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Introduction
Discovering new materials is critical to accelerating tech-
nological innovation and achieving ecological sustain-
ability—from developing low-carbon catalysts to next-
generation semiconductors and energy materials. Yet the
discovery process remains painfully slow and inefficient,
heavily reliant on human intuition, trial-and-error experi-
mentation, and high-cost lab experiments or computational
simulations like Density Functional Theory (DFT). These
methods are not scalable enough to tackle the vastness of
chemical space or the urgency of decarbonization.

At Entalpic, we are building a full stack AI-driven plat-
form for autonomous materials discovery. Our approach
integrates large-scale quantum-chemistry datasets, predic-
tive and generative machine learning models, agentic LLMs
and real-world experimental feedback into a tightly coupled
active learning loop. This talk outlines our pipeline and
its foundations, including key technical components and
open-source initiatives like LeMaterial.

AI for Materials Discovery Loop

The chemical design space spans a quasi infinite number of
potential materials, most of which have never been explored.
Efficient discovery requires narrowing this space quickly
while optimizing for multi-objective constraints (e.g., per-
formance, stability, cost, availability and synthesizeability).
A task that is inherently adapted to machines better than hu-
mans, which could partly or entirely automate the discovery
pipeline, as they hold the ability to process all these factors
while keeping in mind everything that has been tried. Over-
all, our proposed discovery pipeline integrates four tightly
connected components:

• Predictive Models. We use geometric Graph Neural
Networks (GNNs) such as FAENet (Duval et al., 2023b)
and recent E(3)-equivariant architectures (Liao et al.,
2023; Batatia et al., 2023) to learn structure–property
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relationships from atomic graphs. These models enable
near-DFT accuracy at a fraction of the computational
cost, and are detailed in our Hitchhiker’s Guide to
GNNs (Duval et al., 2023a).

• Generative Flow Networks (GFlowNets). Unlike
diffusion models, GFlowNets generate materials step-
by-step using a policy function taking actions, sim-
ilarly to reinforcement learning. For e.g. selecting
the crystal’s space groups, its composition, Wyck-
off sites, and lattice parameters, under hard-coded
physical constraints. Our extension of Crystal-GFN
(AI4Science et al., 2023) enables a diverse, control-
lable, interpretable exploration of crystal space, where
candidate quality is guided by predictive GNN rewards
(e.g., formation enthalpy or binding energies).

• Active Learning. To improve our ability to discover
new (i.e. out-of-domain structures) structures, we aug-
ment the dataset in strategic regions of the chemical
space using Density Functional Theory (DFT). And
to avoid wasting computational resources on trivial or
redundant candidates, models quantify uncertainty (via
ensembles or embedding novelty) and prioritize new
candidates for validation— either by DFT or experi-
ments — thus improving both prediction accuracy and
generative diversity over time.

• Language Models (LLMs). LLMs are used on sci-
entific literature and patents to extract typical materi-
als synthesis procedures or testing reaction conditions,
helping (or suggesting) to the chemist (or robot) the
route to follow to manufacture a candidate, i.e. aug-
menting human domain knowledge in the search loop.
While full automatisation could be achieved in the long
term, this is not an approach adopted by Entalpic.

Overall, this unified architecture forms a scalable, data-
driven hypothesis engine that can propose, test, and refine
material candidates autonomously. To achieve, a discovery,
it requires two things that we will focus on: good data
(to train good models), and a correlation between these
simulations and experiments.
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LeMaterial: Open-Source Data, Benchmarks
& Models
Machine Learning in materials science is bottlenecked not
only by model quality, but by fragmented, redundant, and
low-quality datasets. To address this, we launched the Le-
Material initiative, in collaboration with HuggingFace, to
standardize and scale high-quality data access. This effort
decomposes into several datasets being released, and model
benchmarks about to.

• LeMat-Bulk (Siron et al.): Aggregates and dedupli-
cates 5.3M structures from Materials Project, OQMD,
and Alexandria using our custom BAWL finger-
print—combining bonding graphs, symmetry-aware
Weisfeiler-Lehman hashing, and robustness to strain or
noise.

• LeMat-Traj, LeMat-Cat, LeMat-Synth and LeMat-
Rho: Extensions for dynamical data, catalytic surfaces,
synthesis recipes and electron density.

These datasets support foundation model training, multi-
fidelity learning, and enable rigorous benchmarking of
downstream discovery applications—serving as a public
backbone for the field.

Bridging the Gap with Experiments
Simulations and ML models provide fast approxima-
tions—but the ultimate test is experimental validation. At
Entalpic, we tightly couple AI with high-throughput lab
workflows to ensure that candidates are not just promis-
ing in theory, but also synthesizable and performant under
realistic conditions.

• Automated synthesis enables parallel, reproducible
fabrication of proposed materials using robotic plat-
forms and custom workflows.

• Characterization (e.g., XRD, XRF, TEM) helps con-
firm the match between proposed and actual structures
and reveals synthesis-dependent variations.

• Performance testing measures functional metrics
such as catalytic activity, selectivity, and lifetime, in
application-specific setups.

Experimental feedback is automatically reintegrated into
our active learning loop—enhancing model robustness and
aligning future predictions with real-world constraints.

Conclusion
Entalpic’s platform falls into a new paradigm in materials
science: one where AI does not just screen faster, but helps

generate and validate novel compounds from first princi-
ples to deployment. By combining GNN-based property
prediction, generative chemistry with GFlowNets, active
learning, and automated experimentation, we move beyond
trial-and-error toward a system that learns—continuously
and intelligently—how to discover better materials.
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