implementation and Environment for Experiments
	C Datasets
	C.1 DomainBed
	C.2 Backgrounds Challenge Dataset
	C.3 Amazon-WILDS and CivilComments-WILDS Dataset
	C.4 CIFAR10-C and CIFAR10-P Dataset

	D Experimental Protocol
	D.1 DomainBed
	D.2 Backgrounds Challenge Dataset
	D.3 WILDS
	D.4 CIFAR10-C and CIFAR10-P

	E Hyperparameters and Detailed Configurations
	E.1 DomainBed
	E.2 Backgrounds Challenge Dataset
	E.3 WILDS
	E.4 CIFAR10-C and CIFAR10-P

	F Full Results of Experiments
	F.1 Full Results of Table
	F.2 Full Results of Boxplot
	F.2.1 Full Results of Filtered Boxplot (ERM)
	F.2.2 Full Results of Filtered Boxplot (IRM)

	F.3 Full Results of Bin-Diagram Plots
	F.4 Full Results of Scatter Plots
	F.4.1 ERM
	F.4.2 IRM

	G Ablation Study
	G.1 Probit Transformed Scatter Plot
	G.1.1 ERM
	G.1.2 IRM

	G.2 Model Performance Transition throught Hyperparameter Search
	G.2.1 Hyperparameter Trial Budget vs OOD Accuracy
	G.2.2 Hyperparameter Trial Budget vs OOD Error

	G.3 Learning Curve of ColoredMNIST
	G.4 Early Stopping

	H Soundness Check of Our Experiments
	H.1 Histgram of Hyperparameters
	H.2 Hyperparameters and OOD Accuracy Box-Plot
	H.3 Effect of Initial Configuration on Hyperparameter Optimization
	H.4 Best OOD Performance Comparison against with Existing Benckmark

	I Additional Study
	I.1 Corruption and Perturbation Shift
	I.2 Model Architecture
	I.2.1 ResNet-20 for ColoredMNIST
	I.2.2 Vision Transformer for PACS

	I.3 State-of-the-Arts Optimizers
	I.3.1 Sharpness Aware Minimization (SAM)
	I.3.2 Adam with Decoupled Weight Decay (AdamW)

	I.4 Large for Adam
	I.5 Learning Rate Schedule
	I.6 The Effect of Random Seeds
	I.7 Algorithms (ERM, IRM, VREx and CORAL)

